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Federated Learning: Background
x(t)=A(x(t-1) local grads(t))

Client nodes
communicate only with
the server and not with
each other.

Clients only share their
local model updates
while the data remains
private.

Server aggregates the
local model updates to
update the global
model, which is sent
back to the clients.
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FL Vulnerabilities

Global server

= A malicious client can
send faulty gradients
to the server to throw it
off from converging at
the optima.

= The server is trusted to

erform
E : Data Poisoning vs Model Poisoning: Model
yzantln_e'rObUSt poisoning attacks are more potent than data
aggregation. poisoning attacks.
Targeted vs Untargeted Attacks: Untargeted
attacks affect all data samples and can cause
more extensive damage compared to targeted
attacks, which focus on specific data samples.
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Directed Deviation Attack:

SOTA Attack in FL

1. Gradient Manipulation: Attackers send gradient updates deviating from the local
optima to throw off the system from learning an accurate global model.

2. Optima Estimation: Attackers estimate local optima direction using benign
gradients, the accuracy of which depends on the threat model.

3. Threat Model Dependence: Precision of optima estimation varies with threat
model - higher in white-box scenarios, lower in black-box scenarios.

Loss Loss




FL attack: Threat model

1. Compromised Nodes: Assume ¢ out of m
nodes are compromised by an adversary,
enabling them to send malicious gradient
updates.

2. Access to Benign Gradients: The adversary
has access to the benign gradients of the
compromised nodes in each learning round.

3. Knowledge of Aggregation: The adversary is
aware of the aggregation technique used by the
server.




FL Directed Deviation Attack

Fang Attack [USENIX Sec ‘20]: Computes a direction vector
along the inverse of the average benign direction.

- Krum Attack: This attack ensures all malicious models are
close to each other with small mutual distance, fooling the Krum
aggregator to choose the poisoned model.

- Trim Attack: This attack samples model updates per
parameter in a way that skews the distribution toward the malicious
direction.

Shejwalkar Attack [NDSS ‘21]. Computes a perturbation (inverse
unit) vector and scales it up before adding to the benign updates.
The scaling factor is tuned depending on the dataset and the
model used.
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FL attack

Our threat model

= We assume c out of m nodes have been compromised by an
adversary — can make them send malicious gradient updates

= The adversary thus has access to the benign gradients of the
compromised nodes in every round of learning.

= We give the adversary the knowledge of the aggregation technique
used by the server.

DDA types

= Fang attack [1] — Computes a direction vector along the inverse of the average benign
direction

+ Krum attack - Sends all weights along the attack direction with the same magnitude that
has been calculated to maintain stealth.

« Trim attack — All parameter update magnitudes are sampled randomly from an interval [w,
2w] along the attack direction

= Shejwalkar attack [2] — Computes a perturbation (inverse unit) vector and scales it up before
adding to the benign updates.

« The scaling factor is optimized for maximum damage as well as stealth
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FLAIR: Key defense idea

1. Smooth Loss Landscape: FLAIR assumes

a learning task with a smooth loss landscape
around the current state of the model. Hoss
2. Small Learning Rate: A well-chosen small
learning rate should ensure that a large number
of parameter gradients do not flip their direction
with large magnitudes in a benign setting.

3. Gradient Inertia: The model maintains some
degree of inertia in the parameter gradients,
meaning that large changes in direction are
unusual.

4. Detecting Attacks: Large collective flips in
some gradient vectors are indicative of an
attack.
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FLAIR: Algorithm

Algorithm: Federated Learning with FLAIR

Output: Updated Global Model GM(t+1)
Input: Local Model Updates ALM _i(t+1)
Parameters: Total clients 'm', Maximum malicious clients 'c_max', Decay factor 'n_d'

# Initialization
0: Initialize reputation scores RS i(0) for all clients 'i' to 0
1: Initialize global direction vector s_g(0) to a zero vector

# For each client, compute flip-score and update reputations

2: for each client '1":

3:  Compute flip-score FS i(t+1) using local model updates ALM _i(t+1) and global direction s_g(t)
4: Penalize 'c max' clients with extreme FS values by decreasing their reputation scores

5: Reward the remaining clients by increasing their reputation scores

# Normalize reputation weights and aggregate gradients
6: Normalize reputation weights: W_R = e*(RS) / sum(e”(RS))
7: Aggregate gradients: AGM(t+1) =W R "T * w

# Update global direction and model
8: Update global direction: s_g(t+1) = sign(AGM(t+1))
9: Update global model: GM(t+1) = GM(t) + AGM(t+1)

# Broadcast the updated global model
10: Broadcast GM(t+1)
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FLAIR: Key defense idea

Detecting malicious updates from the

flip-score

(a) Only benign updates aggregated
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Trimming based on Flig

1. Dynamic Flip-Score: Adapts to the state of the global model and the overall learning process;
designed to detect potential malicious behavior, can manifest as either very large or very small
flip-scores.

2. Detecting Malicious Activity: Both extremes of the flip-score spectrum can indicate malicious
activity. This is because a poisoned global model can result in benign clients having high
flip-scores and malicious clients having low flip-scores.

3. Penalizing High Flip-Scores: Where the global model is never poisoned, penalizing high
flip-scores alone could suffice. This approach might inadvertently penalize benign clients making
necessary large updates to escape local minima.

4. Cautious Approach: Without a ground truth root dataset to verify the integrity of the global
model, FLAIR suspects clients on both ends of the flip-score spectrum. Both very high and very
low flip-scores could indicate malicious behavior.

5. Favoring Median Flip-Scores: FLAIR favors clients with flip-scores close to the median to avoid
any bias in the aggregation process. This approach avoids the use of hard threshold values on
flip-scores, which could be too rigid and not adapt well to the dynamics of the learning process.

6. Dynamic Median Flip-Score: The median flip-score adjusts dynamically according to the
model's state in the loss trajectory. During convergence, the median flip-score shifts toward lower
values, favoring smaller updates. Conversely, when the model needs to escape a local minima, the
median flip-score may shift toward higher values, favoring larger updates.




Reputation scores and weights

1. Reputation-Based Scheme: FLAIR uses a reputation system to compute the weights
for client aggregation. Reputation scores maintain state about the clients and are uniquely
calculated using the flip-score of local gradients.

2. Penalty and Reward: In each iteration, FLAIR penalizes the clients with the most
extreme flip-scores (both large and small) and rewards the rest. The penalty or reward is
based on their flip-score and ensures that the expected reputation score of a client is zero if
their flip-scores belong to a uniform random distribution.

3. Dynamic Reputation Score: Reputation score is updated in every round based on
client's flip-score. This allows redemption, crucial to compensate for false positive
detections.

4. Redemption Process: Redemption allows the system to utilize data from clients that may
have been previously penalized. However, redemption is designed to be challenging,
especially when there are more benign clients in the system. This is because the system is
more secure when the majority of clients are benign, and it's more cautious about reinstating
penalized clients.

5. Balancing Security and Fairness: FLAIR's dynamic reputation score and redemption
process provide a balance between security and fairness. It ensures that malicious clients
are penalized while giving an opportunity for clients to recover from penalties, maintaining
the robustness of the system.



Reputation scores and weights

1. Penalty and Reward Calculation:

- If penalized: W(i, t) =-(1-(2 * ¢c_max/ m))

- If rewarded: W(i,t) =2 *c_max/m
Here, W(i, t) represents the penalty or reward for client 'i' at time 't'.
'c_max' is the maximum number of clients that can be malicious, and
'm' is the total number of clients participating in the system.
2. Reputation Score Update:

- RS i(t+1) = u_d * RS _i(t) + W(i, t)

In this equation, RS i(t+1) is the updated reputation score for client
'I'at time 't+1'. y_d is the decay factor that scales down the past
reputation score RS _i(t). W(i, t) is the penalty or reward calculated for
client 'l at time 't'.

3. Reputation Weights Normalization:
-W_R = eMRS) / sum(e?(RS))



Experimental setup

Baselines -
= FoolsGold [Usenix ‘20], FLTrust [NDSS ‘21], FABA [IJCAI ‘19]

Datasets and models -

= |mage classification - MNIST (DNN), CIFAR-10 (ResNet-18),
FEMNIST (DNN)

= Character prediction - Shakespeare (GRU)

= Default non-IID label bias set to 0.5

FL setup -

= All clients have full availability and are synchronous
= Clients run one local iteration every communication round

» Data is sampled in a round robin manner, promoting fairness
= ¢c=c,__ setto stress test the defense
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Macro results

Table 1: Impact of Directed Deviation Model Poisoning Attacks: This table presents the test accuracy for directed deviation
model poisoning attacks (Full-Krum; Full-Trim) on various datasets with a ¢c/m ratio of 0.2. For the Shakespeare dataset, we
report the test loss instead. The results highlight the damaging impact of Full-Trim attacks on mean-like aggregations (FedSGD,
Trimmed mean, Median) and Full-Krum attacks on Krum-like aggregations (Krum, Bulyan). While existing defenses such as
FABA, FoolsGold, and FLTrust show mixed results, our proposed method, FLAIR, consistently outperforms in all cases.

Attack Defense Metrics
MNIST+ DNN CIFAR-10+ ResNet-18 Shakespeare+ GRU FEMNIST+ DNN

None FedSGD 9245 7117 1.62 83.60
FLAIR 92.52 66.92 1.64 83.58

FABA 91.77 69.94 1.76 82.69
FoolsGold 91.20 70.71 1.63 83.80

FLTrust 87.70 68.08 1.62 82.72

Full-Krum  FedSGD 82.97 39.68 1.62 29.87
Krum 8.92 9.81 11.98 5.62

Bulyan 10.14 13.24 9.23 9.91

FLAIR 87.73 61.26 1.64 80.19

FABA 86.99 55.96 1.75 55.61

FoolsGold 47.12 42.28 1.63 0.07

FLTrust 82.50 65.25 1.67 79.53

Full-Trim FedSGD 65.25 47.32 1.74 32.34
Trim 36.36 55.25 3.28 13.03

Median 28.37 50.54 3.30 45.6

FLAIR 90.55 67.65 1.66 82.51

FABA 91.84 67.31 1.64 79.66

FoolsGold 91.61 69.24 1.66 83.09

FLTrust 34.20 64.23 1.68 79.28

' I
FLAIR is among the top-2 performers across datasets and attack types




Macro results

Table 3: Comparison of test accuracies for FLAIR under SHE-
JWALKAR attack, with and without the knowledge of the ag-
gregator. The performance of FLAIR is compared against the
baseline FedSGD model on two datasets: MNIST and CIFAR-
10. The table illustrates FLAIR’s robustness in the face of
attacks and its ability to maintain high accuracy rates.

AGR AGR-knowledge MNIST CIFAR-10

FedSGD No 10.10 10.00
Yes 10.09 10.00
FLAIR No 92.25 69.35
Yes 02.83 69.98
E PURDUE
UNIVERSITY 18




Micro results

Table 4: Comparison of the fraction of malicious and benign
clients assigned non-negligible weights (greater than 10™%)
by different defense mechanisms, averaged over 500 itera-
tions. The table highlights the performance of FoolsGold,
FLTrust, and FLAIR under Full-trim and Full-krum attacks.

ligible weight to a significant fraction of benign clients in

1. Fraction of Clients: 'n' represents the fraction of clients
that are allotted non-negligible weights. This is averaged over
500 iterations on MNIST training.

2. Best Classification: FLAIR excels in distinguishing
between benign and malicious clients. It assigns higher
weights to benign clients and lower weights to malicious
ones.

3. Effective Weight Allocation: This effective allocation of
weights ensures that the influence of malicious clients on the
global model is minimized, enhancing the robustness of the

It is evident that FoolsGold and FLTrust often assign neg- 20121
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order to achieve high detection coverage. In contrast, FLAIR g"
consistently assigns higher weights to benign clients, demon- =
strating its superior ability to differentiate between benign 2
and malicious clients under various attack scenarios. 3
W
©
Defense | Type | Benign | Full-Trim | Full-Krum 8
FoolsGold | npen | 0.29 0.30 0.10 z
Nyl . 0.00 0.64
FLTrust Npen 0.48 0.45 0.49 0.000 -
Nymal - 0.52 0.63
FLAIR | npe, | 0.75 0.75 0.63
Mol . 0.00 0.08

Variation of reputation weight, Full-krum on DNN+MNIST

——  malicious
—— benign

|
Typical training dynamics
showing how FLAIR widens
the gap between the
reputation of benign vs
malicious clients
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otive attack

Weighted-Adaptive-Trim attack on DNN+MNIST FLAIR test accuracy on MNIST with Full-Trim attack
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Figure 6: The left panel of the figure illustrates the test ac-
curacy of FLAIR when assessed on the MNIST dataset under
default conditions, with 100 total clients (m = 100) and 20 ma-
licious clients (c = 20). In this scenario, the adversary imple-
ments a Weighted-Adaptive-Trim attack on the system. This
is compared with the baseline performance of FedSGD when
subjected to a Full-Trim attack. Despite the sophisticated at-
tack, FLAIR successfully defends the system, achieving a test
accuracy of 90%. The right panel of the figure presents the
performance of FLAIR on the MNIST dataset as the number
of malicious clients (c) increases. It is evident that FLAIR
maintains stability across a broad range of c values, only
faltering when c exceeds 0.45. This threshold is close to the
theoretical limit of ¢ = 0.57, beyond which the system is
expected to break down. These results underscore the robust-
ness of FLAIR in defending against sophisticated attacks,
even when the proportion of malicious clients is high.
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Adaptive attack

1. Adversary Awareness: FLAIR-adaptive operates under the
assumption that an adversary has complete knowledge of the dynamic
flip-score thresholds used in the system.

2. Stealthy Attacks: With this knowledge, an attacker could craft a
stealthier attack, to blend in with benign gradients and bypass the
defense mechanisms.

3. Trade-off: In trying to appear stealthy, the attacker's gradients lose
their impact, reducing the effectiveness.

4. Defense Against High-Impact Attacks: FLAIR is designed to protect
against high-impact attacks with anomalous gradients. The system's
dynamic nature restricts the window of opportunity for an attacker,
making any bypass attempts weaker.

5. Balancing Stealth and Attack Impact: FLAIR allows for the
possibility of stealthy attacks, it ensures that these attacks have a
reduced impact on the global model.



1. Innovative Metric: FLAIR introduces the concept of a flip-score, a unique metric that
quantifies client behavior in the context of federated learning. This score is used to
weight client contributions, providing a robust defense against sophisticated model
poisoning attacks.

2. Dynamic Reputation Tracking: FLAIR dynamically tracks the behavior of each client
over time, updating their reputation scores based on their recent and past actions. This
dynamic approach allows the system to adapt to changing behaviors and threats.

3. Redemption Opportunity: FLAIR allows for redemption! Clients that have been
penalized for potential malicious behavior can recover their reputation by consistently
contributing benign updates. This feature ensures fairness and maintains the
collaborative spirit of federated learning.

4. Effective Defense Against Attacks: FLAIR effectively defends against both
high-impact poisoning attacks and adaptive white-box attacks. By accurately identifying
and filtering out malicious gradients, it ensures the integrity of the global model.

5. Adaptive and Resilient: FLAIR's adaptive nature makes it resilient against a variety
of attacks. Its dynamic thresholds and reputation system adjust to the state of the global
model and the overall learning process, providing a robust and flexible defense.

| https://schaterji.io/publications/2023/flair/
https://github.com/icanforce/federated-learning-flair
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1. Decentralized Learning: Clients collaborate among themselves
without relying on a single server for the aggregation and distribution of
the global model. Each node is responsible for its own aggregation.

2. Dissensus Problem: Without a central authority to coordinate the
learning process, there can be disagreements among the nodes about
the state of the global model. This can lead to inconsistencies and slow
down the learning process.

3. Difficult Detection of Malicious Activity: Detecting malicious activity
is more difficult here. In a centralized system, the server can monitor the
updates from all clients and identify anomalous behavior. In a P2P
system, each node only has a limited view of the network, making it
harder to identify malicious activity.

4. Increased Vulnerability to Attacks: P2PL systems can be more
vulnerable to attacks. An adversary could potentially compromise
multiple nodes and use them to introduce malicious updates. Without a
central authority to monitor the system, these attacks could go
undetected for longer periods of time.

5. Need for Robust Defense Mechanisms: The challenges of P2PL
underscore the need for robust defense mechanisms. These
mechanisms need to be able to detect and mitigate malicious activity,
even in the absence of a central authority. They also need to be able to
handle the problem of dissensus and ensure that the learning process
can continue smoothly.

Current work — Security in P2PL
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