
 DCSL Research Overview

Saurabh Bagchi Page 1

Dependable Computing Systems Lab: Research
Overview

Prepared by: Saurabh Bagchi

https://engineering.purdue.edu/dcsl/

Last Update: April, 2019

1 Executive Summary
The Dependable Computing Systems Lab (DCSL) comprises students (graduate and
undergraduate), post-doctoral researchers, and programming staff members within the School
of Electrical and Computer Engineering, the Department of Computer Science, and two
institute-wide centers – CRISP (Center for Resilient Infrastructures, Systems, and Processes) and
CERIAS (The Center for Education and Research in Information Assurance and Security).

The broad goal of our research is to design practical dependable distributed systems. This
means distributed systems, from large-scale networks of wireless embedded devices to
datacenters that power the cloud computing paradigm should continue to operate despite the
presence of errors, whether naturally occurring or maliciously induced. Our work is motivated
by the fact that systems are increasing in scale, both in terms of the number of executing
elements and the amount of data that they need to process and existing dependability
techniques are increasingly failing to meet the demands of such scaling. Further, systems are
heterogeneous, both in terms of hardware (GPU, DSP, FPGA, etc. coupled with traditional CPUs)
and software (software from multiple parties being integrated to provide end-user
functionality). The faults that bedevil such systems may be due to accidental (or natural)
causes, or malicious (or induced) causes and we deal with both classes. Our work deals with

 DCSL Research Overview

Saurabh Bagchi Page 2

faults by providing the functionality of detection (tell quickly that there is something wrong),
diagnosis (what is the root cause of the failure), containment (how to prevent the failure from
propagating through the system), and in some cases, prediction (of an impending failure, so
that proactive mitigation actions can be triggered). The dependability mechanisms must not
overly impact the application or the execution environment, either in terms of performance
impact or in terms of the level of changes required from them. Our work focuses primarily in
the application and in the middleware software layers, while with embedded wireless devices,
we also delve into the low-level firmware.

Changing execution environments

We observe that the kinds of execution environments are changing – from one where all the
components are developed in-house, are open source and well-understood to one where they
are made up of third-party software components. Some of these components are at least
partially opaque to the system owner and interactions amongst the components have many
patterns, some of which cannot be enumerated a priori (i.e., before deployment of the system).
There is a growing amount of non-determinism in the behavior of the systems due to various
factors. First, the execution environments are intrinsically noisy, especially at large scales, due
to interference from other applications executing on the same environment and unpredicted
interactions among the application’s components themselves. Second, the number of possible
usage scenarios are increasing, with the end user interacting with the system under a variety of
conditions (consider for example, a smart phone which the consumer is using for talking, while
sending text messages, while a healthcare app is processing data from sensors on the phone).
Third, the variety of runtime environments being used result in different kinds of faults, some
subtly different and some radically so. For example, with heterogeneous computing, an
incorrect mapping of functional blocks of the application to the system blocks (such as, a
memory intensive part of code to a GPU), can lead to a performance degradation. Also, systems
are being built using multiple programming languages and their interactions lead to new failure
modes. For malicious errors, the different usage scenarios give rise to different attack paths.

The dependability solution has to handle these sources of non-determinism, increasing the
fraction of failure cases that it handles correctly, while also keeping a limit on the number of
correct executions that it incorrectly denotes as faulty. Different distributed systems impose
different kinds of resource constraints on the dependability solution, e.g., large-scale
computing clusters require that most communication due to the dependability protocols be
kept local, with only rare use of global communication operations; embedded wireless
networks constrain the volume of communication due to bandwidth and energy budget
constraints.

Broad characteristics of our work

Our work fits within this broad universe of applications and execution environments. Our
work can be characterized as “systems-y”. It derives from solid theoretical underpinnings,
adapting them to the domain-specific challenges, and then developing them for use in practical

 DCSL Research Overview

Saurabh Bagchi Page 3

scenarios. Many of our problems involve large volumes of data, in rest and in motion, and we
adapt data analytic algorithms to solve our problems. This often involves making existing
algorithms distributed, scalable to large system sizes, and capable of dealing with unstructured
data. We perform synthetic fault injections to evaluate our solutions and then test them out, as
far as practicable, in real deployments and with real workloads. Our collaborations take two
broad forms: with academic experts in a specific sub-field of Computer Science and with
practitioners who face the dependability challenges in their respective domains. Examples of
the former type include our explorations of data mining, machine learning, static analysis,
scientific computing, and wireless software development. The latter class comprises
collaborations with colleagues from industries and federal labs. Our work has been supported
by and adopted by partners at Sandia National Labs (embedded and game-theoretic security),
Northrop Grumman (distributed intrusion detection for enterprise class systems), Lawrence
Livermore National Lab (reliability for large-scale scientific applications), Argonne National Lab
(computational genomics), Adobe Research (streaming data analytics under bounded error
guarantees). Among our past collaborators, we include IBM (mobile computing workloads
migrated to the cloud), Avaya (Voice over IP security), Emnet LLC (wireless mesh network for
waste water monitoring), Motorola (multi-hop wireless network for emergency responders),
and Lockheed Martin (intrusion tolerance for zero-day attacks).

Our research is structured around three thrusts:

1. Dependability in large-scale applications
2. Strengthening enterprise-class distributed systems
3. Dependability of embedded wireless networks

2 Research Thrust 1: Dependability in Large-Scale Applications

2.1 Problem Statement
Current techniques for resilience are insufficient for exascale systems (i.e., systems capable of
executing 1018 floating point operations per second), and unless radical changes are made
across the entire software stack, exascale systems may never compute reliable scientific results.
The available parallelism on exascale systems is expected to increase by 3-5 orders of
magnitude over today's petascale systems, driven by increases in on-node concurrency and
power density. At that point in the design space, hard and soft failures will be commonplace
occurrences. The model of hardware being correct all the time, on all regions of the chip, and
forever, will become prohibitively expensive to maintain, in terms of both manufacturing and
energy cost. Replication-based approaches have promise, but blind replication of all tasks will
halve the available performance on large-scale machines at best, wasting CPU cycles and
energy on redundant work.

A targeted approach is needed to allow large-scale runtime systems to isolate regions where
faults occur and replicate only those parts of the system. To enable this, we need runtime

 DCSL Research Overview

Saurabh Bagchi Page 4

systems that monitor and analyze their own behavior to determine when to take preventive
action. This type of analysis has been investigated before, but existing approaches aggregate
system-wide data to a central point for analysis, which is not scalable and time-consuming.
Further, existing analyses assume that parallel application behavior is relatively homogeneous
across nodes and tasks. Such approaches will be ill-equipped to cope with the pervasive
adaptive behavior of large-scale applications and heterogeneity of these platforms.

One emerging challenge is that the notion of correctness is sometimes tied to the
characteristics of the data. For example, processing one request may take a millisecond while
another may take over a second and both are correct behaviors. It is simply that the data
accessed by the requests are different. We therefore have to come up with system models and
related detection and diagnosis approaches that can be aware of the characteristics of the data.

2.2 Solution Approach
We have developed AutomaDeD [3], a tool that detects errors based on runtime information of
control paths that the parallel application follows and the times spent in each control block.
AutomaDeD suggests possible root causes of detected errors by pinpointing, in a probabilistic
rank-ordered manner, the erroneous process and the code region in which the error arose.
Intuitively, the erroneous tasks often form a small minority of the full set of tasks. Hence, they
are outliers when we cluster the tasks, based on their features related to control flow and
timing. Further, in the time dimension, the executions in the first few iterations are more likely
to be correct than in later iterations, which we also leverage to determine correct or erroneous
labels; else we make use of some labeled correct runs, if available. Our solution approach is
based on a detailed understanding and analyses of errors that show up in such large-scale
systems, including some that we do on the DOE supercomputers [49, 50].

All existing parallel debugging tools (including our first effort at AutomaDeD) failed to scale
to the process counts of today’s state-of-the-art systems. Three main factors impede scalability.
First, the tools include a centralized component that performs the data analysis. Thus, tools
must stream behavioral information from all the processes to this central component so that it
can process the information to deter- mine the error and, possibly, its location. Second, the
tools require huge amounts of data. While many tools optimize the monitoring part quite well,
the cost of shipping all information to the analysis engine and the cost of analyzing the full
volume of data remains. While tools such as STAT [4] reduce the data volume that the central
component must handle, they still must process the full data in their communication structure.
Third, the data structures used to maintain the information are not completely optimized for
the operations that need to be performed for error detection and localization, such as
comparison of information from processes that belong to the same equivalence class. Small
differences in the cost of one operation, though insignificant for hundreds of processes,
become significant at larger scales. We address each of these concerns and develop a scalable
version of AutomaDeD [5] that runs at scales of tens of thousands of application processes on
LLNL’s largest clusters and is able to detect and diagnose application problems. We have

 DCSL Research Overview

Saurabh Bagchi Page 5

demonstrated the power of AutomaDeD on real bugs [5], including a hard-to-crack bug in a
molecular dynamics code [7]. For this, we augmented AutomaDeD with the ability to perform
backward slicing, which it did working backward from the point of manifestation of the fault.
The fault manifested only with 7,996 or more processes and our tool quickly found the fault —
a sophisticated deadlock condition. This tool is now being used in production settings within
LLNL and has had an open source release from the LLNL Scalability Team and us, in June 2014
[38]. A sample use case study is presented in a short paper [34].

Figure 1. Problem localization with AutomaDeD

Figure 2. Overview of the workflow for problem localization

Diagnosing hangs and performance slowdowns

Hangs and performance slowdowns are a common and hard-to-diagnose problem in distributed
applications. Due to the tight coupling of multiple tasks, a fault in one task can quickly spread to
the other tasks, and can cause a large number of tasks, or even the entire application, to hang
or to exhibit a slowdown. Previous work [39] proposed the notion of progress of tasks as a
useful model to track down the root cause of a hang or a performance slowdown. Intuitively,
progress is a partial order that orders tasks based on how much execution a task has made in
relation to other tasks. Finding the least-progressed tasks can significantly reduce effort to
identify where the fault originated. However, existing approaches to detecting them suffer low
accuracy and large overheads [4, 6]; either they use imprecise static analysis or are unable to
infer progress dependence inside loops. We have developed a progress-dependence analysis
tool, called PRODOMETER [40], which determines relative progress among parallel tasks using
only dynamic analysis. Our fault-injection experiments suggest that its accuracy and precision
are over 90% for most cases and that it scales well up to 16,384 MPI tasks. Further, our case
study shows that it significantly helped diagnosing a perplexing error in an LLNL MPI program,
which only manifested at large scale. This algorithm has been incorporated into our previously
mentioned open source release.

 DCSL Research Overview

Saurabh Bagchi Page 6

We have made our analysis and attendant tool aware of the characteristics of the data. We
have developed a performance anomaly detection tool for closely interacting distributed
applications, called GUARDIAN [51, 52]. Statistical modeling is a very powerful approach for
making predictions about the behavior of a distributed system. However, the fact that
applications’ behavior often depends closely on their configuration parameters and properties
of their inputs means that statistical models are built by training on only a small fraction of its
overall behavior space. It has been well known that a model’s accuracy often degrades as
application configuration and inputs deviate further from its training set [54, 55], and this
makes it difficult to do error detection or diagnosis based on the model’s predictions. We have
developed a systematic approach to quantify the prediction errors of the statistical models of
the application behavior, focusing on extrapolation, where the application configuration and
input parameters differ significantly from the model’s training set. Given any statistical model
of application behavior and a data set of training application runs from which this model is
built, our technique predicts the accuracy of the model for predicting application behavior on a
new run on hitherto unseen inputs. We validate the utility of this method by evaluating it on
the use case of anomaly detection for seven mainstream applications and benchmarks. The
evaluation demonstrates that our technique can reduce false alarms while providing high
detection accuracy compared to a statistical, input-unaware modeling technique.

Scale-dependent bugs

An especially subtle class of bugs in large-scale applications are scale-dependent bugs: while
small-scale test cases may not exhibit the bug, the bug arises in large-scale production runs, and
can change the result or performance of an application. A simple example of this is a data type
overflow that happens say when either a large amount of data is exchanged or data is
exchanged among a large number of processes. A popular approach to finding bugs is statistical
bug detection, where abnormal behavior is detected through comparison with bug-free
behavior. Unfortunately, for scale-dependent bugs, there may not be bug-free runs at large
scales and therefore traditional statistical techniques are not viable. We have developed a
technique called Vrisha [8], a statistical approach to detecting and localizing scale-dependent
bugs. Vrisha detects bugs in large-scale programs by building models of behavior based on bug-
free behavior at small scales. These models are constructed using kernel canonical correlation
analysis (KCCA) and exploit scale-determined properties, whose values are predictably
dependent on application scale. Then, if the predicted property at the large scale deviates from
the observed property, an error is detected. By intelligently reverse mapping the deviation to
the original behavioral feature, we can pinpoint the bug to a behavioral feature and from that,
to a region of code. In our system called WuKong [37], we are able to pinpoint the source of the
bug to a code region, even though the bug is not seen in the small-scale training runs.

 DCSL Research Overview

Saurabh Bagchi Page 7

Figure 3. Overview of the operation of Vrisha divided into training runs at small scales,

followed by production runs at large scales

2.3 What’s Coming Up
We are developing techniques that can operate with different kinds of data at large scales.
Sometime the behavior of the application changes in a hitherto hard-to-predict manner when
the size of data goes above a certain threshold (e.g., thrashing effects kick in because the cache
size is no longer sufficient) and we are equipping our current system to determine how correct
behavior should change. To uncover such problems, we are developing a technique based on
symbolic execution to determine what input dataset can likely trigger these hard-to-predict
behaviors. As mentioned above, a large open problem in this domain is when behavior depends
on characteristics of the data, not just its size. For example, an algorithm may execute a short
time if it is invoked on a sorted list, but a long time if it is on a perfectly reverse sorted list. We
are developing an approach to first determine what the data structure and algorithm specific
feature is, and then extract that feature and use it in our existing technique. In another aspect,
we are developing performance debugging tool for heterogeneous clusters. The problem is that
it is not clear statically which codes, or blocks of a code, should run on an accelerator and which
should run on the main cores. Further, when a code block runs on an accelerator, what
configuration parameter should be used for the code block depends on the code characteristics
as well as the accelerator resources. An incorrect decision can severely hurt performance. Our
method is meant localize when such a performance anomaly happens and indicate the
probable causes.

3 Research Thrust 2: Strengthening Enterprise-Class Distributed
Systems

3.1 Problem Statement
Today's enterprise IT systems mostly run distributed applications. These applications are built
out of a large number of software components and run on a variety of hardware platforms.
Many of these applications require continuous availability despite being built out of unreliable
components or components that are opaque to the system owner. Therefore, system

 DCSL Research Overview

Saurabh Bagchi Page 8

administrators need efficient techniques and practical tools for error detection that can operate
online (as the application runs), and that can detect errors and anomalies with small delay⎯the
time between the error manifestation and its detection should be short. Preventing an error
from becoming a user-visible failure is a further desirable characteristic. Automatically
predicting impending failures based on observed patterns of measurements can trigger
prevention techniques, such as microrebooting [9], redirection of further requests to a healthy
server, or simply starting a backup service for the data. A third necessary functionality for
reliable execution of distributed applications is problem localization, whereby automated
techniques can determine if the program is at fault or the infrastructure on which the program
is executing. If the program is at fault, then the system can provide localization of the fault to a
region of the code, which can then be inspected by the developer for the purpose of
implementing a fix.

We make our problem concrete by focusing on application systems from various domains.
The first kind we are currently focusing on is approximate computing, which approximates
some computation for reducing the processing time and energy cost of the computation. This
class has been found to be useful in application domains where some amount of inaccuracy can
be tolerated, such as, human perception (video or image processing) or machine learning. But
the single biggest unsolved challenge to making approximate computing work in practice is to
determine where in the application some approximation can be applied and what level of
approximation can be used⎯approximation in some sensitive part of the computation to a high
degree can throw off the results completely. How aggressively to approximate, e.g., should we
skip every other step in the processing loop, or every third step in the processing loop, depends
not just on the application but also on the phase of the application and the dataset the
application is working on. Finally, if the result of the approximate computation is unacceptable,
how do we do the root cause analysis to determine where something went wrong irreparably.
The second domain that we are working on is computational genomics applications. Here, the
large amounts of data (genomic, metagenomic, epigenomic data) mean that we often see
scalability bottlenecks in the algorithms and the errors in input data (due to limitations of the
sequencing instruments when processing samples at high rate) can lead to unbounded error
propagation leading to scientifically, and clinically, incorrect prognosis. We therefore seek to
develop both highly scalable algorithms and techniques to detect and diagnose error
propagation cases. We attempt to do these in a manner that is not just specific to each
individual algorithm, but also lead to fundamental primitives that are applicable across a swath
of algorithms in the application domain.

In this space, another problem that we are working on is unpredictable performance
anomalies in cloud environments. Performance issues arise due to imperfect isolation of
hardware resources across multiple VMs as well as sub-optimal configurations of the
application and cloud parameters. These anomalies are unpredictable because workloads that
appear on a server are unpredictable and the mutual interactions (pair-wise or n-wise) among
workloads are not well characterized. Some resources, such as CPU and memory can be

 DCSL Research Overview

Saurabh Bagchi Page 9

partitioned among VMs with little interference. However, current hypervisors do not isolate
low level hardware resources, such as cache and memory bandwidth. Contention for these
shared hardware resources leads to variable performance across VMs [41, 42]. Further,
performance of many distributed applications is very sensitive to a few of the plethora of
performance-related configuration parameters. For example, the NoSQL database engine
Cassandra (perhaps the most widely used one for TB sized datastores, including the largest
metagenomics portal from our collaborators at Argonne National Lab) offers 50+ configuration
parameter, and each parameter value can impact overall performance in different ways. We
demonstrate that the performance difference between the best and worst configuration files
for Cassandra can be as high as 102.5% of throughput for a read-heavy workload 69. Further,
the optimal configuration setting for one type of workload is suboptimal for another and this
results in as much as 50% swing in database performance in the absence of optimized
parameter versions.

There are numerous solution approaches to the optimal application configuration problem
[70, 71, 72]. But they all suffer from one fundamental problem. In the face of dynamic changes
to the workload, they are either silent on when to reconfigure or perform a naïve
reconfiguration whenever the workload changes. In most distributed applications, it is not
always desirable to switch to new configurations because the new workload pattern may be
short-lived. Each reconfiguration action incurs costs because the server instance often needs to
be restarted for the new configuration to take effect and data needs to be moved among the
servers. Also, most of the existing work does not handle complex dependencies among the
performance-critical parameters (which exist in practice) and cannot handle categorical
parameters.

Our solution approach looks at configuration of application parameters and, if available,
configuration of cloud parameters, as well as co-location of multiple applications on the same
server avoiding interferences that will cause performance anomalies. We look to do this in an
analytically rigorous and general-purpose manner, across different kinds of server softwares.

In this sphere, we also consider maliciously injected errors at enterprise systems. We are
focused on attacks to distributed enterprise systems that involve multiple steps, known as
multi-stage attacks [56]. In these, adversaries compromise outward-facing services and use
them as stepping stones to progressively compromise other services, with the ultimate goal to
compromise a critical asset. An example would be compromising a web server, then achieve a
series of intermediary steps (such as compromising a developer’s box thanks to a vulnerable
PHP module and connecting to a FTP server with gained credentials) to ultimately connect to a
database where user credentials or financial information are stored. Current detection systems
are not capable of analyzing the multi-step attack scenario because they only focus on single
steps of this multi-chain process and perform all their inferencing in a “greedy” manner based
on the manifestation on that single place where the detector is installed. Further, the security
posture is essentially reactive – once the detector finds something, some “greedy” response is
taken, such as, disconnecting a TCP connection. The essential problem with this is three-fold –

 DCSL Research Overview

Saurabh Bagchi Page 10

by the time the reactive response is taken, damage is already done; it is too dependent on the
fidelity of the detectors; and finally, this security strategy often fails against hitherto unknown
attacks, which are also known as zero-day attacks.

3.2 Solution Approach
Approximate computing

We have shown that many applications exhibit execution phase-specific sensitivity towards
approximation of the internal sub-computations [57]. Therefore, approximation in certain
phases can be more beneficial than others. With this insight we have developed OPPROX, a novel
system for application’s execution phase-aware approximation. For a user provided error
budget and target input parameters, OPPROX identifies different program phases and searches
for profitable approximation settings for each phase of the application execution. Our
evaluation with five benchmarks (drawn from particle physics, video processing, computer
vision, and optimization) and four existing approximation technique shows that when
compared to an oracle but phase-agnostic version from prior work [58, 59], our approach on
average provides 42% speedup compared to 37% from the oracle version for an error budget of
20% and for a small error budget of 5% provides on average 14% speedup compared to only 2%
achieved by the phase-agnostic oracle version. In ongoing work, we have showed further that
the approximation needs to be done in a content-aware manner. For example, in video
processing, the optimal approximation setting for a hi-def sports scene is likely to be different
than that for a standard-def sitting scene with only a few individuals. The challenge that we are
taming is how to make the decision quickly, even though the decision is made in a content-
aware manner. This relies on quickly identifying the relevant characteristics of the input,
efficient search through the space of approximation settings, and doing change point detection
to decide when a search needs to be re-initiated.

Our initial result in this space [73] is for streaming video applications and called VIDEOCHEF.
We use using small inputs to explore the space of possible approximation parameters and then
transfer the approximate configurations to the full inputs. VIDEOCHEF is the first system to show
that summary inputs can be used for complex streaming applications. The two key innovations
we bring in are (1) an accurate error mapping from the approximate processing with summary
inputs to that with full inputs and (2) a directed search that balances the cost of each search
step with the estimated reduction in the run time.

Optimal Parameter Configuration for Distributed Applications

Our solution, called Rafiki [69] and Iris, addresses the shortcomings of current configuration
tuners and is applied to NoSQL database engines (Cassandra, ScyllaDB, Redis) which our
solution optimizes to support workloads with time-varying characteristics. It accounts for
performance degradation during the reconfiguration (say due to database restart, which is
often needed to apply the new configuration). Second, it predicts how transient the new

 DCSL Research Overview

Saurabh Bagchi Page 11

workload pattern will be. Third, it maintains the application’s availability and consistency
requirements during reconfiguration, though its susceptibility to faults is increased.

When applied to a NoSQL Cassandra cluster comprising of multiple server instances, IRIS
extracts information about current workload from a job scheduler and has a workload predictor
to predict future workloads. It then determines a long-horizon optimal reconfiguration plan
through a novel Cost Benefit Analysis (CBA) scheme. When the workload changes, IRIS interacts
with any existing static configuration tuner (such as our work RAFIKI), to quickly provide the
optimal point configurations for the new workload and the estimated benefit from this new
configuration. IRIS performs the CBA analysis, taking into account the predicted duration of the
new workload and the estimated benefit from a reconfiguration. If the CBA indicates that the
benefit outweighs the cost, IRIS executes a decentralized protocol to gracefully switch over the
cluster to the new configuration while respecting the data consistency guarantees and keeping
data continuously available to users. We have applied it to 3 real-world workloads---the largest
metagenomics portal in the world, MG-RAST, a bus tracking application trace, and a trace of
data analytics jobs submitted to a university's centralized computing cluster. Running multiple
Cassandra server instances on the AWS platform, we compare our approach to existing baseline
solutions and show that IRIS increases throughput under all dynamic workload patterns and for
all types of queries, with no downtime.

Automated Localization of Problems through Multiple Metrics

Today's enterprise-class distributed systems routinely collect a plethora of metrics by
monitoring at various layers---system-level, middleware-level, and application-level. Many
commercial and open-source tools exist for collecting these metrics, such as HP OpenView,
Sysstat, and Ganglia. Examples of useful metrics are: at the system level: CPU, memory, storage,
and network-bandwidth usage ; at the middleware level: resource usages in a Java EE container
(such as Tomcat or JBoss) or time spent in an MPICH library call; at the application level:
number of servlet requests and exceptions, number of JDBC connections, or time spent in a
region of the code. A common class of error-detection techniques works as follows. From
values of metrics collected during training runs, a model is built up for how the metrics should
behave during normal operation. At runtime, a comparison is made between what is indicated
by the trained model and what metric values are observed in the system. If there is sufficient
divergence between the two, an error is flagged. Further the metrics that cause the divergence
are mapped back to code regions that affect these metrics, thus providing a level of fault
localization. However, existing approaches toward performing error-detection within a node
based on statistical analysis of runtime metrics suffer from one or more of the following
problems. First, their models do not consider multiple metrics simultaneously [11,12]. Many
software bugs and performance faults are manifested in such a way that the correlations
between measurements of different metrics are broken and these bugs are then missed.
Second, some models do not consider observations of a metric as a sequence of measurements
[13,14]. Many software bugs, for example those related to performance problems, develop a
distinctive temporal pattern that can only be captured by analyzing measurements in a

 DCSL Research Overview

Saurabh Bagchi Page 12

sequential manner rather than through instantaneous snapshots of the metric values. Third,
the overwhelming majority of techniques do not offer failure prediction. They operate in a
reactive mode by flagging alarms when a failure occurs rather than in a proactive mode by
anticipating a failure. Failure prediction has been a hot topic in the past few years [15,16,17],
however, to the best of our knowledge all the failure-prediction systems suffer from either the
first or the second problem (or both).

With these insights, we develop a system called Augury [35,36] to perform error detection
within a node using three progressively more sophisticated schemes - first, check for thresholds
of individual metric values (both lower and upper bounds); next, check that the temporal
patterns of the metric values follow the models of normality; and finally, check that the
dependencies between metrics are maintained. Also, depending on which metrics are found to
cause the deviation from normality, we can localize the fault to the program (application-level
metrics) or the infrastructure (system-level or middleware-level metrics).

Since the accuracy of prediction of any statistical model is dependent on the fidelity of data
that is used to train the model, we have developed a systematic approach, called E-ANALYZER
[51, 52], to quantify the prediction errors of the statistical models of the application behavior.
Our method focuses on extrapolation, where the application configuration and input
parameters differ significantly from the model’s training set. Given any statistical model of
application behavior and a data set of training application runs from which this model is built,
E-ANALYZER predicts the accuracy of the model for predicting application behavior on a new run
on hitherto unseen inputs. We validate the utility of this method by evaluating it on the use
case of anomaly detection for seven mainstream applications and benchmarks. The evaluation
of our anomaly detection system, called GUARDIAN [51], demonstrates that our technique can
reduce false alarms while providing high detection accuracy compared to a statistical, input-
unaware modeling technique. Our approach gives a way out of the arrogance of claims of a
statistical model and provides a rigorous error quantification (or uncertainty quantification, if
you will) that can then be used to make decisions based on a false positive-missed detection
consideration.

 DCSL Research Overview

Saurabh Bagchi Page 13

Figure 4. Overview of AUGURY for detection and prediction of errors in distributed enterprise

systems

Scalable and reliable computational genomics

From the earliest days of genomic sequencing, computers have been an essential component of
genomic data analysis. However, with the cost of sequencing plummeting, newer kinds of
genomic data being generated, and newer questions being asked of the data, we are at a
juncture where algorithms and computational tools need to play serious catch-up to keep pace
with the rate of sequenced data. The genomes obtained through sequencing projects are at the
core of the molecular chemistry of all species in the tree of life. But to understand these
recipes, we need to develop novel computational genomics applications (e.g., pattern mining in
gene regulatory networks) and we need to scale up existing applications (e.g., genome
assembly with long reads) to work with larger and more diverse data sets. Further, the results
of the computation need to be resilient to errors in the data (which seem unavoidable due to
the nature of the genomic instruments or the data collection process, for metagenomics
applications) and to errors in the computational pipeline.

 DCSL Research Overview

Saurabh Bagchi Page 14

Figure 5. Overview of Genomic Applications in the categories of Local Alignment (BLAST),
Whole genome Alignment (MUMmer and E-MEM), and Sequence Assembly (SPAdes and
SGA). This shows the kernels, or the commonly recurring and reusable blocks of software

functionality. Common kernels are shaded using the same color. Our DSL, Sarvavid, allows an
application developer to easily piece together these kernels to create scalable applications.

Our repository has efficient implementations of these kernels, for various different backends
including conventional processors and accelerators.

With these goals, we have developed a domain-specific language, called SARVAVID, for
computational genomics [60]. We made the observation that the popular bioinformatics
applications, across a wide range of application areas, contain a recurring set of software
modules, or kernels [61, 62]. The availability of efficient implementations of such kernels can
improve programmer productivity, and provide effective scalability with growing data. Our DSL
SARVAVID provides these kernels as language constructs. SARVAVID comes with a compiler that
performs domain-specific optimizations, which are beyond the scope of libraries and generic
compilers. Furthermore, SARVAVID inherently supports exploitation of parallelism across multiple
nodes. We demonstrate how easy and worthwhile (from a speedup standpoint) it is to port 5
popular genomics applications from 3 areas---local alignment, global alignment, and genome
assembly. The re-implemented applications can scale up (to more powerful individual nodes) as
well as scale out (to a large number of nodes in a compute cluster).

Multi-stage attacks

For protecting a distributed enterprise system against multi-stage attacks (MSAs), we have
developed a solution called the Distributed Intrusion and Attack Detection System (DIADS)
[18,20]. DIADS has a central inferencing engine, which has a model of MSAs as attack graphs.
DIADS creates a Bayesian Network (BN) out of an attack graph and observable (or evidence)
nodes in the attack graph are mapped from sensor alerts (typical sensors are network-based
intrusion detection sensors such as Snort and Bro and host-based intrusion detection sensors
such as Tripwire). It receives inputs from the sensors and performs inferencing to determine

 DCSL Research Overview

Saurabh Bagchi Page 15

whether a re-configuration of sensors is needed, i.e., whether any new sensor needs to replace
an existing sensor, whether the placement of a sensor should be changed, or whether certain
rules within a sensor need to be turned on or off. Thus, the inferencing engine has a two-way
communication path with the sensors ⎯ obtaining alerts from the sensors and then interacting
with the sensors once the inferencing is done. If on the basis of current evidence, it determines
that a critical asset (also synonymously referred to as a “crown jewel”) will imminently be
compromised, it determines what further sensors close to the asset should be chosen, or
equivalently, what further rules in an already active sensor should be turned on. DIADS can
handle dynamism in the protected system (additions of computers, changes to configurations)
as well as evolving attacks. Our system is being used in an internal cyber test range at Northrop
Grumman and for intrusion detection in our NSF center NEEScomm IT infrastructure [22].

Figure 6. Overview of approach of DIADS to place and configure intrusion detection sensors in

a changing enterprise environment

One type of intrusion detection system, called misuse-based detector, uses signatures of
attacks to inspect the traffic and flag the malicious activity. But a potential problem faced by
these signature-based systems is that as new attacks are created and as new kinds of benign
traffic are observed, the signatures need to be updated. The current approach to this process is
manual. Consequently, keeping them updated is a Herculean task that involves tedious work by
many security experts at organizations that provide the detection software. A big drawback of
the signature-based schemes that has been pointed out by many researchers and practitioners
[43] is that due to their relatively static nature, they miss zero-day attacks. These are attacks
that target hitherto unknown vulnerabilities and consequently, no signature exists for such
attacks.

We have developed a technique for the automatic generation of intrusion signatures by
mining the vast amount of public data available on attacks [44]. It follows a four-step process to

 DCSL Research Overview

Saurabh Bagchi Page 16

generate the signatures (Figure 7), by first crawling attack samples from multiple public
cybersecurity web portals. Then, a feature set is created from existing detection signatures to
model the samples, which are then grouped using a biclustering algorithm which also gives the
distinctive features of each cluster. Finally the system automatically creates a set of signatures
using regular expressions, one for each cluster. We tested our architecture for SQL injection
attacks and found our signatures to have a True and False Positive Rates of 90.52% and 0.03%,
respectively and compared our findings to other SQL injection signature sets from popular IDS
and web application firewalls. Results show our system to be very competitive to existing
signature sets, which were manually generated and refined with significant domain expertise.
We have also mined a vast amount of phishing email messages to come up with higher-level
signatures for phishing campaigns. The unsurprising observation from mining the messages has
been that adversaries create new phishing messages from existing templates, by changing, say,
the name and details of a natural disaster. Our technique, by reasoning about higher-level
features, is able to flag hitherto unseen phishing campaigns.

Figure 7. High-level solution approach to creating intrusion detection signatures by mining

structured or unstructured attack and legitimate data. Here we show the resulting signatures
are for SQL injection attacks (SQLi). The solution approach is general and we are applying this

to a variety of attack types.

3.3 What’s Coming Up
In continuing work, we are developing more sophisticated machine learning techniques for
detecting and predicting subtle software bugs that fall in various categories, including resource
leak, resource exhaustion, and race conditions. We are developing partially automated
techniques for feature selection for feeding into our models, since the number of possible
features is large. We are developing methods to perform the failure diagnosis and
approximation in a workload-aware, or content-aware, manner because different workloads to
an application can generate different behavior patterns, for correctly functioning applications.

 DCSL Research Overview

Saurabh Bagchi Page 17

The challenge here is to capture the workload patterns or the input data patterns quickly and at
the right level of abstraction that is needed for the model to generate high fidelity output.

In the security work, we are building proactive techniques to prevent novel attacks (zero-day
attacks) from breaching the security of multiple connected components in a distributed system.
Our solution will involve learning from prior attacks such that variants of these attacks can be
thwarted. A complimentary solution strategy that we are developing involves randomizing the
locations and configurations of key services and assets through judicious use of deception.
Deception has been used for many millennia, perhaps for as long as life existed on planet earth.
Plants, animals, including humans, and insects have been using deceptive techniques as a
means for defense and survival. Our work will show how to plan and integrate deception in
computer security defenses, e.g., by creating a deceptive file system where accessing certain
key files will provide false information. For enterprise security, we are using moving target
defense (MTD) implemented using a Software Defined Network (SDN) layer to thwart
adversaries, even when the vulnerability being exploited is not known a priori. SDN gives us a
novel tool to quickly reconfigure the network in anticipation of attack paths or to thwart a
currently spreading attack.

4 Research Thrust 3: Dependability of Embedded Wireless Networks

4.1 Problem Statement
Embedded wireless networks are plagued by the possibility of bugs manifesting only at
deployment. However, debugging deployed embedded wireless networks is challenging for
several reasons—the remote location of deployed nodes, the non-determinism of execution
that can make it difficult to replicate a buggy run, and the limited hardware resources available
on a node. One promising method to debug distributed systems is record and replay. In short,
record and replay logs a trace of predefined events while a deployed application is executing,
enabling replaying of events later using debugging tools. Existing recording methods fail on
embedded wireless networks due to the many sources of non-determinism, failing to capture
the complete code execution, thus negating the possibility of a faithful replay and causing a
large class of bugs to go unnoticed. Further, they overflow the available storage resources on
the node and violate real-time requirements of many applications.

The visibility afforded by record and replay can be useful for post-deployment testing [23],
replay-based debugging [24,25], and for performance and energy profiling of various software
components [26,27]. Prior software-based solutions to address this problem have incurred high
execution overhead and intrusiveness [24,26]. The intrusiveness changes the intrinsic timing
behavior of the application, thereby reducing the fidelity of the collected profile. Prior
hardware-based solutions [28,29] have involved the use of dedicated ASICs or other tightly
coupled changes to the embedded node’s processor, which significantly limits their
applicability. Therefore, our goal is to design novel hardware-software approaches that can be

 DCSL Research Overview

Saurabh Bagchi Page 18

deployed at scale (and therefore must be low cost and low energy hogs) that can collect traces
of different kinds of events without perturbing the timing of the application.

In recent years, advances in hardware and software tools have led to many real-world
deployments of multi-hop wireless networks, i.e., wireless networks which require little fixed
infrastructure. Management of already deployed multi-hop networks is an important issue. One
of the crucial management tasks is that of software reconfiguration. During the lifetime of a
multi-hop network, software running on the nodes may need to be changed for various reasons
like correcting software bugs, modifying the application to meet the changing environmental
conditions in which the network is deployed, adapting to evolving user requirements, etc. Since
a multi-hop network may consist of hundreds or even thousands of nodes which may be
situated at places which are difficult or, sometimes, impossible to access physically, remote
reprogramming of multi-hop networks is essential. The two most critical metrics for such
reprogramming are energy efficiency and speed. Since the performance of the network may be
degraded, or even reduced to zero, during software update process, the technique must
minimize reprogramming time.

We are also motivated by the trend of having more resource rich, mobile devices that we
carry on our bodies, such as, smartphones. As more critical applications are put in these
smartphones, it is important to analyze the failure characteristics of these platforms – how do
the different components fail, how are these different from traditional software failures,
considering that the software has an event-driven flavor and need to be able to handle multiple
input devices, sometime providing inputs concurrently. This investigation should lead to
uncovering vulnerabilities that are exposed either due to careless programming or due to
maliciously crafted inputs being sent in from the outside, such as, in the form of text messages
or inputs fed to a sensor on the smartphone. Further, there is a need being expressed by data
center owners to monitor and control data center assets from smart phones. This has to be
done while preserving security guarantees, restricting the energy and bandwidth usage on the
smart phones, and providing actionable information to the system administrator despite the
small form factors of the client devices.

On the security side of this project, we ask ourselves the question – can the primitive state of
secure programming on these low-cost embedded devices be improved, through
transformations inserted into the compilation workflow (so that embedded application
developers do not have to become security experts too) and through low-cost monitoring of
behavior at runtime. This is a challenge due to several reasons⎯the software stack on these
devices is often monolithic with no separation of privileged and unprivileged code, the amount
of memory and stable storage resource is limited, and the applications often have real-time
requirements.

4.2 Solution Approach
In-situ reprogramming and reconfiguration

 DCSL Research Overview

Saurabh Bagchi Page 19

We have developed a suite of reprogramming techniques for embedded wireless networks,
which can reprogram the nodes while they are deployed in situ in the environment [45, 46]. We
currently have a US patent for the fastest multi-hop reprogramming protocol [47], which has
been licensed by several companies from Purdue’s Office of Technology Commercialization.
One of our solutions, called Zephyr [30], is an incremental reprogramming protocol that
exploits the fact that in real world scenario, the software running on the sensor nodes evolves
with incremental changes to the functionality. Zephyr significantly reduces reprogramming time
and energy by wirelessly transferring only the difference between the old and new versions of
the software, rather than the entire new software. The wireless nodes build the new image
using the difference and the old image.

High fidelity record and replay for debugging

We have designed and prototyped AVEKSHA [26], a hardware-software approach for tracing
applications running in an embedded wireless node in a non-intrusive manner. Our approach is
based on the key insight that most embedded processors have an on-chip debug module (which
has traditionally been used for interactive debugging) that provides significant visibility into the
internal state of the processor. We designed a debug board (shown in Figure 8) that interfaces
with the on-chip debug module of an embedded node’s processor through the JTAG port and
provides three modes of event logging and tracing of varying granularities. Using expressive
triggers that the on-chip debug module supports, AVEKSHA can watch for, and record, a variety
of programmable events of interest, such as, a read from a peripheral I/O device. A key feature
of AVEKSHA is that the target processor does not have to be stopped during event logging (in two
of the three modes), subject to a limit on the rate at which logged events occur. AVEKSHA also
performs power monitoring of the embedded wireless node and, importantly, enables power
consumption data to be correlated to events of interest.

AVEKSHA is an operating system-agnostic solution. We demonstrate its functionality and
performance using applications in TinyOS and in Contiki. We show that AVEKSHA can trace tasks
and other generic events at the function and task-level granularity. We have also used AVEKSHA
to find a subtle bug in the TinyOS low power listening protocol.

 DCSL Research Overview

Saurabh Bagchi Page 20

Figure 8. AVEKSHA’s debug board interfaced with a TI microcontroller

In follow-on work, we have developed a complete software-only system-level record and
replay technique on embedded wireless device, called TARDIS [48]. It handles all of the sources
of non-determinism and compresses each one in a resource efficient manner using respective
domain-specific knowledge. The compression scheme for each source of non-determinism is
informed by a careful observation of the kinds of events that typically occur in WSN
applications, for example, the use of register masking which reduces the number of bits which
must be recorded—instead of the full length of the register, only the bits that are left
unmasked need be recorded. The compression schemes are also chosen to be lightweight in
their use of compute resources. Furthermore, the compression is done in an opportunistic
manner, whenever there is “slack time” on the embedded microcontroller so that the
application’s timing requirement is not violated.

Countering strategic adversaries in inter-dependent CPS

We are also working on security of Cyber Physical Systems (CPS), taking a macro, economics-
oriented viewpoint of the problem as it applies to interacting CPS’s belonging to multiple
organizations, such as the smart electric grid [63, 64] and industrial control systems [65].
Interdependent CPS’s contain competitive environments in which strategic adversaries can
launch cyber-attacks to extract profits from the system. When multiple actors are competing,
the disruption of key assets can create large swings in the profitability of each actor by changing
the supply and demand dynamics of the underlying physical system. These swings in profits can
be leveraged by an attacker to extract profits from the system. While countering these attacks
through traditional means is one possibility, that is challenging because not all aspects of the
CPS can be secured due to budgetary and legacy reasons as well as competitive pressures
among the stakeholders. We explore the implications of architectural changes on system
resilience when faced with a profit-seeking adversary. Changes in the physical system may
mitigate or exacerbate the likelihood of cyber-attacks on system assets, and we present a

 DCSL Research Overview

Saurabh Bagchi Page 21

strategy for optimizing potential changes to minimize attacks. We also explore the impact of
information sharing on system behavior and the potential for deception to improve system
resilience. We exercise these design principles on real-world inter-connected CPS systems, in
collaboration with domain experts at USC/ISI (DETER simulation testbed) and UIUC (smart
electric grid). One example where we have successfully applied our method is an
interconnected natural gas and electric power infrastructure to show the potential security
improvements provided by architectural changes [63]. We have also developed a DoS injection
tool that can simulate the DoS attack on such a system and play what-if scenarios to decide on
security investments [66].

Enabling robust protections for bare-metal systems

Embedded Systems are found everywhere. The Internet of Things is increasing the number
and connectivity of these systems. Increased connectivity makes security vitally important.
Many of these systems are and will be small bare-metal systems. Bare-metal systems execute a
single application directly on the hardware without multiple layers of abstractions. This
software must manage the hardware and implement the application logic. Fundamental in
bare-metal system design is a tension between security and software design. Security requires
that access to some hardware (e.g. changing memory protections) be restricted, but as the only
software running on the system, it must be able to manage all hardware. We solve this tension
by use of our technique called privilege overlays [67]. Privilege overlays use static analysis to
identify those instructions of the program that must execute with privileges, and enables
elevating only these instructions to execute with privileges. This provides the foundation on
which code integrity, diversity, and strong stack protections are built. Our compiler, EPOXY
(Figure 9), based on an LLVM pass, enables these protections to be applied without modifying
the application logic. We show that these protections are both effective from a security
perspective and on average have less than a 2% impact on execution time and energy
consumption.

Code

Global Data

Stack

IO

Hardened Application

Security Hardware

Sensitive IO

Enabled enforcing DEP
Access Restricted

Access Restricted

Unprivileged Execution
Privileged
Execution

Set to RX
Providing Code Integrity

Set to RW-NX
Stopping Code Injection

 DCSL Research Overview

Saurabh Bagchi Page 22

Figure 9. Schematic showing our security technique for executing code on bare-metal systems
with the minimum privilege level required. The system called EPOXY, introduces privilege

overlays inserted through a compiler pass, to elevate the privileges of only those few pieces
of code that need to perform security-sensitive operations, such as, changing the locations of

the interrupt vector tables.

Data analysis for failures in mobile devices

For the smartphone study, we have analyzed the bug reports of the two open source OSes –
Android and Symbian OS and come up with a failure characterization in the different modules
[32]. Our study indicates that Development tools, Web browsers, and Multimedia applications
are most error-prone in both these systems. We further categorized the different types of code
modifications required for the fixes. The analysis shows that 78% of errors required minor code
changes, with the largest share of these coming from modifications to attribute values and
conditions. Our final analysis focuses on the relation between customizability, code complexity,
and reliability in Android and Symbian. We find that despite high cyclomatic complexity, the
bug densities in Android and Symbian are surprisingly low. However, the support for
customizability does impact the reliability of mobile OSes and there are cautionary tales for
their further development.

In further work [33], we have developed a software fault injector to test how robust the Inter
Process Communication (IPC) mechanism is in Android (the Android term for this is “Intent”).
We have used the injector to discover vulnerabilities exploitable through random (or crafted)
Intents. We then provide recommendations for hardening of Android IPC. During our
experiments we sent more than 6 million Intents to 800+ application components across 3
versions of Android and discovered a significant number of input validation errors. In general
less than 10% of the components tested crashed; all crashes are caused by unhandled
exceptions. Our results suggest that Android has a sizable number of components with
unhandled NullPointerExceptions across all versions. The most striking finding that we have is
the ability to run privileged processes from user level applications without requiring the user-
level application to be granted any special permission at install time. In more recent work [68],
we have characterized the vulnerability of applications for physical fitness monitoring,
developed in the Android Wear OS, to malformed inputs. We have found that system reboots,
and of course application crashes, can be triggered by sending malformed inputs even at an
unprivileged level. We have proposed some software architectural changes at the system level
to mitigate these vulnerabilities.

4.3 What’s Coming Up
Our record-and-replay technique needs to take into account interactions among the nodes,
rather than looking at a single node at a time. Such interaction can lead to propagation of
failures. Further, is it necessary to bring the trace back to a central node for the purposes of
recreating the events, or can replay be done opportunistically at nearby nodes. We believe this

 DCSL Research Overview

Saurabh Bagchi Page 23

is possible, and as such, will relieve the requirement to bring the bulky traces across the
wireless network to a single central point.

While there has been a great deal of work that analyzes security of interdependent CPS, it
predominantly relies on classical models of perfectly rational and optimal behavior to represent
the human decision-makers. In contrast, there is a substantial body of work in behavioral
economics and psychology showing that humans are only partially rational and thus,
consistently deviate from the above-mentioned classical models. For example, human
perceptions of risks, rewards, and losses can differ substantially from their true values, and
these perceptions can have a significant impact on the investments made to protect the
systems that the individuals are managing. In ongoing research, we are comprehensively
characterizing the decisions made by humans to protect their systems using more realistic
models of behavioral decision-making. The research encompasses both formal theory to
rigorously analyze and predict the outcomes that should be expected under alternative models
of behavioral decision-making, and laboratory experiments with human subjects to evaluate
the predications made by the theory and to identify new behavioral models for analysis.

In the area of security of embedded systems, we are pursuing three inter-locking areas of
research: (i) Static analyses to identify security and functionality characteristics of parts of the
application, (ii) Runtime execution techniques to minimize the performance impact of the
privilege overlay, and (iii) Benchmarking of security and functionality achieved through
targeted injections of exploits.

With emerging mobile devices, we are doing reliability analysis of devices in the personal
healthcare area (think, Google’s Moto360 watch and Fitbit wristband) to see what parts of the
software stack are vulnerable and what systematic changes can be made to the development
environment.

5 Take-Aways
There are exciting research and deployment problems in the area of dependable systems.
Constraints and requirements from specific application domains add to the richness of our
problem space, coming currently from scientific computing applications, internet-scale
distributed services, computational genomics, and embedded wireless networks. At the
Dependable Computing Systems Lab, we are forging ahead, with a diverse group of
collaborators within and outside Purdue, within academia and in industrial organizations, to
address some of the most important challenges in dependable system design and
implementation. Our work is being recognized through publications at top venues, adoption
within our collaborating industrial organizations, and our leadership role at our professional
societies (IEEE and ACM). We encourage you to contact us if you have interests in this direction.

 DCSL Research Overview

Saurabh Bagchi Page 24

6 References

1. M. Fahey, J. Larkin, and J. Adams, "I/O performance on a massively parallel Cray XT3/XT4,"
IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp.1-12, 2008.

2. Kazuki Ohta, Dries Kimpe, Jason Cope, Kamil Iskra, Robert Ross, and Yutaka Ishikawa,
Optimization Techniques at the I/O Forwarding Layer, IEEE International Conference on
Cluster Computing (Cluster 2010), pp. 312-321, September 2010, Heraklion, Greece.

3. Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski, Dong H. Ahn, and
Martin Schulz, “AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks,” At
the 40th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 231-240, June 28-July 1, 2010, Chicago, IL.

4. Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Matthew Legendre,
Barton P. Miller, Martin Schulz, and Ben Liblit, “Lessons learned at 208K: towards debugging
millions of cores,” In Proceedings of the ACM/IEEE conference on Supercomputing (SC), pp.
1-9, 2008, Austin, TX.

5. Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh Bagchi, Greg Bronevetsky,
Dong H. Anh, Martin Schulz, and Barry Rountree, “Large scale debugging of parallel tasks
with AutomaDeD,” In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1-10, 2011, Seattle, WA.

6. Ignacio Laguna, Dong H. Anh, Bronis R. de Supinski, Saurabh Bagchi, and Todd Gamblin,
“Probabilistic Diagnosis of Performance Faults in Large Scale Parallel Applications,” At the
21st International Conference on Parallel Architectures and Compilation Techniques (PACT),
pp. 213-222, September 19-23, 2012, Minneapolis, MN.

7. F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R. de Supinski, J. Sexton, and J. A.
Gunnels, “Simulating solidification in metals at high pressure: The drive to petascale
computing,” Journal of Physics: Conference Series, 46(1):254, 2006.

8. Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi, “Vrisha: Using Scaling Properties of
Parallel Programs for Bug Detection and Localization,” At the 20th ACM International
Symposium on High-Performance Parallel and Distributed Computing (HPDC), pp. 85-96,
June 8-11, 2011, San Jose, CA.

9. George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox,
“Microreboot - A Technique for Cheap Recovery,” At the 6th Symposium on Operating
Systems Design and Implementation (OSDI), pp. 1-14, San Francisco, CA, December 2004.

10. IBM, “Infosphere BigInsights,” At:
http://www.ibm.com/software/data/infosphere/biginsights/. Last accessed: June, 2017.

 DCSL Research Overview

Saurabh Bagchi Page 25

11. L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly? Application Change?
Or Workload Change? Towards Automated Detection of Application Performance Anomaly
and Change,” At the IEEE International Conference on Dependable Systems & Networks
(DSN), pp. 452-461, Anchorage, Alaska, June 24-27, 2008.

12. K. Ozonat, "An information-theoretic approach to detecting performance anomalies and
changes for large-scale distributed web services," At the IEEE International Conference on
Dependable Systems and Networks (DSN), pp.522-531, Anchorage, Alaska, June 24-27,
2008.

13. Mike Y. Chen, Anthony Accardi, Emre K c man, Jim Lloyd, Dave Patterson, Armando Fox, Eric
Brewer, “Path-Based Failure and Evolution Management,” At the 1st Symposium on
Networked Systems Design and Implementation (NSDI), pp. 1-14, San Francisco, CA, March
29–31, 2004.

14. Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, "Tracking Probabilistic Correlation of Monitoring
Data for Fault Detection in Complex Systems," At the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 259-268, Philadelphia, PA, 25-28 June, 2006.

15. J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, "Adaptive on-line software aging prediction
based on machine learning," At the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 507-516, Chicago, IL, June 28-July 1, 2010.

16. Felix Salfner and Steffen Tschirpke, “Error Log Processing for Accurate Failure Prediction,”
At the 1st USENIX Workshop on the Analysis of System Logs (WASL), pp. 1-8, San Diego, CA,
December 7, 2008.

17. A. W. Williams, S. M. Pertet, and P. Narasimhan,"Tiresias: Black-Box Failure Prediction in
Distributed Systems," At the IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1-8, Long Beach, CA, 26-30 March 2007.

18. Jan Rellermeyer and Saurabh Bagchi, “Dependability as a Cloud Service - A Modular
Approach,” In: Proceedings of the 2nd International Workshop on Dependability of Clouds,
Data Centers, and Virtual Machine Technology (DCDV 2012, in conjunction with DSN 2012),
pp. 1-6, Boston, MA, June 2012.

19. Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon, “'Determining Placement of
Intrusion Detectors for a Distributed Application through Bayesian Network Modeling,” At
the 11th International Symposium on Recent Advances in Intrusion Detection (RAID), pp.
271-290, Boston, MA, September 15-17, 2008.

20. Gaspar Modelo-Howard, Jevin Sweval, and Saurabh Bagchi, “Secure Configuration of
Intrusion Detection Sensors for Changing Enterprise Systems,” At the 7th ICST International
Conference on Security and Privacy for Communication Networks (Securecomm), pp. 1-20,
London, United Kingdom, September 7-9, 2011.

 DCSL Research Overview

Saurabh Bagchi Page 26

21. Timothy Tsai, Nawanol Theera-Ampornpunt, and Saurabh Bagchi, “A Study of Soft Error
Consequences in Hard Disk Drives,” Accepted to appear at the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1-8, Boston, MA,
June 25-28, 2012.

22. Purdue University, “NEES – Cybersecurity,” At: http://nees.org/explore/security. Last
accessed: June, 2017.

23. M. Wang, Z. Li, F. Li, X. Feng, S. Bagchi, and Y.-H. Lu, “Dependence-based multi-level tracing
and replay for wireless sensor networks debugging,” in Proceedings of the 2011
SIGPLAN/SIGBED conference on Languages, compilers and tools for embedded systems
(LCTES), pp. 91–100, New York, NY, 2011.

24. V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic tracing for wireless sensor
networks,” in Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems (SenSys), pp. 169–182, New York, NY, 2010.

25. S. Choudhuri and T. Givargis, “Flashbox: a system for logging non-deterministic events in
deployed embedded systems,” in Proceedings of the 2009 ACM symposium on Applied
Computing, pp. 1676–1682, 2009.

26. Matthew Tancreti, Mohammad Sajjad Hossain, Saurabh Bagchi, and Vijay Raghunathan,
“AVEKSHA: a hardware-software approach for non-intrusive tracing and profiling of wireless
embedded systems,” In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems (SenSys), pp. 288-301, New York, NY, 2011.

27. Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica, “Quanto: Tracking Energy in
Networked Embedded Systems,” In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pp. 1-14, San Diego, CA, December
8-10, 2008.

28. T. Stathopoulos, D. McIntire, and W. J. Kaiser, “The energy endoscope: Realtime detailed
energy accounting for wireless sensor nodes,” in Proceedings of the 7th international
conference on Information processing in sensor networks (IPSN), pp. 383–394, Washington,
DC, 2008.

29. Green Hills Software Inc., “Processor Probes,” At:
http://www.ghs.com/products/debugdevices.html. Last accessed: June, 2017.

30. Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff, “Zephyr: Efficient Incremental
Reprogramming of Sensor Nodes using Function Call Indirections and Difference
Computation,” At the USENIX Annual Technical Conference (USENIX '09), June 14-19, 2009,
pp. 411-424, San Diego, CA.

31. Rajesh Krishna Panta, Madalina Vintila, and Saurabh Bagchi, “Fixed Cost Maintenance for
Information Dissemination in Wireless Sensor Networks,” At the 29th IEEE Symposium on

 DCSL Research Overview

Saurabh Bagchi Page 27

Reliable Distributed Systems (SRDS), pp. 54-63, October 31-November 3, 2010, New Delhi,
India.

32. Amiya Kumar Maji, Kangli Hao, Salmin Sultana, and Saurabh Bagchi, “Characterizing Failures
in Mobile OSes: A Case Study with Android and Symbian,” At the 21st Annual International
Symposium on Software Reliability Engineering (ISSRE), pp. 249-258, Nov 1-4, 2010, San
Jose, California.

33. Amiya K. Maji, Fahad A. Arshad, Saurabh Bagchi, and Jan S. Rellermeyer, “An Empirical
Study of the Robustness of Inter-component Communication in Android,” In Proceedings of
the 42nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pp. 1-12, Boston, MA, June 25-28, 2012.

34. Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Todd Gamblin, Martin Schulz, and Saurabh
Bagchi, “Scalable Parallel Debugging via Loop-Aware Progress Dependence Analysis,”
Accepted to appear as a poster at the 25th IEEE/ACM International Conference for High
Performance Computing, Networking, Storage and Analysis (Supercomputing), pp. 1-2,
November 17-22, 2013.

35. Fahad Arshad, Rebecca Krause and Saurabh Bagchi, “Characterizing Configuration Problems
in Java EE Application Servers: An Empirical Study with GlassFish and JBoss,” Accepted to
appear at the 24th IEEE International Symposium on Software Reliability Engineering
(ISSRE), pp. 1-10, Pasadena, CA, November 4-7, 2013.

36. Ignacio Laguna, Subrata Mitra, Fahad A. Arshad, Nawanol Theera-Ampornpunt, Zongyang
Zhu, Saurabh Bagchi, Samuel P. Midkiff, Mike Kistler (IBM Research), and Ahmed Gheith
(IBM Research), “Automatic Problem Localization in Distributed Applications via Multi-
dimensional Metric Profiling,” Accepted to appear at the 32nd International Symposium on
Reliable Distributed Systems (SRDS), pp. 1-10, Braga, Portugal, September 30-October 3,
2013.

37. Bowen Zhou, Jonathan Too, Milind Kulkarni, and Saurabh Bagchi, “WuKong: Automatically
Detecting and Localizing Bugs that Manifest at Large System Scales,” At the 22nd
International ACM Symposium on High Performance Parallel and Distributed Computing
(HPDC), pp. 131-142, New York City, New York, June 17-21, 2013.

38. Lawrence Livermore National Lab and Purdue University, “AutomaDeD: Debugging Tool
based on Statistical Analysis,” Open source release at: https://github.com/scalability-
llnl/AutomaDeD, Release date: September 19, 2014.

39. Ahn, Dong H., Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit, Barton P.
Miller, and Martin Schulz. "Scalable temporal order analysis for large scale debugging." In
Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis (Supercomputing), pp. 1-11, 2009.

 DCSL Research Overview

Saurabh Bagchi Page 28

40. Subrata Mitra, Ignacio Laguna, Dong H. Ahn (LLNL), Saurabh Bagchi, Martin Schulz (LLNL),
and Todd Gamblin (LLNL), “Accurate Application Progress Analysis for Large-Scale Parallel
Debugging,” At the ACM International Symposium on Programming Language Design and
Implementation (PLDI), pp. 193-203, Edinburgh, UK, June 9-11, 2014.

41. Koller, Ricardo, Akshat Verma, and Anindya Neogi. "WattApp: an application aware power
meter for shared data centers." In Proceedings of the 7th international conference on
Autonomic computing, pp. 31-40. ACM, 2010.

42. Varadarajan, Venkatanathan, Thawan Kooburat, Benjamin Farley, Thomas Ristenpart, and
Michael M. Swift. "Resource-freeing attacks: improve your cloud performance (at your
neighbor's expense)." In Proceedings of the 2012 ACM conference on Computer and
communications security (CCS), pp. 281-292, 2012.

43. R. Di Pietro and L. V. Mancini. Intrusion Detection Systems. Springer Publishing Company,
First Edition, 2008.

44. Gaspar Modelo-Howard, Christopher Gutierrez, Fahad Ali Arshad, Saurabh Bagchi, and Yuan
Qi, “pSigene: Webcrawling to Generalize SQL Injection Signatures,” At the 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 45-56,
June 23-26, 2014, Atlanta, GA.

45. Rajesh Krishna Panta, Issa Khalil, and Saurabh Bagchi, “Stream: Low Overhead Wireless
Reprogramming for Sensor Networks,” At the 26th Annual IEEE Conference on Computer
Communications (INFOCOM), pp. 928-936, May 6-12 2007, Anchorage, Alaska, USA.

46. Mark D. Krasniewski, Rajesh K. Panta, Saurabh Bagchi, Chin-Lung Yang, and William J.
Chappell, “Energy-efficient, On-demand Reprogramming of Large-scale Sensor Networks,”
ACM Transactions on Sensor Networks (TOSN), Volume 4, Issue 1, pp. 1-38, January 2008.

47. Saurabh Bagchi, Ness B. Shroff, Issa Khalil, Rajesh K. Panta, Mark D. Krasniewski, James V.
Krogmeier, “Protocol for Secure and Energy-Efficient Reprogramming of Wireless Multi-hop
Sensor Networks,” US Patent 8,811,188, granted: August 2014, filed: January 2012.

48. Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh Bagchi, and Patrick Eugster, “TARDIS:
Software-Only System-Level Record and Replay in Wireless Sensor Networks,” At the 14th
ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pp. 286-297,
April 13-17, 2015, Seattle, WA.

49. Ayush Patwari, Ignacio Laguna (LLNL), Martin Schulz (LLNL), and Saurabh Bagchi,
“Understanding the Spatial Characteristics of DRAM Errors in HPC Clusters,” Accepted to
appear at the 7th Fault Tolerance for HPC at eXtreme Scales (FTXS) Workshop (co-located
with HPDC), pp. 1-6, Jun 26, 2017, Washington DC.

50. Subrata Mitra, Suhas Raveesh Javagal, Amiya K. Maji (ITaP), Todd Gamblin (LLNL), Adam
Moody (LLNL), Stephen Harrell (ITaP), and Saurabh Bagchi, “A Study of Failures in
Community Clusters: The Case of Conte,” At the 7th IEEE International Workshop on

 DCSL Research Overview

Saurabh Bagchi Page 29

Program Debugging (IWPD), co-located with ISSRE, pp. 1-8, Oct 23-27, 2016, Ottawa,
Canada.

51. Subrata Mitra, Greg Bronevetsky (Google), Suhas Javagal, and Saurabh Bagchi. "Dealing with
the unknown: Resilience to prediction errors." At the International Conference on Parallel
Architecture and Compilation (PACT), pp. 331-342, October 18-21, 2015, San Francisco, CA.

52. Greg Bronevetsky (Google), Ignacio Laguna (LLNL), Saurabh Bagchi, and Bronis R. de
Supinski (LLNL), “Automatic Fault Characterization via Abnormality-Enhanced
Classification,” At the 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 1-12, June 25-28, 2012, Boston, MA.

53. Tara Thomas, Anmol Bhattad, Subrata Mitra, and Saurabh Bagchi, “Probabilistic data
assertions to detect silent data corruptions in parallel programs,” In Proceedings of the IEEE
35th Symposium on Reliable Distributed Systems (SRDS), pp. 41-50, September 26-29, 2016,
Budapest, Hungary.

54. Juan D. Rodriguez, Aritz Perez, and Jose A. Lozano. "Sensitivity analysis of k-fold cross
validation in prediction error estimation." IEEE transactions on pattern analysis and machine
intelligence 32, no. 3 (2010): 569-575.

55. Andrew Wilson, Elad Gilboa, John P. Cunningham, and Arye Nehorai. "Fast kernel learning
for multidimensional pattern extrapolation." In Advances in Neural Information Processing
Systems, pp. 3626-3634. 2014.

56. Shanchieh Jay Yang, Jared Holsopple, and Moises Sudit. "Evaluating threat assessment for
multi-stage cyber attacks." In Military Communications Conference, 2006. MILCOM 2006.
IEEE, pp. 1-7. IEEE, 2006.

57. Subrata Mitra, Manish Gupta, Sasa Misailovic (U of Illinois at Urbana-Champaign), Saurabh
Bagchi, “Phase-Aware Optimization in Approximate Computing,” In Proceedings of the 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pp. 185-
196, Feb 4-8, 2017, Austin, TX.

58. Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. "Managing
performance vs. accuracy trade-offs with loop perforation." In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, pp. 124-134. ACM, 2011.

59. Sui, Xin, Andrew Lenharth, Donald S. Fussell, and Keshav Pingali. "Proactive control of
approximate programs." ACM SIGOPS Operating Systems Review (ASPLOS) 50, no. 2, pp.
607-621, 2016.

60. Kanak Mahadik, Christopher Wright, Jinyi Zhang, Milind Kulkarni, Saurabh Bagchi, and
Somali Chaterji. "SARVAVID: A Domain Specific Language for Developing Scalable

 DCSL Research Overview

Saurabh Bagchi Page 30

Computational Genomics Applications." In Proceedings of the 2016 International
Conference on Supercomputing (ICS), pp. 1-12, June 1-3, 2016, Istanbul, Turkey.

61. Wei Tang, Jared Bischof, Narayan Desai, Kanak Mahadik, Wolfgang Gerlach, Travis Harrison,
Andreas Wilke, and Folker Meyer. "Workload characterization for MG-RAST metagenomic
data analytics service in the cloud." In Big Data (Big Data), 2014 IEEE International
Conference on, pp. 56-63. IEEE, 2014.

62. Andreas Wilke, Jared Bischof, Wolfgang Gerlach, Elizabeth Glass, Travis Harrison, Kevin P.
Keegan, Tobias Paczian, William L. Trimble, Saurabh Bagchi, Ananth Grama, Somali Chaterji,
and Folker Meyer, “The MG-RAST metagenomics database and portal in 2015,” Nucleic
Acids Research, volume 44 (Database Issue), pp. 590-594, December 2015.

63. Paul Wood, Saurabh Bagchi, and Alefiya Hussain (USC/ISI), “Profiting from Attacks on Real-
Time Price Communications in Smart Grids,” At the 9th IEEE International Conference on
Communication Systems and Networks (COMSNETS), pp. 1-8, Jan 4-8, 2017, Bangalore,
India.

64. Paul Wood, Saurabh Bagchi, and Alefiya Hussain (USC/ISI), “Defending Against Strategic
Adversaries in Dynamic Pricing Markets for Smart Grids,” At the 8th International
Conference on Communication Systems and Networks (COMSNETS), pp. 1-8, January 5-9,
2016, Bangalore, India.

65. Ashish R. Hota, Abraham A. Clements, Shreyas Sundaram, and Saurabh Bagchi, “Optimal
and Game-Theoretic Deployment of Security Investments in Interdependent Assets,” At the
7th Conference on Decision and Game Theory for Security (GameSec), pp. 1-13, Nov 2-4,
2016, New York City, New York.

66. Tawfeeq Shawly, Jun Liu, Nathan Burow, Saurabh Bagchi, Robin Berthier (University of
Illinois at Urbana-Champaign), and Rakesh B. Bobba (University of Illinois at Urbana-
Champaign), “A Risk Assessment Tool for Advanced Metering Infrastructures,” At the 5th
IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 989-
994, November 3-6, 2014.

67. Abraham A Clements, Naif Saleh Almakhdhub, Khaled Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer, “Protecting Bare-metal Embedded Systems with
Privilege Overlays,” At the IEEE International Symposium on Security and Privacy (Oakland),
pp. 1-15, May 22-24, 2017, San Jose, California.

68. Edgardo Barsallo Yi, Amiya K. Maji, Saurabh Bagchi, “How Reliable is my Wearable: A Fuzz
Testing-based Study,” In Proceedings of the 48th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 410-417, Jun 25−28, 2018, Luxembourg City,
Luxembourg.

 DCSL Research Overview

Saurabh Bagchi Page 31

69. Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra (Adobe Research),
Wolfgang Gerlach (Argonne National Laboratory), Travis Harrison (Argonne National
Laboratory), Folker Meyer (Argonne National Laboratory), Ananth Grama, Saurabh Bagchi,
and Somali Chaterji, “Rafiki: A Middleware for Parameter Tuning of NoSQL Datastores for
Dynamic Metagenomics Workloads,” In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, pp. 28-40, Dec 11-15, 2017, Las Vegas, Nevada.

70. Amiya K. Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and Akshat Verma, "Mitigating
interference in cloud services by middleware reconfiguration," In Proceedings of the 15th
International Middleware Conference, pp. 277-288. ACM, 2014.

71. Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang, "Automatic database
management system tuning through large-scale machine learning," In Proceedings of the
2017 ACM International Conference on Management of Data (SIGMOD) , pp. 1009-1024.
ACM, 2017.

72. Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa, and Achmad Imam
Kistijantoro, "Understanding and Auto-Adjusting Performance-Sensitive Configurations," In
Proceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 154-168. ACM, 2018.

73. Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic, and Saurabh
Bagchi, "VIDEOCHEF: efficient approximation for streaming video processing pipelines" In
USENIX Annual Technical Conference (USENIX ATC), pp. 43-56, 2018.

