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Abstract

Self-propagating codes, called worms, such as Code Red, Nimda, and Slammer, have drawn significant attention due

to their enormous adverse impact on the Internet. There is a great interest in the research community in modeling the

spread of worms and in providing adequate defense mechanisms against them.

In this paper, we present a (stochastic) branching process model for characterizing the propagation of Internet

worms. This model leads to the development of an automatic worm containment strategy that prevents the spread of

worms beyond its early stages. Specifically, using the branching process model, we are able to (1) provide a precise

condition that determines whether the worm will eventually die out and (2) provdide the probability that the total

number of hosts that the worm infects will be below a certain level. We use these insights to develop a simple automatic

worm containment scheme, which is demonstrated, through simulations and real trace data, to be both effective and

non-intrusive.

Keywords: Internet scanning worms, stochastic worm modeling, branching process model, early phase propagation,

automatic worm containment.
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I. Introduction

The Internet has become critically important to the financial viability of the national and global economy.

Meanwhile, we are witnessing an upsurge in the incidents of malicious code in the form of computer viruses

and worms. One class of such malicious code, known as worms, spreads itself without human intervention

by using a scanning strategy to find vulnerable hosts to infect. Code Red, SQL Slammers, and Sasser are

some of the more famous examples of worms that have caused considerable damage. Network worms have

the potential to infect many vulnerable hosts on the Internet before human countermeasures take place. The

aggressive scanning traffic generated by the infected hosts have caused network congestion, equipment failure,

and blocking of physical facilities such as subway stations, 911 call centers, etc. As a representative example,

consider the Code Red worm version 2 that exploited a buffer overflow vulnerability in the Microsoft IIS web

servers. It was released on July 19th, 2001 and over a period of less than 14 hours infected more than 359,000

machines. The cost of the epidemic, including subsequent strains of Code Red is estimated by Computer

Economics to be $2.6 billion [22]. While Code Red was particularly virulent in its economic impact (e.g., see

[2], [11], [12]) it provides an indication of the magnitude of the damage that can be inflicted by such worms.

Thus, there is a need to carefully characterize the spread of worms and develop efficient strategies for worm

containment.

In the current literature, three broad classes of strategies have been identified for mitigating the risks of

worms.

(i) Prevention: This involves improving the security and heterogeneity of software on the Internet and auto-

matically checking hosts for vulnerabilities worms could exploit, and patching them before a worm incident

happens; (ii) Treatment: This involves eliminating the vulnerability exploited by the worm after the incident

has become known and removing the worm from the host itself; (iii) Containment: This involves block-

ing or slowing down the communication between infected and uninfected machines. These three strategies

complement each other and in this paper, our focus will be on the containment strategy.

The goal of our research is to provide a model for the propagation of random scanning worms and the
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corresponding development of automatic containment mechanisms that prevent the spread of worms beyond

its early stages.

Several early worm warning and detection systems have been proposed [10], [20], [21]. Most models of

worm propagation are based on deterministic epidemic models [3], [15], [19]. They are acceptable for modeling

worm propagation when the number of infected hosts is large. However, it is generally accepted that they are

inadequate to model the early phase of worm propagation accurately because the number of infected hosts

earlier on is very small [10]. The reason is that epidemic models capture only expected or mean behavior,

while not being able to capture the variability around this mean, which could be especially dramatic during

the early phase of worm propagation. While stochastic epidemic models can be used to model this early

phase, they are generally too complex to provide useful analytical solutions.

In this paper, we propose a branching process model for the early phase of worm propagation. We consider

the generation-wise evolution of worms, with the hosts that are infected at the beginning of the propagation

forming generation zero and a host in generation n infecting hosts that will be said to belong to generation

n + 1. According to the branching process model, each individual in generation n independently produces a

random number of individuals in generation n + 1, according to a fixed probability distribution that does not

vary from individual to individual. Our model allows us to better understand the worm spreading dynamics

for worms of arbitrary scanning rate, including stealth worms that may turn themselves off at times.

Using this model, we find that it is the total number of scans that any infected host attempts, and not the

more restrictive scanning rate, that determines whether the worms can spread. The total number of scans

M is over a period we call the containment cycle. As we will illustrate in this paper, the containment cycle

is a relatively long period of time, on the order of weeks, and can be determined based on the host’s normal

scanning characteristics. In practice, the value of M is a large number that prevents worm spreading without

interfering with legitimate traffic. Note that this is fundamentally different from rate limiting schemes because

we are not bounding instantaneous scanning rates. Instead, the limiting is done over a large window of time

that can be adapted to host characteristics. Further, this limiting value is derived from our branching process

model and can be tuned to enforce a more (or less) rapid termination of worm spread. Using Code Red as
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an example, we show that if we restrict the total scans per host to M = 10000, with a high probability (0.99),

the total number of infected hosts on the Internet will be less than 360, which according to [11], corresponded

to only about 0.1% of the total vulnerable hosts at the time of the outbreak.

The main contributions of the paper can be summarized as follows. We provide a means to accurately

model the early phase of propagation of uniform scanning worms. Our model provides us with a mechanism

for containing worm spread without needing to detect whether a host is infected. This scheme is non-intrusive

in terms of its impact on legitimate traffic. Our model and containment scheme are validated through analysis,

simulation, and real traffic statistics.

The rest of the paper is organized as follows, In section II, we review relevant research on network worms;

In Section III, we present our branching process model with corresponding analytical results on the spread

of the infection. In Section IV, we describe an automatic worm containment scheme. In Section V, we

provide numerical results that validate our model and confirm the effectiveness of our containment scheme.

In Section VI, we summarize our contributions, provide some discussion, and directions for future work.

II. Related Work

As mentioned in the introduction, deterministic epidemic models have been used to study worm propagation

[15], [19]. For illustration, consider the two factor worm model proposed by Zou et. al [19]:

dI(t)

dt
= β(t)[V − R(t) − I(t) − Q(t)]I(t) −

dR(t)

dt
, (1)

where V is the total number of susceptible hosts on the Internet, and I(t), R(t), Q(t) represent the number

of infectious hosts, the number of removed hosts from the infectious population, and the number of removed

hosts from the susceptible population at time t, respectively. The parameter β(t) is the infection rate at time

t and reflects the impact of the Internet traffic on the worm propagation. The parameters R(t) and Q(t)

reflect the human countermeasures in patching.

When there is no patching and when the infection rate is constant, the two factor model equation is the
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random constant spread model (RCS) proposed by Staniford et. al [15]:

dI(t)

dt
= βI(t)(V − I(t))

These types of models are suitable for large scale systems (a large number of infected hosts). However,

during the early stage of the worm propagation, the number of infected hosts is small and these deterministic

models may not accurately characterize the spread of worms. Nonetheless, most existing models for Internet

worms are based on deterministic epidemic models.

Early worm detection systems have been proposed by several researchers. Zou et al use a Kalman filter

[20] to detect the worms. The Kalman filter is used to detect the presence of a worm by detecting the

trend, not the rate, of the observed illegitimate scan traffic. The filter is used to separate worm traffic from

background non-worm scan traffic. Liljenstam et al. and Bert develop an early worm detection system called

DIB:S/TRAFEN in which a select group of routers forward ICMP T-3 packets to the analysis station. It

is shown that the total number of participating routers can be small, but these routers must be distributed

across a significant fraction of the Internet address space to ensure timely and accurate worm detection. With

optimized deployments, it is shown that the system can detect the Code Red worm when there are only 0.03%

vulnerable hosts infected. They develop a worm simulation model that is used for generating worm traffic

for the DIB:S/TRAFEN detection system. Their simulation model uses a combination of the deterministic

epidemic model and a general stochastic epidemic model [10] to model the effect of large scale worm attacks.

They found the stochastic epidemic model is useful for modeling the early stage of the worm spread. However,

the complexity of the general stochastic epidemic model does yield to analysis.

Rate-control based countermeasures, such as Virus throttling by Williamson [17] have been shown to be

successful in detecting and slowing down fast scanning worms. Wong et al. [18] studied the effect of the rate

control on suppressing the spread of the worms when this mechanism is deployed at various point (e.g., host,

LAN and core router) of the network. The rate control is effective in slowing down the fast worms but is not

effective against slow scanning worms. In addition, the limit on the rate must be carefully tuned in order to

let the normal traffic through.
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Zou el al. propose and analyze a dynamic quarantine scheme of the Internet worms [21]. They assume the

underlying worm detection system has a high false alarm rate. Their dynamic quarantine system automatically

confines all hosts that have set the alarm, and release them after a short time. They found that this scheme

can slow down the worm spread but cannot guarantee containment.

Moore et al. [13] examined the reaction time required to contain the Internet scale worms using counter-

measures such as blacklisting the infected hosts and content filtering at routers. Their study concluded that

to effectively contain the Internet worms, it is necessary to take actions early, within minutes of the worm

outbreak.

The goal of our research is to provide a model for the propagation of random scanning worms, which can

lead to the development of automatic containment mechanisms that prevent the spread of worms beyond its

early stages. We use a stochastic model called the branching process model [6], [14] to characterize the spread

of worms. Using the branching process model, we show how to guarantee an extinction probability1 of 1 by

appropriately limiting the total number of scans per host M in a containment cycle. More importantly, we

are also able to probabilistically bound the total number of hosts that are infected for a given value of M .

We develop an automatic worm containment strategy based on the insights gained from our model. The

main idea is to limit the total number of distinct IP contacted (denoted the limit as M)) per host over a

long period of time (weeks or even months). The value for M does not need to be carefully tuned as in the

traditional rate control mechanism, because our theoretical results suggest M can be much larger than the

normal network activities and can still effectively contain the worms. Our containment scheme can effectively

contain both fast scan worms and slow scan worms without knowing the worm signature in advance or needing

to detect the worm.

III. Branching Process Model for Random Scanning Worms

We now present the branching process model we use to characterize the propagation of random scanning

worms. Scanning worms are those that generate a list of random IP addresses to scan from an infected host.

1The extinction probability is the probability that a worm spread eventually stops. It is formally defined in section III
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The uniform scanning worms are those in which the addresses are chosen completely randomly while preference

scanning worms weight the probability of choosing an address from different parts of the network differently.

In this paper, we will focus on the uniform scanning worms, and discuss possible extensions for preference

scanning worms. In our model, a vulnerable host is assumed to be in one of three states: susceptible, infected,

and removed. A susceptible host is one that is vulnerable to being infected by the worm. The term vulnerable

is used synonymously here. An infected host generates a list of random IP address to scan. If a susceptible

host is found among the scans, it will become infected. A removed host is one which has been removed from

the list of hosts that can be infected.

We use V to denote the total number of vulnerable hosts. The probability of successfully finding a vulnerable

host in one scan is p = V
232 , for 232, which is the size of current IPv4 address space. We call p the density

of the vulnerable hosts, or vulnerability density for short. The value of p also measures how widespread a

vulnerability is. There were approximately 360,000 vulnerable hosts during the Code Red outbreak [11]2. In

this case, the vulnerability density p is only 8.5 × 10−5.

Since we model the early phase of worm propagation, we assume the total scans of an infectious host is no

more than M . Therefore, we put an upper bound of M on the number of times an infected host can scan in

its containment cycle. We characterize what values can M take to achieve an extinction probability of one.

We also provide the probability distribution of the total number infected hosts as a function of this parameter

M . To that end, we first describe our branching process model.

A. Galton-Watson Branching Process

The Galton-Watson Branching process3 is a Markov process that models a population in which each in-

dividual in generation n independently produces some random number of individuals in generation n + 1,

according to a fixed probability distribution, that does not vary from individual to individual [6], [14].

2We are making the approximation in the paper that the total number of infected hosts over the entire course of the outbreak

equals to the number of vulnerable hosts at the beginning. This is a lower bound estimate of the number of vulnerable hosts.
3Branching process models have already been successfully used in modeling the spread of infectious diseases in the early phase

of the outbreak.
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Fig. 1. Generation wise evolution in a tree structure, O is

the initial infected host. O has two offsprings host A

and B.
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Fig. 2. Growth of the infected hosts in generations. The

generation number is by the growth curve

All infected hosts can be classified into generations in the following manner. The initial infected hosts belong

to the 0− th generation. All hosts that are directly infected by the initial infected hosts are the 1st generation

hosts, regardless of when they are infected. In general, an infected host Hb is an (n + 1)-st generation host

if it is infected directly by a host Ha from the n-th generation. Hb is also called an offspring of Ha. All

infected hosts form a tree if we draw a link between a host and its offspring. Figure 1 illustrates the notion

of generation-wise evolution. In this model, there is no direct relationship between generation and time. A

host in a higher generation may precede a host in a lower generation, as host D (generation 2) precedes host

B (generation 1) in Figure 1 (t(D) < t(B)).

Figure 2 illustrates the Code Red propagation in the early stage with the infected hosts being classified into

generations. We only show the first 6 generations.

Let ξ be a random variable, representing the offsprings of (i.e., the number of vulnerable hosts infected by)

one infected host scanning M times. During the initial phase of the worm propagation, ξ is a binomial(M,p),

where p is the vulnerability density. Hence,

P{ξ = k} =

(

M

k

)

pk(1 − p)M−k. (2)

During the early phase of the propagation, the vulnerability density remains constant since the number of
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Symbol Explanation

V The size of the vulnerable hosts

p p = V
232 , the density of the vulnerable hosts (vulnerability density)

M The total number of scans each infected host may perform

ξ Random number of offsprings generated by each infected host

ξ
(n)
k

Number of offsprings produced by kth host in nth generation

I0 Number of initial infected hosts

In Number of nth generation infected hosts

I Total number of all infected hosts [I =
∑

∞

n=0 In]

π Extinction probability [π = P (In = 0, for some n)]

Pn Extinction probability at nth generation [Pn = P (In = 0)]

TABLE I

Notations

infected hosts is much smaller than the number of vulnerable hosts in the population. Let In be the number of

infected hosts in the n-th generation. I0 is the number of initial hosts that are infected. During the early phase

of the worm propagation, each infected host in the nth generation infects a random number of vulnerable hosts

independent of one another according to the same probability distribution. These newly infected hosts are

the (n+1)th generation hosts. Let ξ
(n)
k denote the number of hosts infected by the kth infected host in the nth

generation. The number of infected hosts in the (n + 1)th generation can be expressed as In+1 =
∑In

k=1 ξ
(n)
k ,

where ξ
(n)
k are independent binomial(M,p) random variables.

During the initial worm epidemic, each infected host produces offsprings independently and according to

the same probability distribution as in Equation (2). Therefore, the spread of infected hosts in each generation

{In, n ≥ 0} forms a branching process. For convenience, we provide a list of the symbols used in our model

and their corresponding explanation in Table I.

We next use the branching process model to answer questions on how the worm propagates as a function

of the total number of allowable scans M .

B. Extinction Probability for Scanning Worms

For simplicity of illustration, we assume that the initial number of infected hosts is 1. The results can be

readily generalized to an arbitrary number of initial infected hosts.

Let µ = Eξ be the mean number of offsprings per infected host. Let π denote the probability that the
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population dies out eventually, also known as the extinction probability. It is defined as

π = P{worm dies out} = P{In = 0 for some n} (3)

In the case of network worms, the extinction probability measures the likelihood of the worm spread dying out

after a certain number of generations. When π = 1, we are certain that the infections from the worm cannot

be spread for an arbitrarily large number of generations. The following Proposition provides the necessary

and sufficient condition for extinction.

Proposition 1: Let the density of the vulnerable hosts be p and the total number of scans per host is M .

Then π = 1 if and only if M ≤ 1
p
.

Proof: The spread of the worm in its early stage form a branching process, where each infected host inde-

pendently produce a random number of offsprings. Let ξ be the random variable representing the number

of offsprings produced by each infected host. Since the total number of scans per infected host is M , ξ is a

Binomial random variable with distribution given by Equation (2) and mean E(ξ) = Mp.

According to Theorem 4.5.1 in [14](page 192), π = 1 if and only if E(ξ) ≤ 1.

Therefore, π = 1 if and only if M ≤ 1
p
.

The practical implication of the above proposition is that if we limit the total number of scans per host to

be less than 1/p, the worm spread will eventually be contained.

Using Code Red and SQL Slammer as examples, Proposition 1 implies that if the total scans per host is

less than 11,930 and 35791 respectively, the worms would eventually die out. (V=360,000 for code red, and

V=120,000 for SQL Slammer are used in this calculation)

This shows that the limit on the total scans per host in practice is not restrictive. The value of M

corresponds to the number of unique addresses and therefore, the restriction on M is not expected to interfere

with normal user activities. This is borne out by actual data for traffic originated by hosts at the Lawrence

Berkeley National Laboratory presented in Section IV and Figure 6. Further, note that this restriction is over

a period of time denoted by the containment cycle, which could be on the order of weeks or months. We will

discuss this further in Section IV.



11

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9
0.95

1
Extinction Probability Plot

Generation

E
xt

in
ct

io
n

 P
ro

b
ab

ili
ty M = 5000

M = 7500
M = 10000

Fig. 3. Extinction Probability at each generation for the Code Red worm

We can also compute the extinction probability at each generation, denoted by Pn = P{In = 0}. Observe

that Pn is non-decreasing in n and can be calculated by using the probability generating function of ξ, defined

as φ(s) = E[sξ]. Since ξ is a binomial random variable with parameters (M,p), it follows from elementary

probability theory that φ(s) = (ps + (1 − p))M . Let φn(s) be the probability generating function of In, then

φn(s) =
∑

∞

k=0 skP{In = k}. Now, clearly, Pn = Pr{In = 0} = φn(0).

It is shown in [6] (page 395) that φn+1(s) = φn(φ(s)) for n ≥ 1 and φ0(s) = sI0 , and φ1(s) = [φ(s)]I0 , where

I0 is the number of initial infected hosts. Using this formula and the fact that Pn = φn(0), we can calculate

the extinction probability Pn for each generation n.

In Figure 3, we plot the extinction probability Pn for the Code Red worm for three different values of M .

We use a vulnerable hosts size of 360,000 with a single initial infected host. Since the value of M is smaller

than the theoretically computed threshold in all cases, the worm is guaranteed to die out. As shown in the

figure, the smaller the value of M , the quicker (in generations) the worm dies out.
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C. Probability Distribution of Total Number of Infected Hosts

While the probability of extinction gives us a bound on maximum number of allowable scans per host, the

true effectiveness of a worm containment strategy is measured by how many hosts have been infected before

the worm finally dies out. We next provide a probability distribution function for the the total infections

during when the total scans per hosts is below 1/p.

The total infections, denoted by I, is the sum of the infections in all generations. It can be expressed as

I =
∞
∑

n=0

In

. Our objective is to provide a simple closed form equation that accurately characterizes P{I = k}, the

probability that the total number of hosts infected is k, for a given value of M .

We consider any uniform scanning worm with I0 initial infected hosts. We allow all hosts to scan M ≤ 1/p

times, where the density of the vulnerables is p, and the total number of infected hosts is I =
∑

∞

n=0 In.

As shown earlier, {In} is a branching process. The infected hosts independently infect a random number

of vulnerable hosts that obeys the same probability distribution as ξ. Since the total number of scans per

infected host is M , then ξ, is a binomial random variable B(M,p). Further, since p is typically small (e.g.,

p ≈ 8.5 × 10−4 for Code Red) in practice, ξ can be accurately approximated by a Poisson random variable

with mean λ = Mp [14]. Hence, the probability density function for ξ is given by:

P{ξ = k} ≈ e−λ (λ)k

k!
.

It then follows from [4], that the total progeny of the branching process has a Borel-Tanner distribution, i.e.,

P{I = k} =
I0

k(k − I0)!
(kλ)(k−I0)e−kλ, k = I0, I0 + 1, · · · (4)

where λ = Mp. The mean and variance of I are given by [4]:

E(I) =
I0

1 − λ
V AR(I) =

I0

(1 − λ)3

The above probability density function is very useful in calculating statistics of interest. For example,

consider Code Red with 10 initial infected hosts, also used in [21]. If M = 10000 (Mp = 0.83), with
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probability 0.99 the worm will be contained to less than 360 infected hosts, which is 0.1% of the total

vulnerable population.

Figure 4 shows the plot of the probability distribution function of I for three different values of M for code

red with 10 initial infections. Figure 5 plots the cumulative probability distribution of I for three different

values of M . As we can see from Figure 5, with probability 0.95, code red will not spread to more than

150, 50, 27 total infected hosts if the values of M is chosen to be 10000, 7500, 5000 respectively.

Let’s also consider SQL Slammer with 10 initial infected hosts. If we use the same value for M (M = 10000),

P{I > 20} < 0.97. i.e. with high probability, no more than 10 additional vulnerable hosts will be infected.

This corresponds to 0.008% of total vulnerable population. If we further reduce M to 5000, P{I > 14} < 0.97,

i.e. with high probability, no more than 4 additional vulnerable hosts will be infected.

Now, let us compare this result to existing worm detection systems [10], which provide detection when

approximately 0.03% (code red) and 0.005% (slammer) of the susceptible hosts are infected. This performance

is achieved by careful selection of the routers at which worm detection mechanisms are put in place. With

our scheme, when M is kept below a pre-defined threshold, with very high probability, the infection will not

be allowed to spread that widely. Further, our results also hold for slow worms, which most other detection

techniques have trouble detecting.

Based on our results, we now develop an automatic worm containment system that can inhibit the spread
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of the worms.

IV. Automated Worm Containment System

The results in Section III provide us with a blueprint of a worm containment strategy. The containment

system is based on the idea of restricting the total number of scans to unique IP addresses by any host. We

assume that we can estimate or bound the percentage of infected hosts in our system. We propose that an

automated worm containment strategy have the following steps.

1. Let M be the total number of unique IP addresses (scans) that a host can contact in a containment cycle.

At the beginning of each new containment cycle, set a counter that counts the number of unique IP addresses

for each host to be zero.

2. Increment this counter for each host when it scans a new IP address.

3. If a host reaches its scan limit before the end of the containment cycle it is removed and goes through a

heavy duty checking process to ensure that it is free of infection before allowed back into the system. When

allowed back into the system, its counter is reset to zero.

4. Hosts are thoroughly checked for infection at the end of a containment cycle (one by one to limit the

disruption to the network) and their counters reset to zero.

Choose M based on the probability that the total number of infected hosts given by Equation (4) is less

than some acceptable value ε. Further, the containment cycle would be obtained through a learning process.

Initially choose a containment cycle of a fixed but relatively long duration, e.g., a month. Since the value of M

that we can allow is fairly large (on the order of thousands, as indicated by analysis with SQL Slammer and

Code Red) we don’t expect that normal hosts will be impeded by such a restriction. We can then increase

(reduce) the duration of the containment cycle depending on the observed activity of scans by correctly

operating hosts.

We use the 30 day trace of wide-area TCP connections (LBL-CONN-7) [24] originating from 1645 hosts in

the Lawrence Berkeley Laboratory to analyze the growth of the number of unique destination IP addresses

per host (this is clean data over a period when there was no known worm traffic in the network). Our study
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Fig. 6. Number of Distinct IP contacted over 30 days

indicates that 97% of hosts contacted less than 100 distinct destination IP addresses during this period. Only

six hosts contacted more than 1000 distinct IP addresses. Figure 6 shows the growth trend of the total unique

destination IP addresses for these six most active hosts. As we can see from this figure, the most active

host has contacted approximately 4000 unique IP addresses. If our containment system is used with the

containment cycle to be one month and M is set to be 5000, none of the above hosts will trigger alarm. As

shown in section III, with high probability the total infections caused by code red will be under 27 hosts when

M = 5000. This suggests that our containment system is not likely to interfere significantly with normal

traffic, yet containing the spread of the worms. protection from the worm spread.

The containment cycle can also be adaptive and dependent on the scanning rate of a host. If the number

of scans originating from a host is getting close to the threshold, say it reaches a certain fraction f of the

threshold, then the host goes through a complete checking process. The advantage of this worm containment

system is that it does not depend on diagnosis of infected hosts over small time-granularities. It is also effective

in preventing an Internet scale worm outbreak because the total number of infected hosts is extremely low,
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as shown in the examples in the previous section.

Traditional rate based techniques attempt to limit the spread of worms by limiting the scanning rate.

The limit imposed must be carefully tuned so as not to interfere with normal traffic. For example, the rate

throttling technique [17] limits the host scan rate to 1 scan per second. Scans to unique addresses at a higher

rate are put in a delay queue and popped off the delay queue and serviced once per timeout. Thus, the worm

spread is automatically contained. The rate limiter can inhibit the spread of fast worms without interfering

with normal user activities. However, slow scanning worms with scanning rate below 1 Hz and stealth worms

that may turn themselves off at times will however elude detection.

Our worm containment system, on the contrary, can contain fast worms, slow worms, and stealth worms.

The fast scanning worms will reach the limit on M sooner, while the slow worms will reach this limit after

a longer period of time. As long as the host is disinfected when the threshold is reached, the worm cannot

spread in the Internet.

A comparison with network based containment systems is also valid. In such systems, e.g., DIBS:S/TRAFEN

[23], the mechanism has to be implemented on a carefully chosen set of network routers. Such mechanisms

have been shown to be effective in containing the worm spread at small levels of infection, e.g., 0.03% for Code

Red and 0.005% for SQL/Slammer [10]. However, our scheme has the advantage that it is host based and

therefore easier to deploy, while showing comparable or better containment in terms of fraction of susceptible

hosts infected.

We next provide numerical results to illustrate the effectiveness of our model and containment strategy.

V. Simulation Results

We use a discrete event simulator to simulate a uniform scanning worm with our defense strategy. Our

system consists of V susceptible hosts with randomly assigned IPv4 addresses. Initially, there are I0 infected

hosts. Each host will be in one of the three states: susceptible, infected, and removed. A host is removed if

it has sent M scans. Further, each host can reach another host directly. The infected hosts independently

generate random IP addresses to find the victims. If the random IP address matches any of the IP addresses
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of the hosts in the susceptible state, the susceptible host will become infected, and it is marked a generation

number that equals to its sources’ generation number plus one. The newly infected hosts will start their own

scanning and infecting process.

In our simulation for Code Red, we used V = 360, 000 for the vulnerable population size and I0 = 10 for

the number of initial infected hosts. We used M = 10, 000 that below the threshold for worm extinction. In

this case, p = 0.83 × 10−5 and λ = Mp = 0.83.

As discussed earlier, the total number of infected hosts I measures how well a worm is contained. We ran

this simulation with M = 10, 000 for a 1000 times and collected the values of I. Figure 7 shows the relative

frequency of I from our simulations and the probability density function of I obtained from our theoretical

results in Section III. Figure 8 shows the relative cumulative frequency of I from our simulations and the

cumulative density function of I obtained from our theoretical results in Section III.

The simulation results validate the accuracy of our model and the effectiveness of our containment strategy.

Figures 7 and 8 demonstrate that our simulation results match closely with the theoretical results from

Section III. We can see from Figure 8 that with high probability (0.95), the total number of infected hosts is

held below 150 hosts. Hence, it suggests that our worm containment scheme is also effective. As mentioned

in Section III, one can reduce the spread of infection by further reducing the value of M .
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Figures 9 and 10 show two sample paths of the code red propagation when our containment strategy is

utilized. We used a scan rate of 6 scans/seconds for Code Red for the purpose of illustrating worm propagation

and containment with respect to time. In one scenario depicted in Figure 9, there are a total of approximately

300 hosts infected. However, the active number of infected hosts is held below 30 at all times. This is due

to our countermeasure that when a host scans M times, it is removed. The worm ceased spreading after all

infected hosts were removed. Figure 10 shows another scenario when there are 55 total infected hosts. In

this scenario, the removal process quickly catches the infection process, so that the worm dies out rapidly.

Using formula provided in section III, when M = 10000 (λ = 0.83), E(I) = 58 and var(I) = 2035 (std=45).

Deterministic models cannot capture this variation.

We also ran our simulations with SQL Slammer parameters. Here we used V=120,000 as used in [10],

I0 = 10, and M = 10, 000 which is well below our threshold for worm extinction, given by Proposition 1.

Figures 11 and 12 show the relative frequency P{I = k} and the relative cumulative frequency P{I ≤ k},

respectively against theoretical results. The worm containment contains the infection to below 20 hosts (only

10 newly infected) with very high probability.
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VI. Conclusions

In this paper, we have studied the problem of combating Internet worms. To that end, we have developed

a branching process model to characterize the propagation of Internet worms. Unlike deterministic epidemic

models studied in the literature, this models allows us to characterize the early phase of worm propagation.

Using the branching process model we are able to provide a precise bound M on the total number of scans that

determines whether the worm will eventually die out. Further, from the model we also obtain the probability

that the total number of hosts that the worm infects is below a certain level, as a function of the bound M .

The insights gained from analyzing this model also allows us to develop an effective and automatic worm

containment strategy. Our strategy can effectively contain both fast scan worms and slow scan worms during

their early phase of growth, without knowing the worm signature in advance or needing to explicitly detect

the worm. We show via simulations and real trace data that the containment strategy is both effective and

non-intrusive.

Although, the focus of this paper has been on uniform scan worms, we believe that the worm containment

strategy can also be extended to preferential scan worms. This will be the focus of our future work.
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