
Stateful Detection in High Throughput Distributed Systems

Gunjan Khanna, Ignacio Laguna, Fahad A. Arshad, Saurabh Bagchi
Dependable Computing Systems Lab (DCSL)

School of Electrical and Computer Engineering, Purdue University
Email: {gkhanna, ilaguna, faarshad, sbagchi}@purdue.edu

Abstract

With the increasing speed of computers and the
complexity of applications, many of today’s distributed
systems exchange data at a high rate. Significant work
has been done in error detection achieved through
external fault tolerance systems. However, the high
data rate coupled with complex detection can cause
the capacity of the fault tolerance system to be
exhausted resulting in low detection accuracy. We
present a new stateful detection mechanism which
observes the exchanged application messages, deduces
the application state, and matches against anomaly-
based rules. We extend our previous framework (the
Monitor) to incorporate a sampling approach which
adjusts the rate of verified messages. The sampling
approach avoids the previously reported breakdown in
the Monitor capacity at high application message
rates, reduces the overall detection cost and allows the
Monitor to provide accurate detection. We apply the
approach to a reliable multicast protocol (TRAM) and
demonstrate its performance by comparing it with our
previous framework.

1. Introduction
The proliferation of high bandwidth applications

and the increase in the number of consumers of
distributed applications have caused them to operate at
increasingly high data rates. Many of these distributed
systems form parts of critical infrastructures, with real-
time requirements. Hence it is imperative to provide
error detection functionality to the applications. Error
detection can broadly be classified as stateless
detection and stateful detection. In the former,
detection is done on individual messages by matching
certain characteristics of the message, such as the
length of the payload of the message. A more powerful
approach for error detection is the stateful approach, in
which the error detection system builds up state related
to the application by aggregating multiple messages.

The rules are then based on the state, thus on
aggregated information rather than on instantaneous
information. Stateful detection is looked upon as a
powerful mechanism for building dependable
distributed systems [19][20]. The stateful detection
models can be specified using various formalisms,
such as, State Transition Diagrams, PetriNets or UML.
Though the merits of stateful detection seem to be well
accepted, scaling a stateful detection system with
increasing application entities or data rate is a
challenge. This is due to the increased processing load
of tracking application state and rule matching based
on the state. This problem has been documented for
stateful firewalls that are matching rules on state
spread across multiple, possibly distant, messages [19].
The stateful error detection system has to be designed
without increasing the footprint of the system. Thus
throwing hardware or memory at the problem is not
enough because the application system also scales up
and demands more from the detection system.

In our earlier work on developing an error
detection system, we developed the Monitor([1], [7])
which provides detection by only observing the
messages exchanged between the protocol entities
(PEs). The Monitor is said to verify a set of PEs when
it is monitoring them. The Monitor is provided a
representation of the protocol behavior (using a state
transition diagram i.e., STD) of the PEs being verified
along with a set of stateful anomaly based rules. The
Monitor uses an observer model whereby it does not
have any information about the internal state of the
PEs. The Monitor performs two primary tasks on
observing a message. First, it performs the state
transition corresponding to the PE based on the
observed message. Note that the state of the PE
estimated by the Monitor may differ from the real state
of the entity since not all messages related to state
changes are necessarily observable at the Monitor.
Second, it performs rule matching for the rules
associated with the particular state and message
combination. We observe that the Monitor has a

breaking point in terms of (1) the incoming message
rate or (2) the number of entities that it can verify,
beyond which the accuracy and latency of its detection
suffer [7]. The drop in accuracy or rise in latency is
very sharp beyond the breaking point. We observe
through a test-bed experiment that as the incoming
packet rate into a single Monitor is increased beyond
100 pkt/s, the Monitor system breaks down on a
standard Linux box. In other words, its latency
becomes exceedingly high and accuracy of detection
tends to zero. This effect is shown in Figure 1. This
breakdown is caused by the processing capacity at the
Monitor being exhausted. Hence, messages see long
waiting times and, on the buffer becoming full, the
messages also get dropped. Thus, for reasonable
operation, the Monitor can only support data rates
below the breaking point.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500

La
te

nc
y

(m
s)

Rate of Packets (Pkt/s)

Monitor (baseline)

Figure 1: Latency variation with increasing packet
rate. The graph depicts the breaking of the Monitor

system at an incoming rate of 100 pkts/s

In the current work, we devise a stateful detection
approach which scales with the increasing data rate of
applications, or equivalently, the number of PEs being
verified. We observe that in order to make stateful
detection feasible; firstly the processing of each
message must be made extremely efficient and
secondly the system must reduce the total processing
workload (e.g., by selectively dropping incoming
messages). The amount of work at the Monitor per unit
time can be conceived as the rate of messages being
processed for detection × the amount of work
performed for each message. Our approach optimizes
both these terms. The goal is to provide an error
detection system for high throughput distributed
streams and correspondingly push the knee to the right
(Figure 1). Existing detection systems like [15][16]
which aim at handling high data rate provide detection
of changes in high rate streams using mean and higher
order moments. This approach cannot capture the

richness in the error detection rules that is needed for
specifying verifiable behavior.

As a first aspect, we minimize the processing cost
of an individual incoming message into the Monitor.
We do this by using multistage hash tables for look ups
when a state transition needs to be performed at the
Monitor. We observe that for realistic systems,
multiple rules will be active concurrently. The rules
take the form of verifying values of some state
variables or counts of messages (events) lying within a
range. There exists significant overlap in the state
variables or counts being referred to in the rules. Since
processing for an incoming message most often
involves updating these counts, we optimize this
operation by compact representation of the state
variables.

In the second aspect, we minimize the number of
messages that the Monitor has to process by sampling.
We set a threshold for the incoming rate guided by the
breaking point of the Monitor. Sampling the incoming
stream to reduce the rate of messages is a logical start.
However, since the Monitor provides stateful
detection, dropping messages can cause the Monitor to
lose track of the PE’s current state with resultant
decrease in accuracy of rule matching. This
phenomenon is called state non-determinism, whereby
to the Monitor it is non-deterministic which state the
PE is in. In our approach the Monitor tracks the set of
possible states the application could have reached
given that a sequence of messages is dropped. The
Monitor aggressively pre-computes information about
the states for possible sequences of messages to reduce
the cost of computing the non-deterministic state set.
While the cost of processing each (sampled) message
now increases over the baseline case, through careful
design, the Monitor’s total amount of work is reduced
by reducing the rate of messages that it needs to
process. The sampling is adaptive to tolerate
fluctuations in the message rate generated by the PEs.
Also, the sampling scheme necessitates changes in the
rules to prevent false detections due to the sampling.

We implement the two aspects of efficient stateful
detection in the Monitor and use it to detect errors in a
reliable multicast protocol called TRAM[4]. TRAM
provides a motivating application since it is at the core
of many e-learning applications which feed high
bandwidth streams to a large set of receivers. We inject
errors into the TRAM PEs and compare the accuracy
and latency to the baseline system. The sharp decrease
in performance beyond the breaking point is no longer
observed; in fact, a sharp breaking point is completely
eliminated and a gradual decrease in performance with
increasing message rates is observed instead.

D
at

a
A

ck

D
at

a

N
A

ck

H
ea

d
B

in
d

Figure 2: An example State Transition Diagram

for a TRAM receiver
Section 2 provides a background on the existing

Monitor approach and identifies changes for an
approach which can work in high data rate
applications. In section 3 we present the new stateful
approach, and in section 4 and 5 we describe it.
Section 0 and 0 provide details on the application and
experimental results respectively. Related research is
discussed in section 8 followed by conclusions in
section 9.

2. Background

2.1 Black-box detection through the Monitor
Previously we developed a detection framework in

terms of hierarchical Monitor(s) based on black-box
semantics [1][7]. The Monitor obtains the protocol
messages either through modification to the
communication middleware layer to forward the
messages or by a passive snooping mechanism. In
either scenario the components of the application are
treated as black-box for the detection process. There
are advantages to this treatment—the application does
not have to be modified, the solution is generalizable
across multiple applications, and the set of errors to be
detected can be extended in a modular manner without
changes to either the application or the Monitor
algorithms. The Monitor consists of a hierarchy of
Local, Intermediate and Global monitors. The Local
Monitor, abbreviated later as the Monitor, is in charge
of verifying the behavior of a set of PEs and it is given
as input the reduced STDs of these PEs. The STD is
reduced because internal transitions are not visible to
the Monitor and hence not included. At runtime, it
observes the external message interactions between the
PEs that it is verifying and it deduces the current state
of the PE from it. The Local Monitor also matches the
PE’s behavior against a set of rules. The combination
of current state and incoming event determines the set
of rules to be matched. The Intermediate Monitor
gathers information from several local Monitors, each
verifying a set of PEs. The Global Monitor verifies
some global properties of the protocol. Message
capturing by the Monitor can be through passive
monitoring of traffic or using active forwarding

support from the PEs. We will refer to this initial
version of the Monitor described in [1][7] as Monitor-
Baseline.

2.2 Creation of rules
The rules used by the Monitor are anomaly based

rules since the potential universe of PE misbehavior is
too large to be enumerated. The rule base provided by
the system administrator comes from two sources:
formal protocol specifications and QoS specifications.
The first class of rules is derived from a complete STD
specification of the protocol while the second class is
specified by the system administrator based on the
application requirements—performance requirements
(such as, data rate of 20 kbps must be sustained) or
security requirements (such as, no more than 3
unsuccessful login attempts will be allowed). Any
deviation from the rules can be detected by the
Monitor. Thus, the universe of detectable errors
includes implementation bugs, configuration errors,
security exploits or performance problems.

The running protocol that we use as example is the
TRAM [4] protocol for reliable multicast of data from
a single sender to multiple receivers through
intermediate routing nodes called the repair head
(RH). In TRAM, the receiver Acks correct data
packets and sends Nacks for missing data packets to
the RH above. The receiver maintains a counter for the
number of Nacks sent, and if it crosses a threshold,
receiver begins to rejoin a different RH assuming the
old RH has failed.

The STD in Figure 2 shows an example STD for a
receiver receiving data from the sender or the RH. An
explanation of the different types of messages in
TRAM is provided in the Appendix. Under correct
operation, the receiver will oscillate between states S0
and S4, getting data and sending Acks. Rules can be
derived from the STD using the states, events, state
variables and time of transitions. Each state has a set of
state variables. Events may cause transitions between
states. In our context, events are messages sent and
received. In Figure 2, the receiver moves from state S4
to state S5 if it sends a Nack because no data packet is
received. Hence a rule can be derived if for all t ∈ (ti,
ti+a), S4 ∧ ¬D ⇒ ¬S4.; where ti is time when S4
becomes the present state and a is a constant. Here
predicate D implies data packet received. Subsequent
Nacks will cause the state to remain at S5 but a local
state counter will be incremented. Eventually if the
number of Nacks is greater than Nmax, then the
Monitor should see a Head Bind message indicating a
change of affiliation to a different RH. Thus the rule
becomes |Nacks| ≥ Nmax ⇒ Head Bind. Hence rules
can be derived from the STD specifications. The

system administrator may add rules specifying QoS
conditions that the application should meet, e.g., a
minimum data rate that must be met at each receiver.
In addition, the system administrator may augment the
rule base with rules to catch manifestations of any
protocol vulnerability. Creation of the STDs to be
verified may be a manual process. Alternately several
applications are formally specified as state charts,
communicating finite state machines, using UML
diagrams, etc. and automated tools can be built to
convert other formal representations to STDs.

We have a formally defined syntax for rules in the
system. The syntax represents a balance between
expressiveness of the rules and efficient matching of
the rules at runtime. Rules are of two kinds –
combinatorial and temporal. Combinatorial rules are
expected to be valid for the entire period of execution
of the system, except for transient periods of protocol
instability.

2.3 Temporal rules
The rule base for the Monitor-Baseline is specified

using a broad class of rules which captures a majority
of protocol behavior (see [1][7]). The syntax of the
rules is presented in Appendix B and is identical to that
presented in [1][7]. The Monitor-Baseline has five
broad categories of temporal rules (R1-R5) with each
one designed to provide verification of state changes,
verify event counts in specific states, causal
dependence, and combination of these conditions for
PEs. Examples of rules based on Figure 2 are:

 R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000:
(Rule of type 4) If a receiver gets 1 to 30 Data
messages in 4000 ms then it should send at least 1
Ack response within the next 3000ms.
 R3 S5 E15 0 10 5000: (Rule of type 3) Restrict

the number of Acks to 10 within 5000ms.
The complete set of rules used in our experiments

is presented in Appendix A.
In the Monitor-Baseline, every time a new rule is

instantiated, local variables are created for that rule. As
messages are received the local variables for all the
active rules are updated. For example, if two rules of
type III are active which are verifying the same state
variable Vi then each rule will be holding a local copy
of Vi. Every receipt of a message corresponding to the

state variable Vi would cause two local variables to be
updated.

3. Scalable stateful detection
In developing a suitable approach for stateful

detection we carefully study the tasks performed by the
Monitor-Baseline for error detection. Thus, the main
steps on the receipt of a message are: (1) perform the
state transition; (2) instantiate any rule corresponding
to the state and event combination. Upon expiry of the
time specified in a rule, the Monitor checks the value
of the variable(s) mentioned in the rule to verify that
they lie in the permissible range. It is observed for the
Monitor-Baseline that as the number of incoming
messages increases, the latency of detection breaks
down beyond a threshold. We attribute this problem
quite intuitively to two root causes: (1) High cost of
processing per message, and (2) High rate of incoming
messages. We target both these causes and solutions to
them are described respectively in Sections 4 and 5.

4. Making rule matching efficient
In the modified approach, henceforth called the

Monitor-HT (for Hash Table, due to its widespread use
in the redesign), we perform several modifications to
the Monitor-Baseline data structure to achieve efficient
per message processing. Figure 3(b) depicts the logical
organization of multi-level hashtables used in the
Monitor-HT. These hashtables are organized by
carefully observing the processing path that a message
takes after being received by the Monitor-Baseline. We
designed the data structure consisting of multi-level
hashtables to provide constant order look-up. The
STDs of the PEs are organized as multi-level
hashtables to provide constant order lookup. PE
address is used in PESTD table to obtain the STD for
that PE. The STD table is indexed using a state Si
which provides a list of events possible in that state
(again organized as a hashtable). In the Event table
each event ID maps to an event object, which contains
information like event ID, event Name and rules
pertinent to that event. The entire redesign using
multiple hash tables makes the processing of an
incoming message efficient at the expense of higher
memory overhead.

Event HTPE addr Event HTPE addr

key Object

Event CountEvent ID Event CountEvent ID

PEEvent Table EventCount Table
(a)

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event
Objects

Event ID Event
Objects

Event ID

Event Table
(b)

Figure 3: Data Structure used in the Monitor-HT for (a) Storing Incoming Event Counts; (b) Storing the
STDs. The first column represents the key of the hash table

 Next, in the Monitor-Baseline, for every rule
instantiation, its own copy of state variables is created.
When a message arrives, active rules that depend on
the message (through a state variable) are searched and
every rule’s local copy of the state variable is updated.
This process is expensive because for every message, a
long list is traversed. We observe that there exists
significant sharing of state variables between the
different rules and this makes the design of separate
copy for each active rule inefficient. As an example,
consider that multiple rules are tracking the data rate
around different events, say within 5 seconds of a
Nack being sent. All the rules would be counting the
number of data messages (the state variable) received
over different time intervals.

 The Monitor-HT removes the above-mentioned
source of inefficiency by having a central store of the
state variables. The Monitor-HT keeps a hashtable to
store the updates for a given message (see EventCount
table in Figure 3(a)). We use a multi-level hashtable
where PEEvent indexes all the PEs in the system and
the EventCount table contains all the events
corresponding to the given PE. The incoming
messages can be thought of as a tuple as (ai, ei), where
ai is the PE address (IP address or some logical
address) and ei is the event ID.

The value ai is used to look up PEEvent table for
the events. The ei is used to index in EventCount table
and increment the event count for ei (currently all
increments are by a value of 1). Because of this
organization every unique PE × Event ID symbol is
only incremented once.

 Regarding the rule matching procedure, instead of
having every active rule use local variables, every rule
instance reads the value of the associated state variable
from the hashtable. When a new rule is created it reads
the value of the current event count from the
EventCount table to see the current value of the state
variable referenced in the rule, call it vinit. Later, at the

time of rule matching, the Monitor-HT again reads the
value of the state variable, call it vfinal. Thus, the
EventCount table is read from the rule instances only
twice, and written by a separate thread which handles
the incoming messages from the PEs. The advantage of
the Monitor-HT over the Monitor-Baseline, quantified
in the experiments, is dominated by the effect of this
design choice.

5. Handling high rate streams: Sampling
Even with the modifications made in the Monitor-

HT, a constant amount of work is performed for every
incoming message. In the next optimization, not all
messages are processed; instead messages are sampled
and only the sample set is processed. This version is
called the Monitor-Sampling, or the Monitor-S.
Sampling raises a few obvious questions:
1. How and what sampling approach should be taken?
2. How are the rules modified due to sampling?
3. How does the Monitor-S track the PE’s STD in the

presence of sampling?
The first two questions are answered in Section 5.1

and the third one in Section 5.2.

5.1 Design of sampling
We propose uniform sampling approach which is

agnostic to the kind of messages coming in. This
prevents the Monitor-S from having to deduce the type
of the incoming message before deciding to drop it or
keep it. This would have imposed per message
processing overhead on the Monitor-S and defeated the
purpose of our design. With sampling, the
corresponding parameters in the detection rules have to
be re-adjusted for matching. Assume that the Monitor
gives a desired latency and accuracy of matching for
an incoming rate of up to Rth (threshold) . Any rate R >
Rth the Monitor chooses to drop the messages
uniformly with a rate of 1 in every R /(R - Rth)

S1

S4S3
S2

S1 S2 S3 Sj

f = depth /
sampling rate

Example State Vectors at a depth

S1

S4S3
S2

S1 S2 S3 Sj

f = depth /
sampling rate

Example State Vectors at a depth

1. Input Rules and STD for the PEs for detection by Monitor-S
2. Construct the State Vectors offline
3. Run the Monitor and start verifying the PEs
4. If Rincoming < Rth operate in Monitor-HT mode else operate

as Monitor-S
5. If sampling, then perform state transition using the state

vectors
6. For every sampled message instantiate rules for all states

in the state vector

(a) (b)

Figure 4: Example tree formed by traversing the outgoing edges from each node in Figure 5. Union of
nodes present at depth h represents the nodes in set Sh if h messages are dropped starting with S1. (b)

Flow of detection in the Monitor-S

messages. The behavior of the Monitor switches from
the Monitor-HT to the Monitor-S because sampling
kicks in after Rth. Since the messages being processed
by the Monitor-S are a sample of the entire set of
messages, the rules originally specified by the system
administrator are not valid on the sampled stream.

Once a new sampling rate is chosen based on the
incoming traffic rate, the rules are also modified. We
keep the rule type the same but the constants get scaled
according to the sampling rate. This is necessary
because rules are defined according the normal
operation of the PEs but, because of sampling, the
Monitor-S is viewing an alternate sampled view of the
operation of PEs. If the incoming rate is R and the
threshold rate is Rth then the constants in the rules must
be scaled by a factor of Rth/R. For example: if a rule
states “receive 10 Acks in 100 sec” then because of
sampling the rule is modified to “receive 10.(Rth / R)
Acks in 100 sec”. This rate will be changed as and
when the incoming rate is changed. We measure the
incoming rate over non-overlapping time windows of
length ∆ by counting the number of incoming
messages in the window. At each rate computation, the
new rate is compared with Rth and if it exceeds Rth then
a new sampling rate is determined based on this new
incoming message rate. To reduce the overhead of rate
computation, ∆ is kept higher than the time period over
which a rule is matched.

S1

S3

S4S2

e1
e2

e3

e4
e1

e1 e2
e5

e5

e1

State Transition Diagram (STD)

S1

S3

S4S2

(a)
Directed Graph

(b)

S1

S3

S4S2

e1
e2

e3

e4
e1

e1 e2
e5

e5

e1

S1

S3

S4S2

e1
e2

e3

e4
e1

e1 e2
e5

e5

e1

State Transition Diagram (STD)

S1

S3

S4S2

(a)
Directed Graph

(b)
Figure 5: A sample STD which is converted to a

directed graph by removing the event labels

5.2 STD transition with sampling
If all incoming messages are not processed, this

will cause the Monitor-S to lose track of the current
state of the PE. We modify the approach of STD
transitioning at the Monitor-S such that instead of
tracking the current state, the Monitor-S keeps a state
vector S which contains all the possible states the
given PE can be in S = {S1, S2….SK}. The reason for
having multiple possible states is that the Monitor-S
does not know which of several possible paths the PE
has taken given a start state Sstart.

As a result of sampling, instead of knowing exactly
which state the PE is in, the Monitor-S will know a
possible set of states the PE is in (based on the

transition edges outgoing from the current state). For
example: In Figure 5(a) if the current state is S1 and a
packet is dropped then the next possible state is one of
{S2, S3, S4}. To determine this set, the Monitor-S pre-
computes the possible states which can be reached in
steps of size 1, 2, 3 and so on. Each set of these states
form the state vector S if 1, 2, 3 and so on messages
are dropped. In other words if a single message is
dropped starting from the start state Sstart, then S1 will
consist of all the states Si such that Si has an incoming
edge from Sstart in the graph. Si vector starting from
state Sstart gives the state vector if i packets are
dropped. Now given the rate of sampling one can
transform one state vector S1 to another state vector
S2. Let us say S0 = {Si | i ∈ (1, g); g is the number of
nodes in the initial state vector} be the initial state
vector. If the Monitor-S dropped one message then the
new state vector S1 = {Sj | Si Sj is reachable using a
single edge AND Si ∈ S0}. Similarly if 2 messages are
dropped then S2 = {Sm | Sj Sm is reachable using a
single edge AND Sj ∈ S1}.

The state vectors (S1 and S2) are created offline
because the STD is already known to the Monitor-S.
Figure 4(a) illustrates for the STD in Figure 5, a tree
structure for maintaining the state vectors after
different numbers of messages are dropped. Nodes at
the depth h form the state vector Sh and represents the
states after h messages are dropped starting from S1. At
runtime, the Monitor-S tracks how many messages are
dropped and looks up the appropriate state vector.

5.3 Error detection with sampling
Figure 4(b) represents the flow of detection in the

Monitor-S when sampling is taking place. If the
incoming rate is below Rth then no sampling occurs
and the Monitor-S simply runs as the Monitor-HT.
During sampling, the state transition is performed
between various state vectors S which have been
computed offline. When a message is sampled, all
detection rules corresponding to that event ID and
states in the current S are instantiated for matching.
When messages are being dropped, the size of the state
vector |S| increases. Once a message is sampled, the
state vector is pruned since the message may not be
valid for all the states in the state vector. Consider that
the state vector is Sa- just before sampling and Sa+
just after sampling message M. Then Sa+ = {Si | Si ∈
Sa- and M is a valid message in state Si according to
the PE’s STD}. Qualitatively, the sampling scheme
will be beneficial only if the pruning in the size of the
state vector is significant compared to the growth due
to message drops. For example: let S initially consists
of {S1, S2, S3} and the sampled message be e2. Then
from Figure 5 we can see that only S2 and S3 can have

a valid event e2 and therefore the state vector becomes
{S2, S3}.

This ambiguity about which state the PE is in and
the design of using the entire state vector may give rise
to false alarms since the Monitor-S may match some
rules that are not applicable to the actual state the PE is
in.

Computing the state vectors offline imposes a
memory requirement on the system. If we assume that
at most τ messages will be dropped by the Monitor-S
then the offline computation should have state vectors
up to Sτ. The total number of states in this state vector
tree is given by k(kτ-1)/(k-1) assuming a k-regular
structure of connectivity between the states. Thus the
space required to store these state vectors is
proportional to k(kτ-1)/(k-1). However the total number
of states in the STD also imposes a cap on the size of
the state vectors and prevents further increase in |S|. If
there exists a ω s. t. kω> N (total states in STD), then
the space required to store the state vectors is
proportional to k(kω-1-1)/(k-1)+(τ-ω+1)N. The exact
memory required is dependent on the data structure
used to store these state vectors. Bit vector
representation for storing them is an efficient option to
reduce the overall memory used.

s*0

s8

Hello

s9

TimeOut

HelloReply

Resend
Hello

Drop
the PE

s*0

s1

Head Adv

s2

TimeOut

Resends
Head
Advs3

Head
Bind

Accept/Reject

TimeOut

(a) (b)

s*0

s8

Hello

s9

TimeOut

HelloReply

Resend
Hello

Drop
the PE

s*0

s8

Hello

s9

TimeOut

HelloReply

Resend
Hello

Drop
the PE

s*0

s1

Head Adv

s2

TimeOut

Resends
Head
Advs3

Head
Bind

Accept/Reject

TimeOut

(a) (b)
Figure 6: Example State Transition Diagrams

(STDs); (a) TRAM sender adding new receivers in
TRAM; (b) TRAM entities (sender, receiver, RH)

sending liveness messages (Hello)

6. Experimental setup

6.1 Application: TRAM
We demonstrate the use of the Monitor on the

running example protocol ― a reliable multicast
protocol called TRAM [6]. TRAM is a tree-based
reliable multicast protocol consisting of a single
sender, multiple repair heads (RH), and receivers. Data
is multicasted by the sender to the receivers with an
RH being responsible for local repairs of lost
messages. The reliability guarantee implies that a
continuous media stream is to be received by each
receiver in spite of failures of some intermediate nodes
and links. An Ack message is sent by a receiver after

every Ack window worth of messages has been
received, or an Ack interval timer goes off. The RHs
aggregate Acks from all its members and send an
aggregate Ack up to the higher level to avoid the
problem of Ack implosion (see Figure 2).

The multicast tree is formed via sender sending
Head Advertisement messages and new nodes
joining using the Head Bind message (see Figure
6(a)). Nodes ensure liveness of other neighbor nodes
by periodically sending Hello messages as depicted in
the STD shown in Figure 6(b).

 The detection approach is provided with a rule
base for detection which is derived from the STDs
(shown in Figure 6). Some example of rules are as
follows: R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000
If a Data message is seen then the Monitor must see an
Ack message following it; T R4 S1 E9 1 2 1000 S1 E8
1 2 2000 3000: If the entity is in state S1 then the
Monitor should observe one or more Head Bind
messages followed by Accept message; T R3 S0 E14
10 30 5000: The number of Hello message within a
time window should be bounded to prevent Hello
flooding. A complete list of rules used in our
experiments is provided in the Appendix A. It is
evident from the set of rules that several of them verify
the message count for the same message type (such as,
Data, Hello, Ack). Therefore the redesign of the
Monitor-HT of keeping only a shared writable copy of
the state variables is likely to be beneficial.

6.2 Emulator
In order to be able to study the performance of the

Monitor under high data rate conditions, we emulate
the TRAM protocol [4][6]. This is necessary because
operating multicast protocol across Purdue’s shared
wide area network at a high data rate causes multiple
switches to crash. The extra beacon messages sent out
for advertising the multicast channel causes an
overload of the LAN switches leading them to crash.
In order to avoid this problem and to have the ability to
perform experiments in a controlled environment, we
emulate the topology of TRAM depicted in Figure 7.
The emulated messages following the STDs in Figure
6 are forwarded to the Monitor.

6.3 Fault injection
We perform random fault injection in the header of

the emulated TRAM messages to induce failures. In
random injection we randomly choose a header field
and change it to a randomly selected value. The
randomly selected value may or may not be a valid
field of the TRAM protocol. These errors model
protocol errors which cannot be detected by simple
measures like cyclic redundancy check (CRC) on the

message payload. We choose the header since the
current detection mechanism only examines the
header. In general, a PE to inject is chosen (sender, RH
or receiver) and faults are injected for a burst length.
We use a burst length of 500 ms and inject the burst
length of faults after every 5 minutes during each
experimental run. For these experiments we inject only
the sender with faults because of high probability of
error propagation down the multicast tree. A burst
length is chosen since TRAM is robust to isolated
faults and to mimic faults close to reality. The rules in
the rule base typically run over a window of messages
and are likely to not get violated because of an isolated
faulty message. The burst can cause multiple rules to
be instantiated simultaneously for each of sender, RH
and receiver. Note that the emulated faults are not
simply message errors, but may be symptomatic of
protocol faults in the PEs. Errors in message
transmission can indeed be detected by checksum
computed on the header but these protocol errors
cannot. We perform random injection where a header
field is chosen randomly and changed to a random
value, valid or invalid w.r.t. the protocol. If the
injected value is not valid, then the message is dropped
without processing. An alternate mode of error
injection used in our earlier work [1] is directed
injection whereby messages are transformed to a valid
protocol value. Experimentally, we find that the
performance of the Monitor-HT and the Monitor-S
relative to the Monitor-Baseline is not affected by this
choice.

r2

r3

RH

r1

RH

………

LM

GM
min.ecn.purdue.edu

dcsl-lab

Packet
Forwarding

S

S: Sender (TRAM)
RH: Repair Head (TRAM)

GM: Global Monitor
LM: Local Monitor

r2

r3

RH

r1

RH

………

LM

GM
min.ecn.purdue.edu

dcsl-lab

Packet
Forwarding

S

S: Sender (TRAM)
RH: Repair Head (TRAM)

GM: Global Monitor
LM: Local Monitor

Figure 7: Physical Topology of the TRAM emulator
and the Monitor in the experiments

7. Experiments and results
Experiments are performed on the topology shown

in Figure 7. The Monitor system and the TRAM
emulator are executed on separate desktop PCs with a
2.4GHz processor and 1GB RAM. We use TRAM

sender and receiver (Figure 7) as the PEs being
verified by the Monitor in all the experiments. We
measure the accuracy and latency of the detection
procedure for the Monitor. Accuracy is defined as (1-
% of missed detections). We characterize the fault
injections which affect the PEs but are undetected by
the Monitor as missed detections. A PE is said to be
affected if it crashes or raises an exception. False
detections are defined as the errors which are flagged
by the Monitor but do not affect the TRAM entities.
Latency is measured as the time from the instantiation
of a rule to the time when the rule matching is
completed, subtracting the time for which the rule is
dormant. For example, if a rule states “Observe 32
data messages in 5 sec” then 5 sec is the time during
which there is no Monitor-related processing. This
time needs to be subtracted since it is not an index of
the Monitor’s performance; rather it is a feature of the
rule itself. The value of ∆ in our experiments is set to
30 seconds.

7.1 Accuracy and latency results
We vary the incoming data rate for the Monitor by

varying the inter-packet delay from the sender. The
emulator sends packets at a low rate of 20 pkt/s for the
first 30 seconds and then increases it. Each experiment
run lasts for 20 minutes. Every latency and accuracy
value is averaged over at least 60 data points. The
experiment is repeated for three different systems i.e.,
the Monitor-Baseline, the Monitor-HT, and the
Monitor-S. The rate of packets is varied between 10
pkt/s and 500 pkt/s. Figure 8(a) shows the variation of
accuracy with packet rate. The 95% confidence
interval is plotted for the Monitor-S and is seen to be
very small indicating that the variance in the results is
small. We can see that with an improved data structure
the Monitor-HT’s knee, i.e., the breaking point, occurs
around 125 pkt/s compared to 100 pkt/s for the
Monitor-Baseline. Let us denote the breaking point for
the incoming message rate as Rbp. The improvement of
25% is due to the sharing of the state variables and the
efficient hash table lookup. The false alarms vary
between 0-6% for both the Monitor-HT and the
Monitor-Baseline. For extremely high packet rates, the
Monitor-HT and the Monitor-Baseline have a drop in
false alarms because the number of rule matches itself
is reduced.

 We can see that beyond 125 pkt/s even with
efficient per packet processing, the accuracy drops
below 40% because of the increased rate of incoming
messages which causes the processing capacity of the
Monitor-HT to be exhausted. In comparison, with
sampling, the accuracy drops gradually as the Monitor-
S drops increasingly more packets with increasing data

rate to maintain the rate below Rbp. We can observe
from Figure 8(a) that with increasing packet rate the
Monitor-S has a small decrease in accuracy but it still
maintains accuracy at approximately 70% compared to
the Monitor-HT’s 16% accuracy. The Monitor-S has a
marginal increase in the rate of false alarms due to the
knowing of the state vector rather than the precise
state. The false alarms vary between 0-9%. At high
data rates we observe lower false alarm rates for the
Monitor-S compared to low data rates.

An example of a rule which does not get violated
due to sampling resulting in loss of accuracy is R1 S0
E1 1000 S8 1500 2500. This rule verifies that for a
TRAM PE (sender, receiver) the state has successfully
changed to S8 from S1 after receiving E1 (Hello
message). At high data rates if a large number of
packets is getting dropped, it happens that S still
contains state S8 causing this rule not be violated and
hence decreasing the accuracy.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Rate of Packets (Pkt/s)

Monitor (baseline)
Monitor-HT

Monitor-S

(a)

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500

La
te

nc
y

(m
s)

Rate of Packets (Pkt/s)

Monitor (baseline)
Monitor-HT

Monitor-S

(b)

Figure 8: Variation of (a) Accuracy and (b) Latency
with increasing rate of packets

The latency plot in Figure 8(b) provides a similar

picture. The breaking points for the Monitor-Baseline
and the Monitor-HT are the same as in the accuracy

plot – 100 pkt/s and 125 pkt/s respectively. For the
Monitor-S, we can see a small jump in latency around
65 pkt/s (Rth in this experiment) because the algorithm
switches to sampling and the probability of dropping a
packet increases (being zero previously). This results
in a higher overhead for processing each packet and
the attendant marginal increase in latency. The
processing done by the Monitor-S is proportional to |S|
times the number of detection invocations. Increasing
data rate causes higher |S| leading to higher latency of
rule matching. However, the growth of |S| slows down
with increasing packet rate causing the latency to
saturate. We observe that even at high packet rates the
Monitor-S maintains a low latency of rule matching
(~200ms) because of effective adjustment to the
sampling rate reducing the rate of packets that are
processed. This provides an 83.3% decrease in latency
compared to the latency of 1200ms for the Monitor-
Baseline.

For a fixed Rth, as the data rate is increased, the size
of the state vector |S| increases but it saturates at
higher packet rates. The processing for the rule
matching is directly proportional to |S|. Also, as the
data rate is increased beyond Rth, the number of rule
invocations of the Monitor-S stays constant. The
latency is proportional to the total work done by the
Monitor-S, which is given by: processing for the rule
matching × number of rule invocations of the Monitor-
S. Therefore, initially when the data rate is increased
beyond Rth, the latency increases, but beyond a point, it
saturates.

7.2 Effects of varying Rth
 Figure 9(a) depicts the behavior of accuracy and

latency for different values of Rth in the Monitor-S.
Recollect that when the incoming message rate goes
above Rth, the Monitor switches to the sampling mode.
For all cases the accuracy is almost the same at high
data rates and low data rates. Let us consider a single
curve (say Rth = 50 pkt/s). For data rates below 50
pkt/s there is no sampling and since this threshold is
much below the breaking point (125 pkt/s from Figure
1) the latency remains quite low (~65ms). As the data
rate increases beyond 50 pkt/s, sampling starts and
with increasing data rate an increasing number of
packets is dropped. Difference in characteristics of the
curve around Rth provides the system administrator a
useful tuning parameter to choose a suitable latency
value for the requirements of the distributed
application. Clearly picking Rth > Rbp is unsuitable due
to the spike in latency (see the 140 pkt/s curve). It is
tempting to choose Rth as close to Rbp as possible
(notice the delayed increase in latency for Rth = 100
pkt/s compared to Rth = 50 pkt/s). However, in practice

the breaking point cannot be exactly determined since
it depends on the kinds of messages (and hence, the
kinds of rules) that are coming into the Monitor. Thus
the system administrator has to choose a Rth suitably
below Rbp. For our experimental setup, if a latency of
less than 100 ms is desired for data rates up to 100
pkt/s, then Rth of 100 pkt/s is an appropriate choice.

 When Rth is 140 pkt/s, i.e., greater than the
breaking point (125 pkt/s), it causes a heavy load and
higher latency of matching for the region (125 pkt/s,
140 pkt/s). But as the run of experiment continues,
sampling starts and this brings down the average
latency to just over 300ms. The jump in the latency is
because the incoming rate is close to the Rth because of
which the Monitor switches between sampling and
non-sampling modes. However in the non-sampling
mode, since incoming rate is greater than Rbp, the
Monitor-S incurs a high latency. This oscillation
between the modes happens when the rate is close to
Rth which explains the high latency (275-330 ms)
around the incoming message rate of Rth.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

A
cc

ur
ac

y
(%

)

Rate of Packets (Pkt/s)

50 Pkt/s
65 Pkt/s

100 Pkt/s

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500

La
te

nc
y

(m
s)

Rate of Packets (Pkt/s)

50 Pkt/s
65 Pkt/s

100 Pkt/s
140 Pkt/s

(b)

Figure 9: Effect of Rth on the (a) Accuracy and (b)
Latency

7.3 Variation of state vector size (|S|)
As described before, the amount of processing

done by the Monitor-S is dependent on size of state
vector i.e., |S|. We investigate the variation of |S| with
time in an experimental run. In this experiment we
keep the Rth fixed at 65 pkt/s and run the emulator to
provide an incoming rate of 250 pkt/s. This experiment
is targeted at bringing out the dynamics of the
Monitor-S when the incoming message rate is higher
than the breaking point, forcing sampling to kick in.
For this configuration, approximately one in four
packets is sampled. Figure 10 shows the variation of
|S| with time. We measure the size of state vector once
every 2 packets. Instead of displaying the entire run of
20 minutes, we pick a representative 100 contiguous
samples of |S|. We can see the large fluctuations of |S|
due to the sampling. We can see that |S| grows to as
large as 10, multiple times during the experimental
run. The number of rules which get instantiated for
each packet is proportional to |S|. However the rules
get instantiated after a message is sampled. When a
message is sampled, it will likely cause |S| to decrease
because all the states in S do not have the message as a
valid message in that state. Thus the rule instantiations
take place at the troughs and not at the peaks of the
plot in Figure 10. We can see that in Region 1, |S|
drops in steps from 9 to 6 and finally to 1. The drop in
|S| is because of the unique possibility of the sampled
event in only some of the states.

Region 1

Region 2
 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

S
ta

te
 v

ec
to

r s
iz

e

Time (seconds)

Rate=250 Pkt/s, Rth = 65 Pkt/s

Figure 10: Variation of State size S in a sample run

|S| can also remain the same if the dropped event

corresponds to some self-loops. This explains the small
plateaus in Region 2. In Region 2, |S| increases from 1
to 3 because of a message drop. It stays at 3 even with
further message drops and then reduces to 1 with a
newly sampled message.

8. Related research
Change Detection in Networking: Recently there is
an increased effort in finding changes in high
throughput network streams. Scalability is an
important challenge in such environments. Authors in
[16] propose a sketch based approach. Sketch is a set
of hash tables which provides probabilistic guarantees
compared to a single hashtable which provides 100%
accuracy (assuming no collisions)[18] . The authors
build a forecast model for the streams based on the
observed data in the Sketch. Differences in the
forecasted values and actual stream values are flagged
as errors and reported. In [14][15] authors extend the
sketch based approach of [16] providing reversibility
to identify the streams which have changed. Authors in
[15] provide an efficient reversible-hashing scheme to
quickly identify the streams which have significantly
changed. The paper also generalizes the approach
provided in [14]. In all of the above approaches the
central idea is to obtain a statistical model of the
stream. The new incoming values of the stream is
matched against this statistical model to find errors. In
comparison, the sampling approach presented in this
paper aims to maintain a closer application state.
Detection provided by the Monitor is at a much
different granularity as compared to approaches in
[14][15]. The Monitor provides a much finer detection
granularity. Statistical properties like mean and
variance used in [14] do not account for spikes which
the Monitor-S handles effectively. Authors in [17]
provide an efficient way of performing sampling to
obtain φ-quantile approximation of the incoming
stream but the paper does not address fault detection.
Stateful Detection: The issue of stateful detection has
received attention from the security community due to
the prevalence of attacks that are spread over multiple
packets necessitating intrusion detection systems (IDS)
to build state over multiple packets. The popular IDS
Snort has an IP fragmentation-reassembly module
which assembles fragmented IP packets. Also, for TCP
packets, it has a stream4 reassembly module that can
aggregate TCP packets within the same TCP session
(like a FTP session) into a conglomerate pseudo
packet. After this, the same pattern-matching algorithm
is employed on the pseudo packet. The WebSTAT
system [20], which builds on STAT, provides stateful
intrusion detection for web servers. WebSTAT
operates on multiple event streams, and is able to
correlate both network-level and operating system-
level events with entries contained in server logs. Our
previous work on VoIP IDS, called SciDive [19], built
a stateful detection engine for VoIP with state being
spread across multiple signaling packets (SIP packets)

or data packets (RTP packets) or across the two
protocols. All this work is targeted at specific
protocols and its state aggregation and matching are
therefore restricted to the domain. The Monitor
sampling approach would not be suitable for intrusion
detection in scenarios where a single packet can
contain the event of interest. In such a scenario, the
Monitor has to operate in the non-sampling mode.
However, when the intrusion depends on behavior in
aggregate (such as, flooding based denial of service),
then the sampling approach is suitable. The attempts to
make stateful intrusion detection scalable have
concentrated on making per packet processing
efficient, possibly with the addition of hardware nodes
and reducing coordination traffic. [21][22] present a
scalable stateful IDS which shares the load of
processing messages through multiple hosts using
commodity hardware. This approach requires the
presence of more detection systems (called sensors) in
comparison with ours, where one local Monitor
handles detection in multiple entities in the network.
Detection in Distributed Systems: Previous
approaches of detection in distributed systems have
varied from heartbeats, watchdog etc [8]-[10]. There
is previous work [11][12] that has approached the
problem of detection and diagnosis in distributed
applications modeled as communicating finite state
machines. The designs have looked at a restricted set
of errors (such as, livelocks) or depended on alerts
from the PEs themselves. A detection approach using
event graphs is proposed in [13], where the only
property being verified is whether the number of
usages of a resource, executions of a critical section, or
some other event globally lies within an acceptable
range. Similar observer-observed framework is also
presented in [3]. These approaches have focused on
accuracy of fault detection and not scalability. Some
approaches have focused on scalability but assume
simpler failure semantics such as crash failures [23].
Although it is shown that this approach can scale well
in large applications by a hierarchical algorithms [24],
it can only detect a restricted set of application failures
compared to the Monitor’s sampling approach. Other
approaches have focused on detection in a distributed
manner where failure detectors are embedded in the
application component on each node [25].

9. Conclusion
In this paper we presented a novel approach of

performing stateful detection in high data rate
scenarios. We extend an existing detection approach
(the Monitor) by identifying inefficiencies in the rule
matching process and proposing a sampling approach
to reduce the rate of incoming packets to be examined

for rule violations. We modify the data structure to
produce the Monitor-HT (HT for hashtable) which
leverages the commonality of messages in rules being
matched for detection. The Monitor-S (S for sampling)
uses a novel approach to incorporate sampling of the
incoming stream while performing suitable
modifications to the detection rules. We measure the
performance of the Monitor-S and the Monitor-HT
against the Monitor-Baseline on a multicast protocol
TRAM. The efficiency of the new data structure
causes the Monitor-HT to break at 125 pkt/s as
compared to 100 pkt/s in the Monitor-Baseline. The
Monitor-S outperforms the Monitor-Baseline via
achieving a much higher accuracy with lower latency
of rule matching at high packet rates (up to 500 pkt/s).

We are currently working on providing theoretical
guarantees on the new sampling approach. We are also
designing algorithms that will let the Monitor detect
when it has lost track of the application state due to the
sampling and is consequently suffering from high false
and missed alarms. In such a case, several successive
messages will be sampled to come back in sync with
the application.

10. References
[1] G. Khanna, P. Varadharajan, and S. Bagchi, “Self

Checking Network Protocols: A Monitor Based
Approach,” In Proceedings of the 23rd IEEE
Symposium on Reliable Distributed Systems (SRDS
’04), pp. 18-30, October 2004.

[2] M. Diaz, G. Juanole, and J.-P. Courtiat, “Observer-A
Concept for Formal On-Line Validation of Distributed
Systems,” IEEE Trans. on Software Engineering, vol.
20, no. 12, pp. 900-913, Dec 1994.

[3] M. Zulkernine and R. E. Seviora, “A Compositional
Approach to Monitoring Distributed Systems,” IEEE
International Conference on Dependable Systems and
Networks (DSN'02), pp. 763-772, Jun 2002.

[4] D. M. Chiu, M. Kadansky, J. Provino, J. Wesley, H.
Bischof, and H. Zhu, “A Congestion Control Algorithm
for Tree-based Reliable Multicast Protocols,” In
Proceedings of INFOCOM ’02, pp.1209-1217, 2002.

[5] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S.
Stolfo, “A coding approach to event correlation,”
Intelligent Network Management, pp. 266-277, 1997.

[6] http://www.experimentalstuff.com/Technologies/JRMS/
[7] G. Khanna, P. Varadharajan, and S. Bagchi,

“Automated Online Monitoring of Distributed
Applications through External Monitors,” In the IEEE
Transactions on Dependable and Secure Computing
(TDSC), vol. 3, no. 2, pp. 115-129, Apr-Jun, 2006.

[8] W. Chen, S. Toueg, and M. K. Aguilera, “On the
Quality of Service of Failure Detectors,” In IEEE
International Conference on Dependable Systems and
Networks (DSN'00), pp. 191-201, Jun 2000.

[9] R. Baldoni, J.-M. Helary, and M. Raynal, “From Crash
Fault-Tolerance to Arbitrary-Fault Tolerance: Towards
a Modular Approach,” In IEEE International
Conference on Dependable Systems and Networks
(DSN'00), pp. 273-282, Jun 2000.

[10] S. Krishna, T. Diamond, and V. S. S. Nair,
“Hierarchical Object Oriented Approach to Fault
Tolerance in Distributed Systems,” In Proceedings of
IEEE International Symposium on Software Reliability
Engineering (ISSRE ’93), pp. 168-177, Nov 1993.

[11] B. Berthomieu and M. Diaz, “Modeling and
Verification of Time Dependent Systems using Time
Petri Nets,” IEEE Trans. on Software Engineering, vol.
17 , no. 3 , pp. 259-273, Mar 1991.

[12] W. Peng, “Deadlock Detection in Communicating Finite
State Machines by Even Reachability Analysis,” IEEE
Conference on Computer Communications and
Networks (ICCCN), pp. 656-662, Sep 1995.

[13] L. B. Chen and I-C. Wu, “Detection of Summative
Global Predicates,” IEEE Conference on Parallel and
Distributed Systems (ICPADS '97), pp. 466-473, Dec
1997.

[14] G. Cormode and S. Muthukrishnan, “What's new:
finding significant differences in network data streams,”
In INFOCOM 2004, Vol. 3, pp 1534- 1545, 2004.

[15] R. Schweller, Y. Chen, E. Parsons, A. Gupta, G.
Memik, and Y. Zhang, “Reverse Hashing for Sketch-
based Change Detection on High-speed Networks,” In
INFOCOM 2006, pp1-12, April 2006.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen,
“Sketch-based Change Detection,” In ACM Internet
Measurement Conference, IMC, 2003.

[17] G. Singh Manku and R. Motwani. "Approximate
Frequency Counts over Data Streams". VLDB, 2002.

[18] N. Alon, Y. Matias, and M. Szegedy, “The space
complexity of approximating the frequency moments,”
In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, p.20-29, May 22-
24, 1996.

[19] S. Bagchi, Y. Wu, Sachin Garg, N. Singh, and T. Tsai,
“SCIDIVE: A Stateful and Cross Protocol Intrusion
Detection Architecture for Voice-over-IP
Environments,” At IEEE Dependable Systems and
Networks (DSN 2004), June 28-July 1, 2004, Florence,
Italy.

[20] G. Vigna, W. Robertson, V. Kher, and R.A. Kemmerer,
“A Stateful Intrusion Detection System for World-Wide
Web Servers,” In Proc. of the Annual Computer
Security Applications Conference (ACSAC), 2003.

[21] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson,
B. Tierney, “The NIDS Cluster: Scalable, Stateful
Network Intrusion Detection on Commodity Hardware,”
Proc. of the Symp. on Recent Advances in Intrusion
Detection (RAID), Queensland, Australia, September
2007.

[22] V. Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time,” Computer Networks 31(23–24)
(1999) 2435–2463.

[23] M. Bertier, O. Marin, P. Sens, “Performance analysis of
a hierarchical failure detector,” Proc. of the Int. Conf.
on Dependable Systems and Networks (DSN), 2003.

[24] Gupta, R van Renesse, KP Birman, “Scalable fault-
tolerant aggregation in large process groups,” In Proc.
Conf. on Dependable Systems and Networks (DSN),
2001.

[25] R van Renesse, Y Minsky, M Hayden, “A gossip-style
failure detection service,” Middleware, 1998.

Appendix

A. Rule base
T R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: The rule has
a precondition to check data packets (E11) arrival within
5000msec. This causes the post condition that at least one
ack(E2) (between 1 and 8) must be sent.

T R3 S5 E13 0 2 5000: This rule ensures that the number of
re-affiliation packets (E13) is no more than 2 within 5000ms in
state S7.

T R3 S5 E15 0 10 5000: Restrict the Nacks (E15).

T R4 S0 E11 2 50 500 S4 E2 1 2 5000 7000:
T R4 S5 E13 2 500 5000 S6 E9 1 4 4000 9000
T R3 S0 E1 10 30 5000: This rule of type 3 checks for the hello
packet(E1) rate. The E1 message count should be between 10
and 30 for the next 5000 msec.

T R4 S0 E1 1 2 1000 S8 E14 1 2 2000 3000: Hello messages
should be followed with Hello replies

T R3 S0 E14 10 30 5000:
T R1 S0 E1 1000 S8 1500 2500:
T R1 S0 E10 1000 S8 1000 3500:
T R2 S0 E10 50: This rule verifies that state of the receiver
changes from S0 once Head Adv is received

T R4 S0 E10 1 4 1000 S1 E9 1 2 2000 3000: Head Adv.
messages should be followed by Head Bind

T R4 S0 E10 1 4 1000 S3 E8 1 2 3000 4000: Head Adv.
messages should be eventually followed by Accept message
T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000:
T R3 S1 E9 1 10 5000:
T R3 S2 E8 1 2 10000:

B. Rule types in the Monitor and TRAM

messages

1. Type I: (ST=Sp) = true for T∈(tN, tN+k) ⇒ (ST=Sq) =
true for T∈(ti, ti+b), where T represents the global time at the
Monitor, ti > tN, and k, b≥ 0. The above rule represents the
fact that if for some time interval k starting at tN, a node is in
state Sp i.e., the state predicate ST=Sp is true, then it will
cause the system to be in another state Sq for some time b

starting from time ti. The time tN is when state changes to Sp,
irrespective of which event causes the transition. This rule is
defined completely in terms of states of the entity and no
events or state variable.
2. Type II: St is the state predicate of an object at global
time T : St ≠ St+∆, if event Ei takes place at t, the state St will
not remain constant for ∆ time units from t.
3. Type III: L ≤ |Vt| ≤ U ; t∈(ti,ti +k); The state variable
Vt in a particular state Si will have its count bounded by L
and U over a time window of k starting at time ti when the
defined event corresponding to the rule first occurs.
4. Type IV: ∀t∈(ti,ti +k), L ≤ |Vt| ≤ U ⇒ L’ ≤ |Bq| ≤ U’ ,
∀q∈(tn, tn+b); tN > ti ; If a state variable Vt has a bounded
count from above and below over a time window k, it will
cause another state variable Bq to be bounded for a time
window b starting from tn. This rule is in fact the master rule
and the three previous rule types are special cases of it. But
we still need the first three rule types because matching this
class of rule entails matching more variables, which
increases the latency of detection.
5. Type V: If s = Si ∀t∈(ti,ti +k) ⇒ s≠ Si ∀t∈(tN, tN+a) ;
tN > ti. This rule prevents a state transition back in state Si
within some time of first arriving at Si.

E13Join a new Repair Head; sent
by the receiver

Sender(RH),
Receivers(RH)

Re-affiliation

E1, E14Indication of Liveliness of the
members.

RH(Receiver),
Receiver(RH)

Hello Messages
(Reply)

E4Message sent by a receiver
seeking to join a group when
group formation is started by
receiver.

Receiver,
RH(Sender)

Member
Solicitation

E2 (E15)Aggregate Acknowledgement
sent by the receiver to the
repair head.

Receiver,
Repair
Head(Sender)

Ack Packet (Nack
Packet)

E7, E8Acceptance or Rejection
message sent by the repair
head to the seeking receiver.

Repair
Head(Sender),
Receiver(RH)

Accept/Reject

E9Receiver sends a request to
join group in the form of Head
Bind

Receiver,
Repair
Head(Sender)

Head Bind

E11Multicast Data sent from head
to group members

Sender(RH),
Receivers(RH)

Data

E10Repair Heads send
advertisement of the channel

Sender(RH),
Receivers

Head Adv.

Event
ID

Interpretation(Source,
Destination)

Message Name

E13Join a new Repair Head; sent
by the receiver

Sender(RH),
Receivers(RH)

Re-affiliation

E1, E14Indication of Liveliness of the
members.

RH(Receiver),
Receiver(RH)

Hello Messages
(Reply)

E4Message sent by a receiver
seeking to join a group when
group formation is started by
receiver.

Receiver,
RH(Sender)

Member
Solicitation

E2 (E15)Aggregate Acknowledgement
sent by the receiver to the
repair head.

Receiver,
Repair
Head(Sender)

Ack Packet (Nack
Packet)

E7, E8Acceptance or Rejection
message sent by the repair
head to the seeking receiver.

Repair
Head(Sender),
Receiver(RH)

Accept/Reject

E9Receiver sends a request to
join group in the form of Head
Bind

Receiver,
Repair
Head(Sender)

Head Bind

E11Multicast Data sent from head
to group members

Sender(RH),
Receivers(RH)

Data

E10Repair Heads send
advertisement of the channel

Sender(RH),
Receivers

Head Adv.

Event
ID

Interpretation(Source,
Destination)

Message Name

