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Federated Learning: Background
▪ Client nodes 

communicate only with 
the server and not with 
each other.

▪ Clients only share their 
local model updates 
while the data remains 
private.

▪ Server aggregates the 
local model updates to 
update the global 
model, which is sent 
back to the clients.
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local_gradsi(t+1) = 𝝯fi(x(t), Di)

x(t) = A(x(t-1), local_grads(t))



FL Vulnerabilities
▪ A malicious client can 

send faulty gradients 
to the server to throw it 
off from converging at 
the optima.

▪ The server is trusted to 
perform 
Byzantine-robust 
aggregation.
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Data Poisoning vs Model Poisoning: Model 
poisoning attacks are more potent than data 
poisoning attacks. 

Targeted vs Untargeted Attacks: Untargeted 
attacks affect all data samples and can cause 
more extensive damage compared to targeted 
attacks, which focus on specific data samples. 



Directed Deviation Attack: 
SOTA Attack in FL 
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1. Gradient Manipulation: Attackers send gradient updates deviating from the local 
optima to throw off the system from learning an accurate global model. 
2. Optima Estimation: Attackers estimate local optima direction using benign 
gradients, the accuracy of which depends on the threat model.
3. Threat Model Dependence: Precision of optima estimation varies with threat 
model - higher in white-box scenarios, lower in black-box scenarios.



FL attack: Threat model
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1. Compromised Nodes: Assume c out of m 
nodes are compromised by an adversary, 
enabling them to send malicious gradient 
updates.
2. Access to Benign Gradients: The adversary 
has access to the benign gradients of the 
compromised nodes in each learning round.
3. Knowledge of Aggregation: The adversary is 
aware of the aggregation technique used by the 
server.



FL Directed Deviation Attack
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Fang Attack [USENIX Sec ‘20]: Computes a direction vector 
along the inverse of the average benign direction.

- Krum Attack: This attack ensures all malicious models are 
close to each other with small mutual distance, fooling the Krum 
aggregator to choose the poisoned model.

- Trim Attack: This attack samples model updates per 
parameter in a way that skews the distribution toward the malicious 
direction.
Shejwalkar Attack [NDSS ‘21]: Computes a perturbation (inverse 
unit) vector and scales it up before adding to the benign updates. 
The scaling factor is tuned depending on the dataset and the 
model used.



FL attack

▪ We assume c out of m nodes have been compromised by an 
adversary – can make them send malicious gradient updates

▪ The adversary thus has access to the benign gradients of the 
compromised nodes in every round of learning.

▪ We give the adversary the knowledge of the aggregation technique 
used by the server.
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Our threat model

▪ Fang attack [1] – Computes a direction vector along the inverse of the average benign 
direction

• Krum attack -  Sends all weights along the attack direction with the same magnitude that 
has been calculated to maintain stealth.

• Trim attack – All parameter update magnitudes are sampled randomly from an interval [w, 
2w] along the attack direction

▪ Shejwalkar attack [2] – Computes a perturbation (inverse unit) vector and scales it up before 
adding to the benign updates.

• The scaling factor is optimized for maximum damage as well as stealth.

DDA types



FLAIR: Key defense idea
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1. Smooth Loss Landscape: FLAIR assumes 
a learning task with a smooth loss landscape 
around the current state of the model. 
2. Small Learning Rate: A well-chosen small 
learning rate should ensure that a large number 
of parameter gradients do not flip their direction 
with large magnitudes in a benign setting.
3. Gradient Inertia: The model maintains some 
degree of inertia in the parameter gradients, 
meaning that large changes in direction are 
unusual.
4. Detecting Attacks: Large collective flips in 
some gradient vectors are indicative of an 
attack. 



FL with FLAIR aggregation
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FLAIR: Algorithm
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FLAIR: Key defense idea 
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Detecting malicious updates from the 
flip-score



Trimming based on Flip-score
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1. Dynamic Flip-Score: Adapts to the state of the global model and the overall learning process; 
designed to detect potential malicious behavior, can manifest as either very large or very small 
flip-scores.
2. Detecting Malicious Activity: Both extremes of the flip-score spectrum can indicate malicious 
activity. This is because a poisoned global model can result in benign clients having high 
flip-scores and malicious clients having low flip-scores.
3. Penalizing High Flip-Scores: Where the global model is never poisoned, penalizing high 
flip-scores alone could suffice. This approach might inadvertently penalize benign clients making 
necessary large updates to escape local minima.
4. Cautious Approach: Without a ground truth root dataset to verify the integrity of the global 
model, FLAIR suspects clients on both ends of the flip-score spectrum. Both very high and very 
low flip-scores could indicate malicious behavior.
5. Favoring Median Flip-Scores: FLAIR favors clients with flip-scores close to the median to avoid 
any bias in the aggregation process. This approach avoids the use of hard threshold values on 
flip-scores, which could be too rigid and not adapt well to the dynamics of the learning process.
6. Dynamic Median Flip-Score: The median flip-score adjusts dynamically according to the 
model's state in the loss trajectory. During convergence, the median flip-score shifts toward lower 
values, favoring smaller updates. Conversely, when the model needs to escape a local minima, the 
median flip-score may shift toward higher values, favoring larger updates. 



Reputation scores and weights
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1. Reputation-Based Scheme: FLAIR uses a reputation system to compute the weights 
for client aggregation. Reputation scores maintain state about the clients and are uniquely 
calculated using the flip-score of local gradients.
2. Penalty and Reward: In each iteration, FLAIR penalizes the clients with the most 
extreme flip-scores (both large and small) and rewards the rest. The penalty or reward is 
based on their flip-score and ensures that the expected reputation score of a client is zero if 
their flip-scores belong to a uniform random distribution.
3. Dynamic Reputation Score: Reputation score is updated in every round based on 
client's flip-score. This allows redemption, crucial to compensate for false positive 
detections.
4. Redemption Process: Redemption allows the system to utilize data from clients that may 
have been previously penalized. However, redemption is designed to be challenging, 
especially when there are more benign clients in the system. This is because the system is 
more secure when the majority of clients are benign, and it's more cautious about reinstating 
penalized clients.
5. Balancing Security and Fairness: FLAIR's dynamic reputation score and redemption 
process provide a balance between security and fairness. It ensures that malicious clients 
are penalized while giving an opportunity for clients to recover from penalties, maintaining 
the robustness of the system.



Reputation scores and weights
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1. Penalty and Reward Calculation:
   - If penalized: W(i, t) = -(1 - (2 * c_max / m))
   - If rewarded: W(i, t) = 2 * c_max / m
Here, W(i, t) represents the penalty or reward for client 'i' at time 't'. 
'c_max' is the maximum number of clients that can be malicious, and 
'm' is the total number of clients participating in the system. 
2. Reputation Score Update:
   - RS_i(t+1) = μ_d * RS_i(t) + W(i, t)
 In this equation, RS_i(t+1) is the updated reputation score for client 
'i' at time 't+1'. μ_d is the decay factor that scales down the past 
reputation score RS_i(t). W(i, t) is the penalty or reward calculated for 
client 'i' at time 't'.
3. Reputation Weights Normalization:
   - W_R = e^(RS) / sum(e^(RS))



Experimental setup

▪ FoolsGold [Usenix ‘20], FLTrust [NDSS ‘21], FABA [IJCAI ‘19]
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Baselines - 

Datasets and models - 
▪ Image classification - MNIST (DNN), CIFAR-10 (ResNet-18), 

FEMNIST (DNN)
▪ Character prediction - Shakespeare (GRU)
▪ Default non-IID label bias set to 0.5

FL setup - 

▪ All clients have full availability and are synchronous
▪ Clients run one local iteration every communication round

• Data is sampled in a round robin manner, promoting fairness
▪ c = cmax set to stress test the defense



Macro results
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FLAIR is among the top-2 performers across datasets and attack types



Macro results
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Micro results
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Typical training dynamics 
showing how FLAIR widens 
the gap between the 
reputation of benign vs 
malicious clients 

1. Fraction of Clients: 'n' represents the fraction of clients 
that are allotted non-negligible weights. This is averaged over 
500 iterations on MNIST training.
2. Best Classification: FLAIR excels in distinguishing 
between benign and malicious clients. It assigns higher 
weights to benign clients and lower weights to malicious 
ones.
3. Effective Weight Allocation: This effective allocation of 
weights ensures that the influence of malicious clients on the 
global model is minimized, enhancing the robustness of the 
learning process.



Adaptive attack
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Adaptive attack
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1. Adversary Awareness: FLAIR-adaptive  operates under the 
assumption that an adversary has complete knowledge of the dynamic 
flip-score thresholds used in the system.
2. Stealthy Attacks: With this knowledge, an attacker could craft a 
stealthier attack, to blend in with benign gradients and bypass the 
defense mechanisms.
3. Trade-off: In trying to appear stealthy, the attacker's gradients lose 
their impact, reducing the effectiveness.
4. Defense Against High-Impact Attacks: FLAIR is designed to protect 
against high-impact attacks with anomalous gradients. The system's 
dynamic nature restricts the window of opportunity for an attacker, 
making any bypass attempts weaker.
5. Balancing Stealth and Attack Impact: FLAIR allows for the 
possibility of stealthy attacks, it ensures that these attacks have a 
reduced impact on the global model.



Takeways
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1.  Innovative Metric: FLAIR introduces the concept of a flip-score, a unique metric that 
quantifies client behavior in the context of federated learning. This score is used to 
weight client contributions, providing a robust defense against sophisticated model 
poisoning attacks.
2. Dynamic Reputation Tracking: FLAIR dynamically tracks the behavior of each client 
over time, updating their reputation scores based on their recent and past actions. This 
dynamic approach allows the system to adapt to changing behaviors and threats.
3. Redemption Opportunity: FLAIR allows for redemption! Clients that have been 
penalized for potential malicious behavior can recover their reputation by consistently 
contributing benign updates. This feature ensures fairness and maintains the 
collaborative spirit of federated learning.
4. Effective Defense Against Attacks: FLAIR effectively defends against both 
high-impact poisoning attacks and adaptive white-box attacks. By accurately identifying 
and filtering out malicious gradients, it ensures the integrity of the global model.
5. Adaptive and Resilient: FLAIR's adaptive nature makes it resilient against a variety 
of attacks. Its dynamic thresholds and reputation system adjust to the state of the global 
model and the overall learning process, providing a robust and flexible defense.

https://schaterji.io/publications/2023/flair/
https://github.com/icanforce/federated-learning-flair

https://schaterji.io/publications/2023/flair/


Current work – Security in P2PL
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1. Decentralized Learning: Clients collaborate among themselves 
without relying on a single server for the aggregation and distribution of 
the global model. Each node is responsible for its own aggregation.
2. Dissensus Problem: Without a central authority to coordinate the 
learning process, there can be disagreements among the nodes about 
the state of the global model. This can lead to inconsistencies and slow 
down the learning process.
3. Difficult Detection of Malicious Activity: Detecting malicious activity 
is more difficult here. In a centralized system, the server can monitor the 
updates from all clients and identify anomalous behavior. In a P2P 
system, each node only has a limited view of the network, making it 
harder to identify malicious activity.
4. Increased Vulnerability to Attacks: P2PL systems can be more 
vulnerable to attacks. An adversary could potentially compromise 
multiple nodes and use them to introduce malicious updates. Without a 
central authority to monitor the system, these attacks could go 
undetected for longer periods of time.
5. Need for Robust Defense Mechanisms: The challenges of P2PL 
underscore the need for robust defense mechanisms. These 
mechanisms need to be able to detect and mitigate malicious activity, 
even in the absence of a central authority. They also need to be able to 
handle the problem of dissensus and ensure that the learning process 
can continue smoothly.
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