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Abstract 
 

With the increasing speed of computers and the 
complexity of applications, many of today’s distributed 
systems exchange data at a high rate. Significant work 
has been done in error detection achieved through 
external fault tolerance systems. However, the high 
data rate coupled with complex detection can cause 
the capacity of the fault tolerance system to be 
exhausted resulting in low detection accuracy. We 
present a new stateful detection mechanism which 
observes the exchanged application messages, deduces 
the application state, and matches against anomaly-
based rules. We extend our previous framework (the 
Monitor) to incorporate a sampling approach which 
adjusts the rate of verified messages. The sampling 
approach avoids the previously reported breakdown in 
the Monitor capacity at high application message 
rates, reduces the overall detection cost and allows the 
Monitor to provide accurate detection. We apply the 
approach to a reliable multicast protocol (TRAM) and 
demonstrate its performance by comparing it with our 
previous framework.  
 

1. Introduction 
The proliferation of high bandwidth applications 

and the increase in the number of consumers of 
distributed applications have caused them to operate at 
increasingly high data rates. Many of these distributed 
systems form parts of critical infrastructures, with real-
time requirements. Hence it is imperative to provide 
error detection functionality to the applications. Error 
detection can broadly be classified as stateless 
detection and stateful detection. In the former, 
detection is done on individual messages by matching 
certain characteristics of the message, such as the 
length of the payload of the message. A more powerful 
approach for error detection is the stateful approach, in 
which the error detection system builds up state related 
to the application by aggregating multiple messages. 

The rules are then based on the state, thus on 
aggregated information rather than on instantaneous 
information. Stateful detection is looked upon as a 
powerful mechanism for building dependable 
distributed systems [19][20]. The stateful detection 
models can be specified using various formalisms, 
such as, State Transition Diagrams, PetriNets or UML.  
Though the merits of stateful detection seem to be well 
accepted, scaling a stateful detection system with 
increasing application entities or data rate is a 
challenge. This is due to the increased processing load 
of tracking application state and rule matching based 
on the state. This problem has been documented for 
stateful firewalls that are matching rules on state 
spread across multiple, possibly distant, messages [19]. 
The stateful error detection system has to be designed 
without increasing the footprint of the system. Thus 
throwing hardware or memory at the problem is not 
enough because the application system also scales up 
and demands more from the detection system.  

In our earlier work on developing an error 
detection system, we developed the Monitor([1], [7]) 
which provides detection by only observing the 
messages exchanged between the protocol entities 
(PEs). The Monitor is said to verify a set of PEs when 
it is monitoring them. The Monitor is provided a 
representation of the protocol behavior (using a state 
transition diagram i.e., STD) of the PEs being verified 
along with a set of stateful anomaly based rules. The 
Monitor uses an observer model whereby it does not 
have any information about the internal state of the 
PEs. The Monitor performs two primary tasks on 
observing a message. First, it performs the state 
transition corresponding to the PE based on the 
observed message. Note that the state of the PE 
estimated by the Monitor may differ from the real state 
of the entity since not all messages related to state 
changes are necessarily observable at the Monitor. 
Second, it performs rule matching for the rules 
associated with the particular state and message 
combination. We observe that the Monitor has a 



breaking point in terms of (1) the incoming message 
rate or (2) the number of entities that it can verify, 
beyond which the accuracy and latency of its detection 
suffer [7]. The drop in accuracy or rise in latency is 
very sharp beyond the breaking point. We observe 
through a test-bed experiment that as the incoming 
packet rate into a single Monitor is increased beyond 
100 pkt/s, the Monitor system breaks down on a 
standard Linux box. In other words, its latency 
becomes exceedingly high and accuracy of detection 
tends to zero. This effect is shown in Figure 1. This 
breakdown is caused by the processing capacity at the 
Monitor being exhausted. Hence, messages see long 
waiting times and, on the buffer becoming full, the 
messages also get dropped.  Thus, for reasonable 
operation, the Monitor can only support data rates 
below the breaking point.  
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Figure 1: Latency variation with increasing packet 
rate. The graph depicts the breaking of the Monitor 

system at an incoming rate of 100 pkts/s 
 

In the current work, we devise a stateful detection 
approach which scales with the increasing data rate of 
applications, or equivalently, the number of PEs being 
verified. We observe that in order to make stateful 
detection feasible; firstly the processing of each 
message must be made extremely efficient and 
secondly the system must reduce the total processing 
workload (e.g., by selectively dropping incoming 
messages). The amount of work at the Monitor per unit 
time can be conceived as the rate of messages being 
processed for detection × the amount of work 
performed for each message. Our approach optimizes 
both these terms. The goal is to provide an error 
detection system for high throughput distributed 
streams and correspondingly push the knee to the right 
(Figure 1). Existing detection systems like [15][16] 
which aim at handling high data rate provide detection 
of changes in high rate streams using mean and higher 
order moments. This approach cannot capture the 

richness in the error detection rules that is needed for 
specifying verifiable behavior.  

As a first aspect, we minimize the processing cost 
of an individual incoming message into the Monitor. 
We do this by using multistage hash tables for look ups 
when a state transition needs to be performed at the 
Monitor. We observe that for realistic systems, 
multiple rules will be active concurrently. The rules 
take the form of verifying values of some state 
variables or counts of messages (events) lying within a 
range.  There exists significant overlap in the state 
variables or counts being referred to in the rules. Since 
processing for an incoming message most often 
involves updating these counts, we optimize this 
operation by compact representation of the state 
variables. 

In the second aspect, we minimize the number of 
messages that the Monitor has to process by sampling. 
We set a threshold for the incoming rate guided by the 
breaking point of the Monitor. Sampling the incoming 
stream to reduce the rate of messages is a logical start. 
However, since the Monitor provides stateful 
detection, dropping messages can cause the Monitor to 
lose track of the PE’s current state with resultant 
decrease in accuracy of rule matching. This 
phenomenon is called state non-determinism, whereby 
to the Monitor it is non-deterministic which state the 
PE is in. In our approach the Monitor tracks the set of 
possible states the application could have reached 
given that a sequence of messages is dropped. The 
Monitor aggressively pre-computes information about 
the states for possible sequences of messages to reduce 
the cost of computing the non-deterministic state set. 
While the cost of processing each (sampled) message 
now increases over the baseline case, through careful 
design, the Monitor’s total amount of work is reduced 
by reducing the rate of messages that it needs to 
process. The sampling is adaptive to tolerate 
fluctuations in the message rate generated by the PEs. 
Also, the sampling scheme necessitates changes in the 
rules to prevent false detections due to the sampling.  

We implement the two aspects of efficient stateful 
detection in the Monitor and use it to detect errors in a 
reliable multicast protocol called TRAM[4]. TRAM 
provides a motivating application since it is at the core 
of many e-learning applications which feed high 
bandwidth streams to a large set of receivers. We inject 
errors into the TRAM PEs and compare the accuracy 
and latency to the baseline system. The sharp decrease 
in performance beyond the breaking point is no longer 
observed; in fact, a sharp breaking point is completely 
eliminated and a gradual decrease in performance with 
increasing message rates is observed instead.  



D
at

a
A

ck

D
at

a

N
A

ck

H
ea

d 
B

in
d

 
Figure 2: An example State Transition Diagram 

for a TRAM receiver 
Section 2 provides a background on the existing 

Monitor approach and identifies changes for an 
approach which can work in high data rate 
applications. In section 3 we present the new stateful 
approach, and in section 4 and 5 we describe it. 
Section 0 and 0 provide details on the application and 
experimental results respectively. Related research is 
discussed in section 8 followed by conclusions in 
section 9.  

2. Background 

2.1 Black-box detection through the Monitor 
Previously we developed a detection framework in 

terms of hierarchical Monitor(s) based on black-box 
semantics [1][7]. The Monitor obtains the protocol 
messages either through modification to the 
communication middleware layer to forward the 
messages or by a passive snooping mechanism. In 
either scenario the components of the application are 
treated as black-box for the detection process. There 
are advantages to this treatment—the application does 
not have to be modified, the solution is generalizable 
across multiple applications, and the set of errors to be 
detected can be extended in a modular manner without 
changes to either the application or the Monitor 
algorithms. The Monitor consists of a hierarchy of 
Local, Intermediate and Global monitors.  The Local 
Monitor, abbreviated later as the Monitor, is in charge 
of verifying the behavior of a set of PEs and it is given 
as input the reduced STDs of these PEs. The STD is 
reduced because internal transitions are not visible to 
the Monitor and hence not included. At runtime, it 
observes the external message interactions between the 
PEs that it is verifying and it deduces the current state 
of the PE from it. The Local Monitor also matches the 
PE’s behavior against a set of rules. The combination 
of current state and incoming event determines the set 
of rules to be matched. The Intermediate Monitor 
gathers information from several local Monitors, each 
verifying a set of PEs. The Global Monitor verifies 
some global properties of the protocol. Message 
capturing by the Monitor can be through passive 
monitoring of traffic or using active forwarding 

support from the PEs. We will refer to this initial 
version of the Monitor described in [1][7] as Monitor-
Baseline.  

2.2 Creation of rules 
The rules used by the Monitor are anomaly based 

rules since the potential universe of PE misbehavior is 
too large to be enumerated. The rule base provided by 
the system administrator comes from two sources: 
formal protocol specifications and QoS specifications. 
The first class of rules is derived from a complete STD 
specification of the protocol while the second class is 
specified by the system administrator based on the 
application requirements—performance requirements 
(such as, data rate of 20 kbps must be sustained) or 
security requirements (such as, no more than 3 
unsuccessful login attempts will be allowed). Any 
deviation from the rules can be detected by the 
Monitor. Thus, the universe of detectable errors 
includes implementation bugs, configuration errors, 
security exploits or performance problems. 

The running protocol that we use as example is the 
TRAM [4] protocol for reliable multicast of data from 
a single sender to multiple receivers through 
intermediate routing nodes called the repair head 
(RH). In TRAM, the receiver Acks correct data 
packets and sends Nacks for missing data packets to 
the RH above. The receiver maintains a counter for the 
number of Nacks sent, and if it crosses a threshold, 
receiver begins to rejoin a different RH assuming the 
old RH has failed. 

The STD in Figure 2 shows an example STD for a 
receiver receiving data from the sender or the RH. An 
explanation of the different types of messages in 
TRAM is provided in the Appendix. Under correct 
operation, the receiver will oscillate between states S0 
and S4, getting data and sending Acks. Rules can be 
derived from the STD using the states, events, state 
variables and time of transitions. Each state has a set of 
state variables. Events may cause transitions between 
states. In our context, events are messages sent and 
received.  In Figure 2, the receiver moves from state S4 
to state S5 if it sends a Nack because no data packet is 
received. Hence a rule can be derived if for all t ∈ (ti, 
ti+a), S4 ∧ ¬D ⇒ ¬S4.; where ti is time when S4  
becomes the present state and a is a constant.  Here 
predicate D implies data packet received. Subsequent 
Nacks will cause the state to remain at S5 but a local 
state counter will be incremented. Eventually if the 
number of Nacks is greater than Nmax, then the 
Monitor should see a Head Bind message indicating a 
change of affiliation to a different RH. Thus the rule 
becomes |Nacks| ≥ Nmax ⇒ Head Bind. Hence rules 
can be derived from the STD specifications. The 



system administrator may add rules specifying QoS 
conditions that the application should meet, e.g., a 
minimum data rate that must be met at each receiver. 
In addition, the system administrator may augment the 
rule base with rules to catch manifestations of any 
protocol vulnerability. Creation of the STDs to be 
verified may be a manual process. Alternately several 
applications are formally specified as state charts, 
communicating finite state machines, using UML 
diagrams, etc. and automated tools can be built to 
convert other formal representations to STDs.  

We have a formally defined syntax for rules in the 
system. The syntax represents a balance between 
expressiveness of the rules and efficient matching of 
the rules at runtime. Rules are of two kinds – 
combinatorial and temporal. Combinatorial rules are 
expected to be valid for the entire period of execution 
of the system, except for transient periods of protocol 
instability. 

2.3 Temporal rules 
The rule base for the Monitor-Baseline is specified 

using a broad class of rules which captures a majority 
of protocol behavior (see [1][7]). The syntax of the 
rules is presented in Appendix B and is identical to that 
presented in [1][7]. The Monitor-Baseline has five 
broad categories of temporal rules (R1-R5) with each 
one designed to provide verification of state changes, 
verify event counts in specific states, causal 
dependence, and combination of these conditions for 
PEs. Examples of rules based on Figure 2 are:  

 R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: 
(Rule of type 4) If a receiver gets 1 to 30 Data 
messages in 4000 ms then it should send at least 1 
Ack response within the next 3000ms.   
  R3 S5 E15 0 10 5000: (Rule of type 3) Restrict 

the number of Acks to 10 within 5000ms.  
The complete set of rules used in our experiments 

is presented in Appendix A.  
In the Monitor-Baseline, every time a new rule is 

instantiated, local variables are created for that rule. As 
messages are received the local variables for all the 
active rules are updated. For example, if two rules of 
type III are active which are verifying the same state 
variable Vi then each rule will be holding a local copy 
of Vi. Every receipt of a message corresponding to the 

state variable Vi would cause two local variables to be 
updated.   

3. Scalable stateful detection 
In developing a suitable approach for stateful 

detection we carefully study the tasks performed by the 
Monitor-Baseline for error detection. Thus, the main 
steps on the receipt of a message are: (1) perform the 
state transition; (2) instantiate any rule corresponding 
to the state and event combination. Upon expiry of the 
time specified in a rule, the Monitor checks the value 
of the variable(s) mentioned in the rule to verify that 
they lie in the permissible range. It is observed for the 
Monitor-Baseline that as the number of incoming 
messages increases, the latency of detection breaks 
down beyond a threshold. We attribute this problem 
quite intuitively to two root causes: (1) High cost of 
processing per message, and (2) High rate of incoming 
messages. We target both these causes and solutions to 
them are described respectively in Sections 4 and 5.  

4. Making rule matching efficient 
In the modified approach, henceforth called the  

Monitor-HT (for Hash Table, due to its widespread use 
in the redesign), we perform several modifications to 
the Monitor-Baseline data structure to achieve efficient 
per message processing. Figure 3(b) depicts the logical 
organization of multi-level hashtables used in the 
Monitor-HT. These hashtables are organized by 
carefully observing the processing path that a message 
takes after being received by the Monitor-Baseline. We 
designed the data structure consisting of multi-level 
hashtables to provide constant order look-up. The 
STDs of the PEs are organized as multi-level 
hashtables to provide constant order lookup. PE 
address is used in PESTD table to obtain the STD for 
that PE. The STD table is indexed using a state Si 
which provides a list of events possible in that state 
(again organized as a hashtable). In the Event table 
each event ID maps to an event object, which contains 
information like event ID, event Name and rules 
pertinent to that event. The entire redesign using 
multiple hash tables makes the processing of an 
incoming message efficient at the expense of higher 
memory overhead. 

Event HTPE addr Event HTPE addr

key Object

Event CountEvent ID Event CountEvent ID

PEEvent Table EventCount Table  
(a) 

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event 
Objects

Event ID Event 
Objects

Event ID

Event Table  
(b) 

Figure 3: Data Structure used in the Monitor-HT for (a) Storing Incoming Event Counts; (b) Storing the 
STDs. The first column represents the key of the hash table 



 Next, in the Monitor-Baseline, for every rule 
instantiation, its own copy of state variables is created. 
When a message arrives, active rules that depend on 
the message (through a state variable) are searched and 
every rule’s local copy of the state variable is updated. 
This process is expensive because for every message, a 
long list is traversed. We observe that there exists 
significant sharing of state variables between the 
different rules and this makes the design of separate 
copy for each active rule inefficient. As an example, 
consider that multiple rules are tracking the data rate 
around different events, say within 5 seconds of a 
Nack being sent. All the rules would be counting the 
number of data messages (the state variable) received 
over different time intervals.  

 The Monitor-HT removes the above-mentioned 
source of inefficiency by having a central store of the 
state variables. The Monitor-HT keeps a hashtable to 
store the updates for a given message (see EventCount 
table in Figure 3(a)). We use a multi-level hashtable 
where PEEvent indexes all the PEs in the system and 
the EventCount table contains all the events 
corresponding to the given PE. The incoming 
messages can be thought of as a tuple as (ai, ei), where 
ai is the PE address (IP address or some logical 
address) and ei is the event ID. 

The value ai is used to look up PEEvent table for 
the events. The ei is used to index in EventCount table 
and increment the event count for ei (currently all 
increments are by a value of 1). Because of this 
organization every unique PE × Event ID symbol is 
only incremented once.  

 Regarding the rule matching procedure, instead of 
having every active rule use local variables, every rule 
instance reads the value of the associated state variable 
from the hashtable. When a new rule is created it reads 
the value of the current event count from the 
EventCount table to see the current value of the state 
variable referenced in the rule, call it vinit. Later, at the 

time of rule matching, the Monitor-HT again reads the 
value of the state variable, call it vfinal. Thus, the 
EventCount table is read from the rule instances only 
twice, and written by a separate thread which handles 
the incoming messages from the PEs. The advantage of 
the Monitor-HT over the Monitor-Baseline, quantified 
in the experiments, is dominated by the effect of this 
design choice. 

5. Handling high rate streams: Sampling  
Even with the modifications made in the Monitor-

HT, a constant amount of work is performed for every 
incoming message. In the next optimization, not all 
messages are processed; instead messages are sampled 
and only the sample set is processed.  This version is 
called the Monitor-Sampling, or the Monitor-S.  
Sampling raises a few obvious questions: 
1. How and what sampling approach should be taken? 
2. How are the rules modified due to sampling? 
3. How does the Monitor-S track the PE’s STD in the 

presence of sampling? 
The first two questions are answered in Section 5.1 

and the third one in Section 5.2. 

5.1 Design of sampling 
We propose uniform sampling approach which is 

agnostic to the kind of messages coming in. This 
prevents the Monitor-S from having to deduce the type 
of the incoming message before deciding to drop it or 
keep it. This would have imposed per message 
processing overhead on the Monitor-S and defeated the 
purpose of our design. With sampling, the 
corresponding parameters in the detection rules have to 
be re-adjusted for matching. Assume that the Monitor 
gives a desired latency and accuracy of matching for 
an incoming rate of up to Rth (threshold)  . Any rate R > 
Rth the Monitor chooses to drop the messages 
uniformly with a rate of 1 in every R /(R - Rth) 
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(a)       (b) 

Figure 4: Example tree formed by traversing the outgoing edges from each node in Figure 5. Union of 
nodes present at depth h represents the nodes in set Sh if h messages are dropped starting with S1. (b) 

Flow of detection in the Monitor-S 



messages. The behavior of the Monitor switches from 
the Monitor-HT to the Monitor-S because sampling 
kicks in after Rth. Since the messages being processed 
by the Monitor-S are a sample of the entire set of 
messages, the rules originally specified by the system 
administrator are not valid on the sampled stream.  

Once a new sampling rate is chosen based on the 
incoming traffic rate, the rules are also modified. We 
keep the rule type the same but the constants get scaled 
according to the sampling rate. This is necessary 
because rules are defined according the normal 
operation of the PEs but, because of sampling, the 
Monitor-S is viewing an alternate sampled view of the 
operation of PEs. If the incoming rate is R and the 
threshold rate is Rth then the constants in the rules must 
be scaled by a factor of Rth/R. For example:  if a rule 
states “receive 10 Acks in 100 sec” then because of 
sampling the rule is modified to “receive 10.(Rth / R) 
Acks in 100 sec”.  This rate will be changed as and 
when the incoming rate is changed. We measure the 
incoming rate over non-overlapping time windows of 
length ∆ by counting the number of incoming 
messages in the window. At each rate computation, the 
new rate is compared with Rth and if it exceeds Rth then 
a new sampling rate is determined based on this new 
incoming message rate. To reduce the overhead of rate 
computation, ∆ is kept higher than the time period over 
which a rule is matched. 
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Figure 5: A sample STD which is converted to a 

directed graph by removing the event labels 
 

5.2  STD transition with sampling 
If all incoming messages are not processed, this 

will cause the Monitor-S to lose track of the current 
state of the PE. We modify the approach of STD 
transitioning at the Monitor-S such that instead of 
tracking the current state, the Monitor-S keeps a state 
vector S which contains all the possible states the 
given PE can be in S = {S1, S2….SK}. The reason for 
having multiple possible states is that the Monitor-S 
does not know which of several possible paths the PE 
has taken given a start state Sstart. 

As a result of sampling, instead of knowing exactly 
which state the PE is in, the Monitor-S will know a 
possible set of states the PE is in (based on the 

transition edges outgoing from the current state). For 
example: In Figure 5(a) if the current state is S1 and a 
packet is dropped then the next possible state is one of 
{S2, S3, S4}. To determine this set, the Monitor-S pre-
computes the possible states which can be reached in 
steps of size 1, 2, 3 and so on. Each set of these states 
form the state vector S if 1, 2, 3 and so on messages 
are dropped. In other words if a single message is 
dropped starting from the start state Sstart, then  S1 will 
consist of all the states Si such that Si has an incoming 
edge from Sstart in the graph. Si vector starting from 
state Sstart gives the state vector if i packets are 
dropped.  Now given the rate of sampling one can 
transform one state vector  S1 to another state vector  
S2.  Let us say S0 = {Si | i ∈ (1, g); g is the number of 
nodes in the initial state vector} be the initial state 
vector. If the Monitor-S dropped one message then the 
new state vector  S1 = {Sj | Si  Sj is reachable using a 
single edge AND Si ∈ S0}. Similarly if 2 messages are 
dropped then  S2  = {Sm | Sj  Sm  is reachable using a 
single edge AND Sj ∈ S1}.  

The state vectors (S1 and S2) are created offline 
because the STD is already known to the Monitor-S. 
Figure 4(a) illustrates for the STD in Figure 5, a tree 
structure for maintaining the state vectors after 
different numbers of messages are dropped. Nodes at 
the depth h form the state vector Sh and represents the 
states after h messages are dropped starting from S1. At 
runtime, the Monitor-S tracks how many messages are 
dropped and looks up the appropriate state vector.  

5.3 Error detection with sampling 
Figure 4(b) represents the flow of detection in the 

Monitor-S when sampling is taking place. If the 
incoming rate is below Rth then no sampling occurs 
and the Monitor-S simply runs as the Monitor-HT. 
During sampling, the state transition is performed 
between various state vectors S which have been 
computed offline. When a message is sampled, all 
detection rules corresponding to that event ID and 
states in the current S are instantiated for matching. 
When messages are being dropped, the size of the state 
vector |S| increases. Once a message is sampled, the 
state vector is pruned since the message may not be 
valid for all the states in the state vector. Consider that 
the state vector is Sa- just before sampling and  Sa+ 
just after sampling message M. Then Sa+ = {Si | Si ∈ 
Sa- and M is a valid message in state Si according to 
the PE’s STD}. Qualitatively, the sampling scheme 
will be beneficial only if the pruning in the size of the 
state vector is significant compared to the growth due 
to message drops. For example: let  S initially consists 
of {S1, S2, S3} and the sampled message be e2. Then 
from Figure 5 we can see that only S2 and S3 can have 



a valid event e2 and therefore the state vector becomes 
{S2, S3}.   

This ambiguity about which state the PE is in and 
the design of using the entire state vector may give rise 
to false alarms since the Monitor-S may match some 
rules that are not applicable to the actual state the PE is 
in. 

Computing the state vectors offline imposes a 
memory requirement on the system. If we assume that 
at most τ messages will be dropped by the Monitor-S 
then the offline computation should have state vectors 
up to  Sτ. The total number of states in this state vector 
tree is given by k(kτ-1)/(k-1) assuming a k-regular 
structure of connectivity between the states. Thus the 
space required to store these state vectors is 
proportional to k(kτ-1)/(k-1). However the total number 
of states in the STD also imposes a cap on the size of 
the state vectors and prevents further increase in |S|. If 
there exists a ω s. t. kω> N (total states in STD), then 
the space required to store the state vectors is 
proportional to k(kω-1-1)/(k-1)+(τ-ω+1)N. The exact 
memory required is dependent on the data structure 
used to store these state vectors. Bit vector 
representation for storing them is an efficient option to 
reduce the overall memory used.  
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Figure 6: Example State Transition Diagrams 

(STDs); (a) TRAM sender adding new receivers in 
TRAM; (b) TRAM entities (sender, receiver, RH) 

sending liveness messages (Hello) 

6. Experimental setup 

6.1 Application: TRAM 
We demonstrate the use of the Monitor on the 

running example protocol ― a reliable multicast 
protocol called TRAM [6]. TRAM is a tree-based 
reliable multicast protocol consisting of a single 
sender, multiple repair heads (RH), and receivers. Data 
is multicasted by the sender to the receivers with an 
RH being responsible for local repairs of lost 
messages. The reliability guarantee implies that a 
continuous media stream is to be received by each 
receiver in spite of failures of some intermediate nodes 
and links. An Ack message is sent by a receiver after 

every Ack window worth of messages has been 
received, or an Ack interval timer goes off. The RHs 
aggregate Acks from all its members and send an 
aggregate Ack up to the higher level to avoid the 
problem of Ack implosion (see Figure 2).    

The multicast tree is formed via sender sending 
Head Advertisement messages and new nodes 
joining using the Head Bind message (see Figure 
6(a)). Nodes ensure liveness of other neighbor nodes 
by periodically sending Hello messages as depicted in 
the STD shown in Figure 6(b). 

 The detection approach is provided with a rule 
base for detection which is derived from the STDs 
(shown in Figure 6). Some example of rules are as 
follows: R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000 
If a Data message is seen then the Monitor must see an 
Ack message following it; T R4 S1 E9 1 2 1000 S1 E8 
1 2 2000 3000: If the entity is in state S1 then the 
Monitor should observe one or more Head Bind 
messages followed by Accept message; T R3 S0 E14 
10 30 5000: The number of Hello message within a 
time window should be bounded to prevent Hello 
flooding. A complete list of rules used in our 
experiments is provided in the Appendix A. It is 
evident from the set of rules that several of them verify 
the message count for the same message type (such as, 
Data, Hello, Ack). Therefore the redesign of the 
Monitor-HT of keeping only a shared writable copy of 
the state variables is likely to be beneficial.  

6.2 Emulator 
In order to be able to study the performance of the 

Monitor under high data rate conditions, we emulate 
the TRAM protocol [4][6]. This is necessary because 
operating multicast protocol across Purdue’s shared 
wide area network at a high data rate causes multiple 
switches to crash.  The extra beacon messages sent out 
for advertising the multicast channel causes an 
overload of the LAN switches leading them to crash. 
In order to avoid this problem and to have the ability to 
perform experiments in a controlled environment, we 
emulate the topology of TRAM depicted in Figure 7. 
The emulated messages following the STDs in Figure 
6 are forwarded to the Monitor. 

6.3 Fault injection 
We perform random fault injection in the header of 

the emulated TRAM messages to induce failures. In 
random injection we randomly choose a header field 
and change it to a randomly selected value. The 
randomly selected value may or may not be a valid 
field of the TRAM protocol. These errors model 
protocol errors which cannot be detected by simple 
measures like cyclic redundancy check (CRC) on the 



message payload. We choose the header since the 
current detection mechanism only examines the 
header. In general, a PE to inject is chosen (sender, RH 
or receiver) and faults are injected for a burst length. 
We use a burst length of 500 ms and inject the burst 
length of faults after every 5 minutes during each 
experimental run. For these experiments we inject only 
the sender with faults because of high probability of 
error propagation down the multicast tree. A burst 
length is chosen since TRAM is robust to isolated 
faults and to mimic faults close to reality. The rules in 
the rule base typically run over a window of messages 
and are likely to not get violated because of an isolated 
faulty message. The burst can cause multiple rules to 
be instantiated simultaneously for each of sender, RH 
and receiver. Note that the emulated faults are not 
simply message errors, but may be symptomatic of 
protocol faults in the PEs. Errors in message 
transmission can indeed be detected by checksum 
computed on the header but these protocol errors 
cannot. We perform random injection where a header 
field is chosen randomly and changed to a random 
value, valid or invalid w.r.t. the protocol. If the 
injected value is not valid, then the message is dropped 
without processing.  An alternate mode of error 
injection used in our earlier work [1] is directed 
injection whereby messages are transformed to a valid 
protocol value. Experimentally, we find that the 
performance of the Monitor-HT and the Monitor-S 
relative to the Monitor-Baseline is not affected by this 
choice. 
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Figure 7: Physical Topology of the TRAM emulator 
and the Monitor in the experiments 

7. Experiments and results 
Experiments are performed on the topology shown 

in Figure 7. The Monitor system and the TRAM 
emulator are executed on separate desktop PCs with a 
2.4GHz processor and 1GB RAM. We use TRAM 

sender and receiver (Figure 7) as the PEs being 
verified by the Monitor in all the experiments. We 
measure the accuracy and latency of the detection 
procedure for the Monitor. Accuracy is defined as (1- 
% of missed detections). We characterize the fault 
injections which affect the PEs but are undetected by 
the Monitor as missed detections. A PE is said to be 
affected if it crashes or raises an exception. False 
detections are defined as the errors which are flagged 
by the Monitor but do not affect the TRAM entities. 
Latency is measured as the time from the instantiation 
of a rule to the time when the rule matching is 
completed, subtracting the time for which the rule is 
dormant. For example, if a rule states “Observe 32 
data messages in 5 sec” then 5 sec is the time during 
which there is no Monitor-related processing. This 
time needs to be subtracted since it is not an index of 
the Monitor’s performance; rather it is a feature of the 
rule itself.  The value of ∆ in our experiments is set to 
30 seconds.  

7.1 Accuracy and latency results 
We vary the incoming data rate for the Monitor by 

varying the inter-packet delay from the sender. The 
emulator sends packets at a low rate of 20 pkt/s for the 
first 30 seconds and then increases it. Each experiment 
run lasts for 20 minutes. Every latency and accuracy 
value is averaged over at least 60 data points. The 
experiment is repeated for three different systems i.e., 
the Monitor-Baseline, the Monitor-HT, and the 
Monitor-S. The rate of packets is varied between 10 
pkt/s and 500 pkt/s. Figure 8(a) shows the variation of 
accuracy with packet rate. The 95% confidence 
interval is plotted for the Monitor-S and is seen to be 
very small indicating that the variance in the results is 
small. We can see that with an improved data structure 
the Monitor-HT’s knee, i.e., the breaking point, occurs 
around 125 pkt/s compared to 100 pkt/s for the 
Monitor-Baseline. Let us denote the breaking point for 
the incoming message rate as Rbp. The improvement of 
25% is due to the sharing of the state variables and the 
efficient hash table lookup. The false alarms vary 
between 0-6% for both the Monitor-HT and the 
Monitor-Baseline. For extremely high packet rates, the 
Monitor-HT and the Monitor-Baseline have a drop in 
false alarms because the number of rule matches itself 
is reduced.  

 We can see that beyond 125 pkt/s even with 
efficient per packet processing, the accuracy drops 
below 40% because of the increased rate of incoming 
messages which causes the processing capacity of the 
Monitor-HT to be exhausted. In comparison, with 
sampling, the accuracy drops gradually as the Monitor-
S drops increasingly more packets with increasing data 



rate to maintain the rate below Rbp. We can observe 
from Figure 8(a) that with increasing packet rate the 
Monitor-S has a small decrease in accuracy but it still 
maintains accuracy at approximately 70% compared to 
the Monitor-HT’s 16% accuracy. The Monitor-S has a 
marginal increase in the rate of false alarms due to the 
knowing of the state vector rather than the precise 
state. The false alarms vary between 0-9%. At high 
data rates we observe lower false alarm rates for the 
Monitor-S compared to low data rates.  

An example of a rule which does not get violated 
due to sampling resulting in loss of accuracy is R1 S0 
E1 1000 S8 1500 2500. This rule verifies that for a 
TRAM PE (sender, receiver) the state has successfully 
changed to S8 from S1 after receiving E1 (Hello 
message). At high data rates if a large number of 
packets is getting dropped, it happens that S still 
contains state S8 causing this rule not be violated and 
hence decreasing the accuracy.  
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Figure 8: Variation of (a) Accuracy and (b) Latency 
with increasing rate of packets 

 
The latency plot in Figure 8(b) provides a similar 

picture. The breaking points for the Monitor-Baseline 
and the Monitor-HT are the same as in the accuracy 

plot – 100 pkt/s and 125 pkt/s respectively. For the 
Monitor-S, we can see a small jump in latency around 
65 pkt/s (Rth in this experiment) because the algorithm 
switches to sampling and the probability of dropping a 
packet increases (being zero previously). This results 
in a higher overhead for processing each packet and 
the attendant marginal increase in latency. The 
processing done by the Monitor-S is proportional to |S| 
times the number of detection invocations. Increasing 
data rate causes higher |S| leading to higher latency of 
rule matching. However, the growth of |S| slows down 
with increasing packet rate causing the latency to 
saturate. We observe that even at high packet rates the 
Monitor-S maintains a low latency of rule matching 
(~200ms) because of effective adjustment to the 
sampling rate reducing the rate of packets that are 
processed. This provides an 83.3% decrease in latency 
compared to the latency of 1200ms for the Monitor-
Baseline.  

For a fixed Rth, as the data rate is increased, the size 
of the state vector |S| increases but it saturates at 
higher packet rates. The processing for the rule 
matching is directly proportional to |S|. Also, as the 
data rate is increased beyond Rth, the number of rule 
invocations of the Monitor-S stays constant. The 
latency is proportional to the total work done by the 
Monitor-S, which is given by: processing for the rule 
matching × number of rule invocations of the Monitor-
S. Therefore, initially when the data rate is increased 
beyond Rth, the latency increases, but beyond a point, it 
saturates. 

7.2 Effects of varying Rth 
 Figure 9(a) depicts the behavior of accuracy and 

latency for different values of Rth in the Monitor-S. 
Recollect that when the incoming message rate goes 
above Rth, the Monitor switches to the sampling mode. 
For all cases the accuracy is almost the same at high 
data rates and low data rates. Let us consider a single 
curve (say Rth = 50 pkt/s). For data rates below 50 
pkt/s there is no sampling and since this threshold is 
much below the breaking point (125 pkt/s from Figure 
1) the latency remains quite low (~65ms). As the data 
rate increases beyond 50 pkt/s, sampling starts and 
with increasing data rate an increasing number of 
packets is dropped. Difference in characteristics of the 
curve around Rth provides the system administrator a 
useful tuning parameter to choose a suitable latency 
value for the requirements of the distributed 
application. Clearly picking Rth > Rbp is unsuitable due 
to the spike in latency (see the 140 pkt/s curve). It is 
tempting to choose Rth as close to Rbp as possible 
(notice the delayed increase in latency for Rth = 100 
pkt/s compared to Rth = 50 pkt/s). However, in practice 



the breaking point cannot be exactly determined since 
it depends on the kinds of messages (and hence, the 
kinds of rules) that are coming into the Monitor. Thus 
the system administrator has to choose a Rth suitably 
below Rbp. For our experimental setup, if a latency of 
less than 100 ms is desired for data rates up to 100 
pkt/s, then Rth of 100 pkt/s is an appropriate choice.   

 When Rth is 140 pkt/s, i.e., greater than the 
breaking point (125 pkt/s), it causes a heavy load and 
higher latency of matching for the region (125 pkt/s, 
140 pkt/s). But as the run of experiment continues, 
sampling starts and this brings down the average 
latency to just over 300ms. The jump in the latency is 
because the incoming rate is close to the Rth because of 
which the Monitor switches between sampling and 
non-sampling modes. However in the non-sampling 
mode, since incoming rate is greater than Rbp, the 
Monitor-S incurs a high latency. This oscillation 
between the modes happens when the rate is close to 
Rth which explains the high latency (275-330 ms) 
around the incoming message rate of Rth.  
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Figure 9: Effect of Rth on the (a) Accuracy and (b) 
Latency 

7.3  Variation of state vector size (|S|) 
As described before, the amount of processing 

done by the Monitor-S is dependent on size of state 
vector i.e., |S|. We investigate the variation of |S| with 
time in an experimental run. In this experiment we 
keep the Rth fixed at 65 pkt/s and run the emulator to 
provide an incoming rate of 250 pkt/s. This experiment 
is targeted at bringing out the dynamics of the 
Monitor-S when the incoming message rate is higher 
than the breaking point, forcing sampling to kick in. 
For this configuration, approximately one in four 
packets is sampled. Figure 10 shows the variation of 
|S| with time. We measure the size of state vector once 
every 2 packets. Instead of displaying the entire run of 
20 minutes, we pick a representative 100 contiguous 
samples of |S|. We can see the large fluctuations of |S| 
due to the sampling. We can see that |S| grows to as 
large as 10, multiple times during the experimental 
run. The number of rules which get instantiated for 
each packet is proportional to |S|. However the rules 
get instantiated after a message is sampled. When a 
message is sampled, it will likely cause |S| to decrease 
because all the states in S do not have the message as a 
valid message in that state. Thus the rule instantiations 
take place at the troughs and not at the peaks of the 
plot in Figure 10. We can see that in Region 1, |S| 
drops in steps from 9 to 6 and finally to 1. The drop in 
|S| is because of the unique possibility of the sampled 
event in only some of the states. 
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Figure 10:  Variation of State size S in a sample run 

 
|S| can also remain the same if the dropped event 

corresponds to some self-loops. This explains the small 
plateaus in Region 2. In Region 2, |S| increases from 1 
to 3 because of a message drop. It stays at 3 even with 
further message drops and then reduces to 1 with a 
newly sampled message.  



8. Related research 
Change Detection in Networking: Recently there is 
an increased effort in finding changes in high 
throughput network streams. Scalability is an 
important challenge in such environments. Authors in 
[16] propose a sketch based approach. Sketch is a set 
of hash tables which provides probabilistic guarantees 
compared to a single hashtable which provides 100% 
accuracy (assuming no collisions)[18] . The authors 
build a forecast model for the streams based on the 
observed data in the Sketch. Differences in the 
forecasted values and actual stream values are flagged 
as errors and reported. In [14][15] authors extend the 
sketch based approach of [16] providing reversibility 
to identify the streams which have changed. Authors in 
[15] provide an efficient reversible-hashing scheme to 
quickly identify the streams which have significantly 
changed. The paper also generalizes the approach 
provided in [14]. In all of the above approaches the 
central idea is to obtain a statistical model of the 
stream. The new incoming values of the stream is 
matched against this statistical model to find errors.  In 
comparison, the sampling approach presented in this 
paper aims to maintain a closer application state. 
Detection provided by the Monitor is at a much 
different granularity as compared to approaches in 
[14][15]. The Monitor provides a much finer detection 
granularity. Statistical properties like mean and 
variance used in [14] do not account for spikes which 
the Monitor-S handles effectively. Authors in [17] 
provide an efficient way of performing sampling to 
obtain φ-quantile approximation of the incoming 
stream but the paper does not address fault detection.  
Stateful Detection: The issue of stateful detection has 
received attention from the security community due to 
the prevalence of attacks that are spread over multiple 
packets necessitating intrusion detection systems (IDS) 
to build state over multiple packets. The popular IDS 
Snort has an IP fragmentation-reassembly module 
which assembles fragmented IP packets. Also, for TCP 
packets, it has a stream4 reassembly module that can 
aggregate TCP packets within the same TCP session 
(like a FTP session) into a conglomerate pseudo 
packet. After this, the same pattern-matching algorithm 
is employed on the pseudo packet. The WebSTAT 
system [20], which builds on STAT, provides stateful 
intrusion detection for web servers. WebSTAT 
operates on multiple event streams, and is able to 
correlate both network-level and operating system-
level events with entries contained in server logs. Our 
previous work on VoIP IDS, called SciDive [19], built 
a stateful detection engine for VoIP with state being 
spread across multiple signaling packets (SIP packets) 

or data packets (RTP packets) or across the two 
protocols. All this work is targeted at specific 
protocols and its state aggregation and matching are 
therefore restricted to the domain. The Monitor 
sampling approach would not be suitable for intrusion 
detection in scenarios where a single packet can 
contain the event of interest. In such a scenario, the 
Monitor has to operate in the non-sampling mode. 
However, when the intrusion depends on behavior in 
aggregate (such as, flooding based denial of service), 
then the sampling approach is suitable. The attempts to 
make stateful intrusion detection scalable have 
concentrated on making per packet processing 
efficient, possibly with the addition of hardware nodes 
and reducing coordination traffic. [21][22] present a 
scalable stateful IDS which shares the load of 
processing messages through multiple hosts using 
commodity hardware. This approach requires the 
presence of more detection systems (called sensors) in 
comparison with ours, where one local Monitor 
handles detection in multiple entities in the network. 
Detection in Distributed Systems: Previous 
approaches of detection in distributed systems have 
varied from heartbeats, watchdog etc [8]-[10].   There 
is previous work [11][12] that has approached the 
problem of detection and diagnosis in distributed 
applications modeled as communicating finite state 
machines. The designs have looked at a restricted set 
of errors (such as, livelocks) or depended on alerts 
from the PEs themselves. A detection approach using 
event graphs is proposed in [13], where the only 
property being verified is whether the number of 
usages of a resource, executions of a critical section, or 
some other event globally lies within an acceptable 
range. Similar observer-observed framework is also 
presented in [3]. These approaches have focused on 
accuracy of fault detection and not scalability. Some 
approaches have focused on scalability but assume 
simpler failure semantics such as crash failures [23]. 
Although it is shown that this approach can scale well 
in large applications by a hierarchical algorithms [24], 
it can only detect a restricted set of application failures 
compared to the Monitor’s sampling approach. Other 
approaches have focused on detection in a distributed 
manner where failure detectors are embedded in the 
application component on each node [25]. 

9. Conclusion 
In this paper we presented a novel approach of 

performing stateful detection in high data rate 
scenarios. We extend an existing detection approach 
(the Monitor) by identifying inefficiencies in the rule 
matching process and proposing a sampling approach 
to reduce the rate of incoming packets to be examined 



for rule violations. We modify the data structure to 
produce the Monitor-HT (HT for hashtable) which 
leverages the commonality of messages in rules being 
matched for detection. The Monitor-S (S for sampling) 
uses a novel approach to incorporate sampling of the 
incoming stream while performing suitable 
modifications to the detection rules. We measure the 
performance of the Monitor-S and the Monitor-HT 
against the Monitor-Baseline on a multicast protocol 
TRAM. The efficiency of the new data structure 
causes the Monitor-HT to break at 125 pkt/s as 
compared to 100 pkt/s in the Monitor-Baseline. The 
Monitor-S outperforms the Monitor-Baseline via 
achieving a much higher accuracy with lower latency 
of rule matching at high packet rates (up to 500 pkt/s).  

We are currently working on providing theoretical 
guarantees on the new sampling approach. We are also 
designing algorithms that will let the Monitor detect 
when it has lost track of the application state due to the 
sampling and is consequently suffering from high false 
and missed alarms. In such a case, several successive 
messages will be sampled to come back in sync with 
the application. 
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Appendix 
 
A. Rule base 
T R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: The rule has 
a precondition to check data packets (E11) arrival within 
5000msec. This causes the post condition that at least one 
ack(E2) (between 1 and 8) must be sent. 
  
T R3 S5 E13 0 2 5000: This rule ensures that the number of 
re-affiliation packets (E13) is no more than 2 within 5000ms in 
state S7.  
 
T R3 S5 E15 0 10 5000: Restrict the Nacks (E15).  
 
T R4 S0 E11 2 50 500 S4 E2 1 2 5000 7000:  
T R4 S5 E13 2 500 5000 S6 E9 1 4 4000 9000 
T R3 S0 E1 10 30 5000: This rule of type 3 checks for the hello 
packet(E1) rate. The E1 message count should be between 10 
and 30 for the next 5000 msec. 
 
T R4 S0 E1 1 2 1000 S8 E14 1 2 2000 3000: Hello messages 
should be followed with Hello replies 
 
T R3 S0 E14 10 30 5000: 
T R1 S0 E1 1000 S8 1500 2500: 
T R1 S0 E10 1000 S8 1000 3500: 
T R2 S0 E10 50: This rule verifies that state of the receiver 
changes from S0 once Head Adv is received 
 
T R4 S0 E10 1 4 1000 S1 E9 1 2 2000 3000: Head Adv. 
messages should be followed by Head Bind 
 
T R4 S0 E10 1 4 1000 S3 E8 1 2 3000 4000: Head Adv. 
messages should be eventually followed by Accept message 
T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000:  
T R3 S1 E9 1 10 5000: 
T R3 S2 E8 1 2 10000: 

 
B. Rule types in the Monitor and TRAM 

messages 
 
1. Type I: (ST=Sp) = true for T∈(tN, tN+k) ⇒ (ST=Sq) = 
true for T∈(ti, ti+b), where T represents the global time at the 
Monitor, ti > tN, and k, b≥ 0. The above rule represents the 
fact that if for some time interval k starting at tN, a node is in 
state Sp i.e., the state predicate ST=Sp is true, then it will 
cause the system to be in another state Sq for some time b 

starting from time ti. The time tN is when state changes to Sp, 
irrespective of which event causes the transition. This rule is 
defined completely in terms of states of the entity and no 
events or state variable.  
2. Type II: St is the state predicate of an object at global 
time T : St ≠ St+∆, if event Ei takes place at t, the state St will 
not remain constant for ∆ time units from t.   
3. Type III: L ≤ |Vt| ≤ U  ; t∈( ti,ti +k); The state variable 
Vt in a particular state Si will have its count bounded by L 
and U over a time window of k starting at time ti when the 
defined event corresponding to the rule first occurs.  
4. Type IV: ∀t∈(ti,ti +k), L ≤ |Vt| ≤ U ⇒ L’ ≤ |Bq| ≤ U’ , 
∀q∈(tn, tn+b); tN > ti ; If a state variable Vt has a bounded 
count from above and below over a time window k, it will 
cause another state variable Bq to be bounded for a time 
window b starting from tn. This rule is in fact the master rule 
and the three previous rule types are special cases of it. But 
we still need the first three rule types because matching this 
class of rule entails matching more variables, which 
increases the latency of detection.  
5. Type V: If s = Si  ∀t∈(ti,ti +k) ⇒  s≠ Si  ∀t∈(tN, tN+a) ; 
tN > ti. This rule prevents a state transition back in state Si 
within some time of first arriving at Si.  
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