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1 Executive Summary 
The Dependable Computing Systems Lab (DCSL) comprises students (graduate and 
undergraduate), post-doctoral researchers, and programming staff members within the School 
of Electrical and Computer Engineering, the Department of Computer Science, and two 
institute-wide centers – CRISP (Center for Resilient Infrastructures, Systems, and Processes) and 
CERIAS (The Center for Education and Research in Information Assurance and Security).  

The broad goal of our research is to design practical dependable distributed systems. This 
means distributed systems, from large-scale networks of wireless embedded devices to 
datacenters that power the cloud computing paradigm should continue to operate despite the 
presence of errors, whether naturally occurring or maliciously induced. Our work is motivated 
by the fact that systems are increasing in scale, both in terms of the number of executing 
elements and the amount of data that they need to process and existing dependability 
techniques are increasingly failing to meet the demands of such scaling. Further, systems are 
heterogeneous, both in terms of hardware (GPU, DSP, FPGA, etc. coupled with traditional CPUs) 
and software (software from multiple parties being integrated to provide end-user 
functionality). The faults that bedevil such systems may be due to accidental (or natural) 
causes, or malicious (or induced) causes and we deal with both classes. Our work deals with 
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faults by providing the functionality of detection (tell quickly that there is something wrong), 
diagnosis (what is the root cause of the failure), containment (how to prevent the failure from 
propagating through the system), and in some cases, prediction (of an impending failure, so 
that proactive mitigation actions can be triggered). The dependability mechanisms must not 
overly impact the application or the execution environment, either in terms of performance 
impact or in terms of the level of changes required from them. Our work focuses primarily in 
the application and in the middleware software layers, while with embedded wireless devices, 
we also delve into the low-level firmware. 

Changing execution environments 

We observe that the kinds of execution environments are changing – from one where all the 
components are developed in-house, are open source and well-understood to one where they 
are made up of third-party software components. Some of these components are at least 
partially opaque to the system owner and interactions amongst the components have many 
patterns, some of which cannot be enumerated a priori (i.e., before deployment of the system). 
There is a growing amount of non-determinism in the behavior of the systems due to various 
factors. First, the execution environments are intrinsically noisy, especially at large scales, due 
to interference from other applications executing on the same environment and unpredicted 
interactions among the application’s components themselves. Second, the number of possible 
usage scenarios are increasing, with the end user interacting with the system under a variety of 
conditions (consider for example, a smart phone which the consumer is using for talking, while 
sending text messages, while a healthcare app is processing data from sensors on the phone). 
Third, the variety of runtime environments being used result in different kinds of faults, some 
subtly different and some radically so. For example, with heterogeneous computing, an 
incorrect mapping of functional blocks of the application to the system blocks (such as, a 
memory intensive part of code to a GPU), can lead to a performance degradation. Also, systems 
are being built using multiple programming languages and their interactions lead to new failure 
modes. For malicious errors, the different usage scenarios give rise to different attack paths.  

The dependability solution has to handle these sources of non-determinism, increasing the 
fraction of failure cases that it handles correctly, while also keeping a limit on the number of 
correct executions that it incorrectly denotes as faulty. Different distributed systems impose 
different kinds of resource constraints on the dependability solution, e.g., large-scale 
computing clusters require that most communication due to the dependability protocols be 
kept local, with only rare use of global communication operations; embedded wireless 
networks constrain the volume of communication due to bandwidth and energy budget 
constraints.  

Broad characteristics of our work 

Our work fits within this broad universe of applications and execution environments. Our 
work can be characterized as “systems-y”. It derives from solid theoretical underpinnings, 
adapting them to the domain-specific challenges, and then developing them for use in practical 
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scenarios. Many of our problems involve large volumes of data, in rest and in motion, and we 
adapt data analytic algorithms to solve our problems. This often involves making existing 
algorithms distributed, scalable to large system sizes, and capable of dealing with unstructured 
data. We perform synthetic fault injections to evaluate our solutions and then test them out, as 
far as practicable, in real deployments and with real workloads. Our collaborations take two 
broad forms: with academic experts in a specific sub-field of Computer Science and with 
practitioners who face the dependability challenges in their respective domains. Examples of 
the former type include our explorations of data mining, machine learning, static analysis, 
scientific computing, and wireless software development. The latter class comprises 
collaborations with colleagues from industries and federal labs. Our work has been supported 
by and adopted by partners at Sandia National Labs (embedded and game-theoretic security), 
Northrop Grumman (distributed intrusion detection for enterprise class systems), Lawrence 
Livermore National Lab (reliability for large-scale scientific applications), Argonne National Lab 
(computational genomics), Adobe Research (streaming data analytics under bounded error 
guarantees). Among our past collaborators, we include IBM (mobile computing workloads 
migrated to the cloud), Avaya (Voice over IP security), Emnet LLC (wireless mesh network for 
waste water monitoring), Motorola (multi-hop wireless network for emergency responders), 
and Lockheed Martin (intrusion tolerance for zero-day attacks).  

Our research is structured around three thrusts: 

1. Dependability in large-scale applications 
2. Strengthening enterprise-class distributed systems 
3. Dependability of embedded wireless networks 

2 Research Thrust 1: Dependability in Large-Scale Applications 

2.1 Problem Statement 
Current techniques for resilience are insufficient for exascale systems (i.e., systems capable of 
executing 1018 floating point operations per second), and unless radical changes are made 
across the entire software stack, exascale systems may never compute reliable scientific results. 
The available parallelism on exascale systems is expected to increase by 3-5 orders of 
magnitude over today's petascale systems, driven by increases in on-node concurrency and 
power density. At that point in the design space, hard and soft failures will be commonplace 
occurrences. The model of hardware being correct all the time, on all regions of the chip, and 
forever, will become prohibitively expensive to maintain, in terms of both manufacturing and 
energy cost. Replication-based approaches have promise, but blind replication of all tasks will 
halve the available performance on large-scale machines at best, wasting CPU cycles and 
energy on redundant work.  

A targeted approach is needed to allow large-scale runtime systems to isolate regions where 
faults occur and replicate only those parts of the system. To enable this, we need runtime 
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systems that monitor and analyze their own behavior to determine when to take preventive 
action. This type of analysis has been investigated before, but existing approaches aggregate 
system-wide data to a central point for analysis, which is not scalable and time-consuming. 
Further, existing analyses assume that parallel application behavior is relatively homogeneous 
across nodes and tasks. Such approaches will be ill-equipped to cope with the pervasive 
adaptive behavior of large-scale applications and heterogeneity of these platforms. 

One emerging challenge is that the notion of correctness is sometimes tied to the 
characteristics of the data. For example, processing one request may take a millisecond while 
another may take over a second and both are correct behaviors. It is simply that the data 
accessed by the requests are different. We therefore have to come up with system models and 
related detection and diagnosis approaches that can be aware of the characteristics of the data.  

2.2 Solution Approach 
We have developed AutomaDeD [3], a tool that detects errors based on runtime information of 
control paths that the parallel application follows and the times spent in each control block. 
AutomaDeD suggests possible root causes of detected errors by pinpointing, in a probabilistic 
rank-ordered manner, the erroneous process and the code region in which the error arose. 
Intuitively, the erroneous tasks often form a small minority of the full set of tasks. Hence, they 
are outliers when we cluster the tasks, based on their features related to control flow and 
timing. Further, in the time dimension, the executions in the first few iterations are more likely 
to be correct than in later iterations, which we also leverage to determine correct or erroneous 
labels; else we make use of some labeled correct runs, if available. Our solution approach is 
based on a detailed understanding and analyses of errors that show up in such large-scale 
systems, including some that we do on the DOE supercomputers [49, 50].  

All existing parallel debugging tools (including our first effort at AutomaDeD) failed to scale 
to the process counts of today’s state-of-the-art systems. Three main factors impede scalability. 
First, the tools include a centralized component that performs the data analysis. Thus, tools 
must stream behavioral information from all the processes to this central component so that it 
can process the information to deter- mine the error and, possibly, its location. Second, the 
tools require huge amounts of data. While many tools optimize the monitoring part quite well, 
the cost of shipping all information to the analysis engine and the cost of analyzing the full 
volume of data remains. While tools such as STAT [4] reduce the data volume that the central 
component must handle, they still must process the full data in their communication structure. 
Third, the data structures used to maintain the information are not completely optimized for 
the operations that need to be performed for error detection and localization, such as 
comparison of information from processes that belong to the same equivalence class. Small 
differences in the cost of one operation, though insignificant for hundreds of processes, 
become significant at larger scales. We address each of these concerns and develop a scalable 
version of AutomaDeD [5] that runs at scales of tens of thousands of application processes on 
LLNL’s largest clusters and is able to detect and diagnose application problems. We have 



 DCSL Research Overview  

Saurabh Bagchi Page 5 
 

demonstrated the power of AutomaDeD on real bugs [5], including a hard-to-crack bug in a 
molecular dynamics code [7]. For this, we augmented AutomaDeD with the ability to perform 
backward slicing, which it did working backward from the point of manifestation of the fault. 
The fault manifested only with 7,996 or more processes and our tool quickly found the fault — 
a sophisticated deadlock condition. This tool is now being used in production settings within 
LLNL and has had an open source release from the LLNL Scalability Team and us, in June 2014 
[38]. A sample use case study is presented in a short paper [34].  

 
Figure 1. Problem localization with AutomaDeD 

 
Figure 2. Overview of the workflow for problem localization 

Diagnosing hangs and performance slowdowns 

Hangs and performance slowdowns are a common and hard-to-diagnose problem in distributed 
applications. Due to the tight coupling of multiple tasks, a fault in one task can quickly spread to 
the other tasks, and can cause a large number of tasks, or even the entire application, to hang 
or to exhibit a slowdown. Previous work [39] proposed the notion of progress of tasks as a 
useful model to track down the root cause of a hang or a performance slowdown. Intuitively, 
progress is a partial order that orders tasks based on how much execution a task has made in 
relation to other tasks. Finding the least-progressed tasks can significantly reduce effort to 
identify where the fault originated. However, existing approaches to detecting them suffer low 
accuracy and large overheads [4, 6]; either they use imprecise static analysis or are unable to 
infer progress dependence inside loops. We have developed a progress-dependence analysis 
tool, called PRODOMETER [40], which determines relative progress among parallel tasks using 
only dynamic analysis. Our fault-injection experiments suggest that its accuracy and precision 
are over 90% for most cases and that it scales well up to 16,384 MPI tasks. Further, our case 
study shows that it significantly helped diagnosing a perplexing error in an LLNL MPI program, 
which only manifested at large scale. This algorithm has been incorporated into our previously 
mentioned open source release.  
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We have made our analysis and attendant tool aware of the characteristics of the data. We 
have developed a performance anomaly detection tool for closely interacting distributed 
applications, called GUARDIAN [51, 52]. Statistical modeling is a very powerful approach for 
making predictions about the behavior of a distributed system. However, the fact that 
applications’ behavior often depends closely on their configuration parameters and properties 
of their inputs means that statistical models are built by training on only a small fraction of its 
overall behavior space. It has been well known that a model’s accuracy often degrades as 
application configuration and inputs deviate further from its training set [54, 55], and this 
makes it difficult to do error detection or diagnosis based on the model’s predictions. We have 
developed a systematic approach to quantify the prediction errors of the statistical models of 
the application behavior, focusing on extrapolation, where the application configuration and 
input parameters differ significantly from the model’s training set. Given any statistical model 
of application behavior and a data set of training application runs from which this model is 
built, our technique predicts the accuracy of the model for predicting application behavior on a 
new run on hitherto unseen inputs. We validate the utility of this method by evaluating it on 
the use case of anomaly detection for seven mainstream applications and benchmarks. The 
evaluation demonstrates that our technique can reduce false alarms while providing high 
detection accuracy compared to a statistical, input-unaware modeling technique. 

Scale-dependent bugs 

An especially subtle class of bugs in large-scale applications are scale-dependent bugs: while 
small-scale test cases may not exhibit the bug, the bug arises in large-scale production runs, and 
can change the result or performance of an application. A simple example of this is a data type 
overflow that happens say when either a large amount of data is exchanged or data is 
exchanged among a large number of processes. A popular approach to finding bugs is statistical 
bug detection, where abnormal behavior is detected through comparison with bug-free 
behavior. Unfortunately, for scale-dependent bugs, there may not be bug-free runs at large 
scales and therefore traditional statistical techniques are not viable. We have developed a 
technique called Vrisha [8], a statistical approach to detecting and localizing scale-dependent 
bugs. Vrisha detects bugs in large-scale programs by building models of behavior based on bug-
free behavior at small scales. These models are constructed using kernel canonical correlation 
analysis (KCCA) and exploit scale-determined properties, whose values are predictably 
dependent on application scale. Then, if the predicted property at the large scale deviates from 
the observed property, an error is detected. By intelligently reverse mapping the deviation to 
the original behavioral feature, we can pinpoint the bug to a behavioral feature and from that, 
to a region of code. In our system called WuKong [37], we are able to pinpoint the source of the 
bug to a code region, even though the bug is not seen in the small-scale training runs.  
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Figure 3. Overview of the operation of Vrisha divided into training runs at small scales, 

followed by production runs at large scales 

2.3 What’s Coming Up 
We are developing techniques that can operate with different kinds of data at large scales. 
Sometime the behavior of the application changes in a hitherto hard-to-predict manner when 
the size of data goes above a certain threshold (e.g., thrashing effects kick in because the cache 
size is no longer sufficient) and we are equipping our current system to determine how correct 
behavior should change. To uncover such problems, we are developing a technique based on 
symbolic execution to determine what input dataset can likely trigger these hard-to-predict 
behaviors. As mentioned above, a large open problem in this domain is when behavior depends 
on characteristics of the data, not just its size. For example, an algorithm may execute a short 
time if it is invoked on a sorted list, but a long time if it is on a perfectly reverse sorted list. We 
are developing an approach to first determine what the data structure and algorithm specific 
feature is, and then extract that feature and use it in our existing technique. In another aspect, 
we are developing performance debugging tool for heterogeneous clusters. The problem is that 
it is not clear statically which codes, or blocks of a code, should run on an accelerator and which 
should run on the main cores. Further, when a code block runs on an accelerator, what 
configuration parameter should be used for the code block depends on the code characteristics 
as well as the accelerator resources. An incorrect decision can severely hurt performance. Our 
method is meant localize when such a performance anomaly happens and indicate the 
probable causes.   

3 Research Thrust 2: Strengthening Enterprise-Class Distributed 
Systems 

3.1 Problem Statement 
Today's enterprise IT systems mostly run distributed applications. These applications are built 
out of a large number of software components and run on a variety of hardware platforms. 
Many of these applications require continuous availability despite being built out of unreliable 
components or components that are opaque to the system owner. Therefore, system 
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administrators need efficient techniques and practical tools for error detection that can operate 
online (as the application runs), and that can detect errors and anomalies with small delay⎯the 
time between the error manifestation and its detection should be short. Preventing an error 
from becoming a user-visible failure is a further desirable characteristic. Automatically 
predicting impending failures based on observed patterns of measurements can trigger 
prevention techniques, such as microrebooting [9], redirection of further requests to a healthy 
server, or simply starting a backup service for the data. A third necessary functionality for 
reliable execution of distributed applications is problem localization, whereby automated 
techniques can determine if the program is at fault or the infrastructure on which the program 
is executing. If the program is at fault, then the system can provide localization of the fault to a 
region of the code, which can then be inspected by the developer for the purpose of 
implementing a fix. 

We make our problem concrete by focusing on application systems from various domains. 
The first kind we are currently focusing on is approximate computing, which approximates 
some computation for reducing the processing time and energy cost of the computation. This 
class has been found to be useful in application domains where some amount of inaccuracy can 
be tolerated, such as, human perception (video or image processing) or machine learning. But 
the single biggest unsolved challenge to making approximate computing work in practice is to 
determine where in the application some approximation can be applied and what level of 
approximation can be used⎯approximation in some sensitive part of the computation to a high 
degree can throw off the results completely. How aggressively to approximate, e.g., should we 
skip every other step in the processing loop, or every third step in the processing loop, depends 
not just on the application but also on the phase of the application and the dataset the 
application is working on. Finally, if the result of the approximate computation is unacceptable, 
how do we do the root cause analysis to determine where something went wrong irreparably.  
The second domain that we are working on is computational genomics applications. Here, the 
large amounts of data (genomic, metagenomic, epigenomic data) mean that we often see 
scalability bottlenecks in the algorithms and the errors in input data (due to limitations of the 
sequencing instruments when processing samples at high rate) can lead to unbounded error 
propagation leading to scientifically, and clinically, incorrect prognosis. We therefore seek to 
develop both highly scalable algorithms and techniques to detect and diagnose error 
propagation cases. We attempt to do these in a manner that is not just specific to each 
individual algorithm, but also lead to fundamental primitives that are applicable across a swath 
of algorithms in the application domain.   

In this space, another problem that we are working on is unpredictable performance 
anomalies in cloud environments. Performance issues arise due to imperfect isolation  of 
hardware resources across multiple VMs as well as sub-optimal configurations of the 
application and cloud parameters. These anomalies are unpredictable because workloads that 
appear on a server are unpredictable and the mutual interactions (pair-wise or n-wise) among 
workloads are not well characterized. Some resources, such as CPU and memory can be 
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partitioned among VMs with little interference. However, current hypervisors do not isolate 
low level hardware resources, such as cache and memory bandwidth. Contention for these 
shared hardware resources leads to variable performance across VMs [41, 42]. Further, 
performance of many distributed applications is very sensitive to a few of the plethora of 
performance-related configuration parameters. For example, the NoSQL database engine 
Cassandra (perhaps the most widely used one for TB sized datastores, including the largest 
metagenomics portal from our collaborators at Argonne National Lab) offers 50+ configuration 
parameter, and each parameter value can impact overall performance in different ways. We 
demonstrate that the performance difference between the best and worst configuration files 
for Cassandra can be as high as 102.5% of throughput for a read-heavy workload 69. Further, 
the optimal configuration setting for one type of workload is suboptimal for another and this 
results in as much as 50% swing in database performance in the absence of optimized 
parameter versions.  

There are numerous solution approaches to the optimal application configuration problem 
[70, 71, 72]. But they all suffer from one fundamental problem. In the face of dynamic changes 
to the workload, they are either silent on when to reconfigure or perform a naïve 
reconfiguration whenever the workload changes. In most distributed applications, it is not 
always desirable to switch to new configurations because the new workload pattern may be 
short-lived. Each reconfiguration action incurs costs because the server instance often needs to 
be restarted for the new configuration to take effect and data needs to be moved among the 
servers. Also, most of the existing work does not handle complex dependencies among the 
performance-critical parameters (which exist in practice) and cannot handle categorical 
parameters. 

Our solution approach looks at configuration of application parameters and, if available, 
configuration of cloud parameters, as well as co-location of multiple applications on the same 
server avoiding interferences that will cause performance anomalies. We look to do this in an 
analytically rigorous and general-purpose manner, across different kinds of server softwares. 

In this sphere, we also consider maliciously injected errors at enterprise systems. We are 
focused on attacks to distributed enterprise systems that involve multiple steps, known as 
multi-stage attacks [56]. In these, adversaries compromise outward-facing services and use 
them as stepping stones to progressively compromise other services, with the ultimate goal to 
compromise a critical asset. An example would be compromising a web server, then achieve a 
series of intermediary steps (such as compromising a developer’s box thanks to a vulnerable 
PHP module and connecting to a FTP server with gained credentials) to ultimately connect to a 
database where user credentials or financial information are stored. Current detection systems 
are not capable of analyzing the multi-step attack scenario because they only focus on single 
steps of this multi-chain process and perform all their inferencing in a “greedy” manner based 
on the manifestation on that single place where the detector is installed. Further, the security 
posture is essentially reactive – once the detector finds something, some “greedy” response is 
taken, such as, disconnecting a TCP connection. The essential problem with this is three-fold – 
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by the time the reactive response is taken, damage is already done; it is too dependent on the 
fidelity of the detectors; and finally, this security strategy often fails against hitherto unknown 
attacks, which are also known as zero-day attacks.  

3.2 Solution Approach 
Approximate computing 

We have shown that many applications exhibit execution phase-specific sensitivity towards 
approximation of the internal sub-computations [57]. Therefore, approximation in certain 
phases can be more beneficial than others. With this insight we have developed OPPROX, a novel 
system for application’s execution phase-aware approximation. For a user provided error 
budget and target input parameters, OPPROX identifies different program phases and searches 
for profitable approximation settings for each phase of the application execution. Our 
evaluation with five benchmarks (drawn from particle physics, video processing, computer 
vision, and optimization) and four existing approximation technique shows that when 
compared to an oracle but phase-agnostic version from prior work [58, 59], our approach on 
average provides 42% speedup compared to 37% from the oracle version for an error budget of 
20% and for a small error budget of 5% provides on average 14% speedup compared to only 2% 
achieved by the phase-agnostic oracle version. In ongoing work, we have showed further that 
the approximation needs to be done in a content-aware manner. For example, in video 
processing, the optimal approximation setting for a hi-def sports scene is likely to be different 
than that for a standard-def sitting scene with only a few individuals. The challenge that we are 
taming is how to make the decision quickly, even though the decision is made in a content-
aware manner. This relies on quickly identifying the relevant characteristics of the input, 
efficient search through the space of approximation settings, and doing change point detection 
to decide when a search needs to be re-initiated.  

Our initial result in this space [73] is for streaming video applications and called VIDEOCHEF. 
We use using small inputs to explore the space of possible approximation parameters and then 
transfer the approximate configurations to the full inputs. VIDEOCHEF is the first system to show 
that summary inputs can be used for complex streaming applications. The two key innovations 
we bring in are (1) an accurate error mapping from the approximate processing with summary 
inputs to that with full inputs and (2) a directed search that balances the cost of each search 
step with the estimated reduction in the run time. 

Optimal Parameter Configuration for Distributed Applications 

Our solution, called Rafiki [69] and Iris, addresses the shortcomings of current configuration 
tuners and is applied to NoSQL database engines (Cassandra, ScyllaDB, Redis) which our 
solution optimizes to support workloads with time-varying characteristics. It accounts for 
performance degradation during the reconfiguration (say due to database restart, which is 
often needed to apply the new configuration). Second, it predicts how transient the new 
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workload pattern will be. Third, it maintains the application’s availability and consistency 
requirements during reconfiguration, though its susceptibility to faults is increased.  

When applied to a NoSQL Cassandra cluster comprising of multiple server instances, IRIS 
extracts information about current workload from a job scheduler and has a workload predictor 
to predict future workloads. It then determines a long-horizon optimal reconfiguration plan 
through a novel Cost Benefit Analysis (CBA) scheme. When the workload changes, IRIS interacts 
with any existing static configuration tuner (such as our work RAFIKI), to quickly provide the 
optimal point configurations for the new workload and the estimated benefit from this new 
configuration. IRIS performs the CBA analysis, taking into account the predicted duration of the 
new workload and the estimated benefit from a reconfiguration. If the CBA indicates that the 
benefit outweighs the cost, IRIS executes a decentralized protocol to gracefully switch over the 
cluster to the new configuration while respecting the data consistency guarantees and keeping 
data continuously available to users. We have applied it to 3 real-world workloads---the largest 
metagenomics portal in the world, MG-RAST, a bus tracking application trace, and a trace of 
data analytics jobs submitted to a university's centralized computing cluster. Running multiple 
Cassandra server instances on the AWS platform, we compare our approach to existing baseline 
solutions and show that IRIS increases throughput under all dynamic workload patterns and for 
all types of queries, with no downtime. 

Automated Localization of Problems through Multiple Metrics 

Today's enterprise-class distributed systems routinely collect a plethora of metrics by 
monitoring at various layers---system-level, middleware-level, and application-level. Many 
commercial and open-source tools exist for collecting these metrics, such as HP OpenView, 
Sysstat, and Ganglia. Examples of useful metrics are: at the system level: CPU, memory, storage, 
and network-bandwidth usage ; at the middleware level: resource usages in a Java EE container 
(such as Tomcat or JBoss) or time spent in an MPICH library call; at the application level: 
number of servlet requests and exceptions, number of JDBC connections, or time spent in a 
region of the code. A common class of error-detection techniques works as follows. From 
values of metrics collected during training runs, a model is built up for how the metrics should 
behave during normal operation. At runtime, a comparison is made between what is indicated 
by the trained model and what metric values are observed in the system. If there is sufficient 
divergence between the two, an error is flagged. Further the metrics that cause the divergence 
are mapped back to code regions that affect these metrics, thus providing a level of fault 
localization. However, existing approaches toward performing error-detection within a node 
based on statistical analysis of runtime metrics suffer from one or more of the following 
problems. First, their models do not consider multiple metrics simultaneously [11,12]. Many 
software bugs and performance faults are manifested in such a way that the correlations 
between measurements of different metrics are broken and these bugs are then missed. 
Second, some models do not consider observations of a metric as a sequence of measurements 
[13,14]. Many software bugs, for example those related to performance problems, develop a 
distinctive temporal pattern that can only be captured by analyzing measurements in a 
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sequential manner rather than through instantaneous snapshots of the metric values. Third, 
the overwhelming majority of techniques do not offer failure prediction. They operate in a 
reactive mode by flagging alarms when a failure occurs rather than in a proactive mode by 
anticipating a failure. Failure prediction has been a hot topic in the past few years [15,16,17], 
however, to the best of our knowledge all the failure-prediction systems suffer from either the 
first or the second problem (or both).  

With these insights, we develop a system called Augury [35,36] to perform error detection 
within a node using three progressively more sophisticated schemes - first, check for thresholds 
of individual metric values (both lower and upper bounds); next, check that the temporal 
patterns of the metric values follow the models of normality; and finally, check that the 
dependencies between metrics are maintained. Also, depending on which metrics are found to 
cause the deviation from normality, we can localize the fault to the program (application-level 
metrics) or the infrastructure (system-level or middleware-level metrics).  

Since the accuracy of prediction of any statistical model is dependent on the fidelity of data 
that is used to train the model, we have developed a systematic approach, called E-ANALYZER 
[51, 52], to quantify the prediction errors of the statistical models of the application behavior. 
Our method focuses on extrapolation, where the application configuration and input 
parameters differ significantly from the model’s training set. Given any statistical model of 
application behavior and a data set of training application runs from which this model is built, 
E-ANALYZER predicts the accuracy of the model for predicting application behavior on a new run 
on hitherto unseen inputs. We validate the utility of this method by evaluating it on the use 
case of anomaly detection for seven mainstream applications and benchmarks. The evaluation 
of our anomaly detection system, called GUARDIAN [51], demonstrates that our technique can 
reduce false alarms while providing high detection accuracy compared to a statistical, input-
unaware modeling technique. Our approach gives a way out of the arrogance of claims of a 
statistical model and provides a rigorous error quantification (or uncertainty quantification, if 
you will) that can then be used to make decisions based on a false positive-missed detection 
consideration.  
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Figure 4. Overview of AUGURY for detection and prediction of errors in distributed enterprise 

systems 

Scalable and reliable computational genomics 

From the earliest days of genomic sequencing, computers have been an essential component of 
genomic data analysis. However, with the cost of sequencing plummeting, newer kinds of 
genomic data being generated, and newer questions being asked of the data, we are at a 
juncture where algorithms and computational tools need to play serious catch-up to keep pace 
with the rate of sequenced data. The genomes obtained through sequencing projects are at the 
core of the molecular chemistry of all species in the tree of life. But to understand these 
recipes, we need to develop novel computational genomics applications (e.g., pattern mining in 
gene regulatory networks) and we need to scale up existing applications (e.g., genome 
assembly with long reads) to work with larger and more diverse data sets. Further, the results 
of the computation need to be resilient to errors in the data (which seem unavoidable due to 
the nature of the genomic instruments or the data collection process, for metagenomics 
applications) and to errors in the computational pipeline.  
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Figure 5. Overview of Genomic Applications in the categories of Local Alignment (BLAST), 
Whole genome Alignment (MUMmer and E-MEM), and Sequence Assembly (SPAdes and 
SGA). This shows the kernels, or the commonly recurring and reusable blocks of software 

functionality. Common kernels are shaded using the same color. Our DSL, Sarvavid, allows an 
application developer to easily piece together these kernels to create scalable applications. 

Our repository has efficient implementations of these kernels, for various different backends 
including conventional processors and accelerators.  

With these goals, we have developed a domain-specific language, called SARVAVID, for 
computational genomics [60]. We made the observation that the popular bioinformatics 
applications, across a wide range of application areas, contain a recurring set of software 
modules, or kernels [61, 62]. The availability of efficient implementations of such kernels can 
improve programmer productivity, and provide effective scalability with growing data. Our DSL 
SARVAVID provides these kernels as language constructs. SARVAVID comes with a compiler that 
performs domain-specific optimizations, which are beyond the scope of libraries and generic 
compilers. Furthermore, SARVAVID inherently supports exploitation of parallelism across multiple 
nodes. We demonstrate how easy and worthwhile (from a speedup standpoint) it is to port 5 
popular genomics applications from 3 areas---local alignment, global alignment, and genome 
assembly. The re-implemented applications can scale up (to more powerful individual nodes) as 
well as scale out (to a large number of nodes in a compute cluster).  

Multi-stage attacks 

For protecting a distributed enterprise system against multi-stage attacks (MSAs), we have 
developed a solution called the Distributed Intrusion and Attack Detection System (DIADS) 
[18,20]. DIADS has a central inferencing engine, which has a model of MSAs as attack graphs. 
DIADS creates a Bayesian Network (BN) out of an attack graph and observable (or evidence) 
nodes in the attack graph are mapped from sensor alerts (typical sensors are network-based 
intrusion detection sensors such as Snort and Bro and host-based intrusion detection sensors 
such as Tripwire). It receives inputs from the sensors and performs inferencing to determine 
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whether a re-configuration of sensors is needed, i.e., whether any new sensor needs to replace 
an existing sensor, whether the placement of a sensor should be changed, or whether certain 
rules within a sensor need to be turned on or off. Thus, the inferencing engine has a two-way 
communication path with the sensors ⎯ obtaining alerts from the sensors and then interacting 
with the sensors once the inferencing is done. If on the basis of current evidence, it determines 
that a critical asset (also synonymously referred to as a “crown jewel”) will imminently be 
compromised, it determines what further sensors close to the asset should be chosen, or 
equivalently, what further rules in an already active sensor should be turned on. DIADS can 
handle dynamism in the protected system (additions of computers, changes to configurations) 
as well as evolving attacks.  Our system is being used in an internal cyber test range at Northrop 
Grumman and for intrusion detection in our NSF center NEEScomm IT infrastructure [22].  

 
Figure 6. Overview of approach of DIADS to place and configure intrusion detection sensors in 

a changing enterprise environment 

One type of intrusion detection system, called misuse-based detector, uses signatures of 
attacks to inspect the traffic and flag the malicious activity. But a potential problem faced by 
these signature-based systems is that as new attacks are created and as new kinds of benign 
traffic are observed, the signatures need to be updated. The current approach to this process is 
manual. Consequently, keeping them updated is a Herculean task that involves tedious work by 
many security experts at organizations that provide the detection software. A big drawback of 
the signature-based schemes that has been pointed out by many researchers and practitioners 
[43] is that due to their relatively static nature, they miss zero-day attacks. These are attacks 
that target hitherto unknown vulnerabilities and consequently, no signature exists for such 
attacks.  

We have developed a technique for the automatic generation of intrusion signatures by 
mining the vast amount of public data available on attacks [44]. It follows a four-step process to 
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generate the signatures (Figure 7), by first crawling attack samples from multiple public 
cybersecurity web portals. Then, a feature set is created from existing detection signatures to 
model the samples, which are then grouped using a biclustering algorithm which also gives the 
distinctive features of each cluster. Finally the system automatically creates a set of signatures 
using regular expressions, one for each cluster. We tested our architecture for SQL injection 
attacks and found our signatures to have a True and False Positive Rates of 90.52% and 0.03%, 
respectively and compared our findings to other SQL injection signature sets from popular IDS 
and web application firewalls. Results show our system to be very competitive to existing 
signature sets, which were manually generated and refined with significant domain expertise. 
We have also mined a vast amount of phishing email messages to come up with higher-level 
signatures for phishing campaigns. The unsurprising observation from mining the messages has 
been that adversaries create new phishing messages from existing templates, by changing, say, 
the name and details of a natural disaster. Our technique, by reasoning about higher-level 
features, is able to flag hitherto unseen phishing campaigns.  

 
Figure 7.  High-level solution approach to creating intrusion detection signatures by mining 

structured or unstructured attack and legitimate data. Here we show the resulting signatures 
are for SQL injection attacks (SQLi). The solution approach is general and we are applying this 

to a variety of attack types.  

3.3 What’s Coming Up 
In continuing work, we are developing more sophisticated machine learning techniques for 
detecting and predicting subtle software bugs that fall in various categories, including resource 
leak, resource exhaustion, and race conditions. We are developing partially automated 
techniques for feature selection for feeding into our models, since the number of possible 
features is large. We are developing methods to perform the failure diagnosis and 
approximation in a workload-aware, or content-aware, manner because different workloads to 
an application can generate different behavior patterns, for correctly functioning applications. 
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The challenge here is to capture the workload patterns or the input data patterns quickly and at 
the right level of abstraction that is needed for the model to generate high fidelity output.  

In the security work, we are building proactive techniques to prevent novel attacks (zero-day 
attacks) from breaching the security of multiple connected components in a distributed system. 
Our solution will involve learning from prior attacks such that variants of these attacks can be 
thwarted. A complimentary solution strategy that we are developing involves randomizing the 
locations and configurations of key services and assets through judicious use of deception. 
Deception has been used for many millennia, perhaps for as long as life existed on planet earth. 
Plants, animals, including humans, and insects have been using deceptive techniques as a 
means for defense and survival. Our work will show how to plan and integrate deception in 
computer security defenses, e.g., by creating a deceptive file system where accessing certain 
key files will provide false information. For enterprise security, we are using moving target 
defense (MTD) implemented using a Software Defined Network (SDN) layer to thwart 
adversaries, even when the vulnerability being exploited is not known a priori. SDN gives us a 
novel tool to quickly reconfigure the network in anticipation of attack paths or to thwart a 
currently spreading attack.  

4 Research Thrust 3: Dependability of Embedded Wireless Networks 

4.1 Problem Statement 
Embedded wireless networks are plagued by the possibility of bugs manifesting only at 
deployment. However, debugging deployed embedded wireless networks is challenging for 
several reasons—the remote location of deployed nodes, the non-determinism of execution 
that can make it difficult to replicate a buggy run, and the limited hardware resources available 
on a node. One promising method to debug distributed systems is record and replay. In short, 
record and replay logs a trace of predefined events while a deployed application is executing, 
enabling replaying of events later using debugging tools. Existing recording methods fail on 
embedded wireless networks due to the many sources of non-determinism, failing to capture 
the complete code execution, thus negating the possibility of a faithful replay and causing a 
large class of bugs to go unnoticed. Further, they overflow the available storage resources on 
the node and violate real-time requirements of many applications.  

The visibility afforded by record and replay can be useful for post-deployment testing [23], 
replay-based debugging [24,25], and for performance and energy profiling of various software 
components [26,27]. Prior software-based solutions to address this problem have incurred high 
execution overhead and intrusiveness [24,26]. The intrusiveness changes the intrinsic timing 
behavior of the application, thereby reducing the fidelity of the collected profile. Prior 
hardware-based solutions [28,29] have involved the use of dedicated ASICs or other tightly 
coupled changes to the embedded node’s processor, which significantly limits their 
applicability. Therefore, our goal is to design novel hardware-software approaches that can be 
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deployed at scale (and therefore must be low cost and low energy hogs) that can collect traces 
of different kinds of events without perturbing the timing of the application.  

In recent years, advances in hardware and software tools have led to many real-world 
deployments of multi-hop wireless networks, i.e., wireless networks which require little fixed 
infrastructure. Management of already deployed multi-hop networks is an important issue. One 
of the crucial management tasks is that of software reconfiguration. During the lifetime of a 
multi-hop network, software running on the nodes may need to be changed for various reasons 
like correcting software bugs, modifying the application to meet the changing environmental 
conditions in which the network is deployed, adapting to evolving user requirements, etc. Since 
a multi-hop network may consist of hundreds or even thousands of nodes which may be 
situated at places which are difficult or, sometimes, impossible to access physically, remote 
reprogramming of multi-hop networks is essential. The two most critical metrics for such 
reprogramming are energy efficiency and speed. Since the performance of the network may be 
degraded, or even reduced to zero, during software update process, the technique must 
minimize reprogramming time. 

We are also motivated by the trend of having more resource rich, mobile devices that we 
carry on our bodies, such as, smartphones. As more critical applications are put in these 
smartphones, it is important to analyze the failure characteristics of these platforms – how do 
the different components fail, how are these different from traditional software failures, 
considering that the software has an event-driven flavor and need to be able to handle multiple 
input devices, sometime providing inputs concurrently. This investigation should lead to 
uncovering vulnerabilities that are exposed either due to careless programming or due to 
maliciously crafted inputs being sent in from the outside, such as, in the form of text messages 
or inputs fed to a sensor on the smartphone. Further, there is a need being expressed by data 
center owners to monitor and control data center assets from smart phones. This has to be 
done while preserving security guarantees, restricting the energy and bandwidth usage on the 
smart phones, and providing actionable information to the system administrator despite the 
small form factors of the client devices.  

On the security side of this project, we ask ourselves the question – can the primitive state of 
secure programming on these low-cost embedded devices be improved, through 
transformations inserted into the compilation workflow (so that embedded application 
developers do not have to become security experts too) and through low-cost monitoring of 
behavior at runtime. This is a challenge due to several reasons⎯the software stack on these 
devices is often monolithic with no separation of privileged and unprivileged code, the amount 
of memory and stable storage resource is limited, and the applications often have real-time 
requirements.  

4.2 Solution Approach 
In-situ reprogramming and reconfiguration 
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We have developed a suite of reprogramming techniques for embedded wireless networks, 
which can reprogram the nodes while they are deployed in situ in the environment [45, 46]. We 
currently have a US patent for the fastest multi-hop reprogramming protocol [47], which has 
been licensed by several companies from Purdue’s Office of Technology Commercialization. 
One of our solutions, called Zephyr [30], is an incremental reprogramming protocol that 
exploits the fact that in real world scenario, the software running on the sensor nodes evolves 
with incremental changes to the functionality. Zephyr significantly reduces reprogramming time 
and energy by wirelessly transferring only the difference between the old and new versions of 
the software, rather than the entire new software. The wireless nodes build the new image 
using the difference and the old image. 

High fidelity record and replay for debugging 

We have designed and prototyped AVEKSHA [26], a hardware-software approach for tracing 
applications running in an embedded wireless node in a non-intrusive manner. Our approach is 
based on the key insight that most embedded processors have an on-chip debug module (which 
has traditionally been used for interactive debugging) that provides significant visibility into the 
internal state of the processor. We designed a debug board (shown in Figure 8) that interfaces 
with the on-chip debug module of an embedded node’s processor through the JTAG port and 
provides three modes of event logging and tracing of varying granularities. Using expressive 
triggers that the on-chip debug module supports, AVEKSHA can watch for, and record, a variety 
of programmable events of interest, such as, a read from a peripheral I/O device. A key feature 
of AVEKSHA is that the target processor does not have to be stopped during event logging (in two 
of the three modes), subject to a limit on the rate at which logged events occur. AVEKSHA also 
performs power monitoring of the embedded wireless node and, importantly, enables power 
consumption data to be correlated to events of interest.  

AVEKSHA is an operating system-agnostic solution. We demonstrate its functionality and 
performance using applications in TinyOS and in Contiki. We show that AVEKSHA can trace tasks 
and other generic events at the function and task-level granularity. We have also used AVEKSHA 
to find a subtle bug in the TinyOS low power listening protocol. 
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Figure 8. AVEKSHA’s debug board interfaced with a TI microcontroller 

In follow-on work, we have developed a complete software-only system-level record and 
replay technique on embedded wireless device, called TARDIS [48]. It handles all of the sources 
of non-determinism and compresses each one in a resource efficient manner using respective 
domain-specific knowledge. The compression scheme for each source of non-determinism is 
informed by a careful observation of the kinds of events that typically occur in WSN 
applications, for example, the use of register masking which reduces the number of bits which 
must be recorded—instead of the full length of the register, only the bits that are left 
unmasked need be recorded. The compression schemes are also chosen to be lightweight in 
their use of compute resources. Furthermore, the compression is done in an opportunistic 
manner, whenever there is “slack time” on the embedded microcontroller so that the 
application’s timing requirement is not violated. 

Countering strategic adversaries in inter-dependent CPS 

We are also working on security of Cyber Physical Systems (CPS), taking a macro, economics-
oriented viewpoint of the problem as it applies to interacting CPS’s belonging to multiple 
organizations, such as the smart electric grid [63, 64] and industrial control systems [65]. 
Interdependent CPS’s contain competitive environments in which strategic adversaries can 
launch cyber-attacks to extract profits from the system. When multiple actors are competing, 
the disruption of key assets can create large swings in the profitability of each actor by changing 
the supply and demand dynamics of the underlying physical system. These swings in profits can 
be leveraged by an attacker to extract profits from the system. While countering these attacks 
through traditional means is one possibility, that is challenging because not all aspects of the 
CPS can be secured due to budgetary and legacy reasons as well as competitive pressures 
among the stakeholders. We explore the implications of architectural changes on system 
resilience when faced with a profit-seeking adversary. Changes in the physical system may 
mitigate or exacerbate the likelihood of cyber-attacks on system assets, and we present a 
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strategy for optimizing potential changes to minimize attacks. We also explore the impact of 
information sharing on system behavior and the potential for deception to improve system 
resilience. We exercise these design principles on real-world inter-connected CPS systems, in 
collaboration with domain experts at USC/ISI (DETER simulation testbed) and UIUC (smart 
electric grid). One example where we have successfully applied our method is an 
interconnected natural gas and electric power infrastructure to show the potential security 
improvements provided by architectural changes [63]. We have also developed a DoS injection 
tool that can simulate the DoS attack on such a system and play what-if scenarios to decide on 
security investments [66].  

Enabling robust protections for bare-metal systems 

Embedded Systems are found everywhere. The Internet of Things is increasing the number 
and connectivity of these systems. Increased connectivity makes security vitally important. 
Many of these systems are and will be small bare-metal systems. Bare-metal systems execute a 
single application directly on the hardware without multiple layers of abstractions. This 
software must manage the hardware and implement the application logic. Fundamental in 
bare-metal system design is a tension between security and software design. Security requires 
that access to some hardware (e.g. changing memory protections) be restricted, but as the only 
software running on the system, it must be able to manage all hardware. We solve this tension 
by use of our technique called privilege overlays [67]. Privilege overlays use static analysis to 
identify those instructions of the program that must execute with privileges, and enables 
elevating only these instructions to execute with privileges. This provides the foundation on 
which code integrity, diversity, and strong stack protections are built. Our compiler, EPOXY 
(Figure 9), based on an LLVM pass, enables these protections to be applied without modifying 
the application logic. We show that these protections are both effective from a security 
perspective and on average have less than a 2% impact on execution time and energy 
consumption. 
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Figure 9. Schematic showing our security technique for executing code on bare-metal systems 
with the minimum privilege level required. The system called EPOXY, introduces privilege 

overlays inserted through a compiler pass, to elevate the privileges of only those few pieces 
of code that need to perform security-sensitive operations, such as, changing the locations of 

the interrupt vector tables.  

Data analysis for failures in mobile devices 

For the smartphone study, we have analyzed the bug reports of the two open source OSes – 
Android and Symbian OS and come up with a failure characterization in the different modules 
[32]. Our study indicates that Development tools, Web browsers, and Multimedia applications 
are most error-prone in both these systems. We further categorized the different types of code 
modifications required for the fixes. The analysis shows that 78% of errors required minor code 
changes, with the largest share of these coming from modifications to attribute values and 
conditions. Our final analysis focuses on the relation between customizability, code complexity, 
and reliability in Android and Symbian. We find that despite high cyclomatic complexity, the 
bug densities in Android and Symbian are surprisingly low. However, the support for 
customizability does impact the reliability of mobile OSes and there are cautionary tales for 
their further development.  

In further work [33], we have developed a software fault injector to test how robust the Inter 
Process Communication (IPC) mechanism is in Android (the Android term for this is “Intent”). 
We have used the injector to discover vulnerabilities exploitable through random (or crafted) 
Intents. We then provide recommendations for hardening of Android IPC. During our 
experiments we sent more than 6 million Intents to 800+ application components across 3 
versions of Android and discovered a significant number of input validation errors. In general 
less than 10% of the components tested crashed; all crashes are caused by unhandled 
exceptions. Our results suggest that Android has a sizable number of components with 
unhandled NullPointerExceptions across all versions. The most striking finding that we have is 
the ability to run privileged processes from user level applications without requiring the user-
level application to be granted any special permission at install time. In more recent work [68], 
we have characterized the vulnerability of applications for physical fitness monitoring, 
developed in the Android Wear OS, to malformed inputs. We have found that system reboots, 
and of course application crashes, can be triggered by sending malformed inputs even at an 
unprivileged level. We have proposed some software architectural changes at the system level 
to mitigate these vulnerabilities.  

4.3 What’s Coming Up 
Our record-and-replay technique needs to take into account interactions among the nodes, 
rather than looking at a single node at a time. Such interaction can lead to propagation of 
failures. Further, is it necessary to bring the trace back to a central node for the purposes of 
recreating the events, or can replay be done opportunistically at nearby nodes. We believe this 
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is possible, and as such, will relieve the requirement to bring the bulky traces across the 
wireless network to a single central point.   

While there has been a great deal of work that analyzes security of interdependent CPS, it 
predominantly relies on classical models of perfectly rational and optimal behavior to represent 
the human decision-makers. In contrast, there is a substantial body of work in behavioral 
economics and psychology showing that humans are only partially rational and thus, 
consistently deviate from the above-mentioned classical models. For example, human 
perceptions of risks, rewards, and losses can differ substantially from their true values, and 
these perceptions can have a significant impact on the investments made to protect the 
systems that the individuals are managing.  In ongoing research, we are comprehensively 
characterizing the decisions made by humans to protect their systems using more realistic 
models of behavioral decision-making. The research encompasses both formal theory to 
rigorously analyze and predict the outcomes that should be expected under alternative models 
of behavioral decision-making, and laboratory experiments with human subjects to evaluate 
the predications made by the theory and to identify new behavioral models for analysis.   

In the area of security of embedded systems, we are pursuing three inter-locking areas of 
research: (i) Static analyses to identify security and functionality characteristics of parts of the 
application, (ii) Runtime execution techniques to minimize the performance impact of the 
privilege overlay, and (iii) Benchmarking of security and functionality achieved through 
targeted injections of exploits. 

With emerging mobile devices, we are doing reliability analysis of devices in the personal 
healthcare area (think, Google’s Moto360 watch and Fitbit wristband) to see what parts of the 
software stack are vulnerable and what systematic changes can be made to the development 
environment.  

5 Take-Aways 
There are exciting research and deployment problems in the area of dependable systems. 
Constraints and requirements from specific application domains add to the richness of our 
problem space, coming currently from scientific computing applications, internet-scale 
distributed services, computational genomics, and embedded wireless networks. At the 
Dependable Computing Systems Lab, we are forging ahead, with a diverse group of 
collaborators within and outside Purdue, within academia and in industrial organizations, to 
address some of the most important challenges in dependable system design and 
implementation. Our work is being recognized through publications at top venues, adoption 
within our collaborating industrial organizations, and our leadership role at our professional 
societies (IEEE and ACM). We encourage you to contact us if you have interests in this direction.  
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