Morshed: Guiding Behavioral Decision-Makers towards better Security Investment in Interdepndent Systems

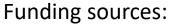
Mustafa Abdallah

School of Electrical and Computer Engineering
Purdue University

Based on joint work with

Daniel Woods³, Parinaz Naghizadeh², Issa Khalil⁴, Timothy Cason³, Shreyas Sundaram¹, and Saurabh Bagchi¹

¹School of Electrical and Computer Engineering, Purdue University ²School of Electrical and Computer Engineering, Ohio State University ³Krannert School of Management, Purdue University. ⁴Qatar Computing Research Institute (QCRI).



Agenda

- Motivation
- Main Contributions
- Related Work
- System Overview
- Multi-round Analysis
- Evaluation
- Human Subject Experiment
- Conclusion

Motivation

- Security of large-scale systems (such as the power grid, industrial plants, and computer networks) depends critically on human decisions.
- Many papers on optimal decision making for protecting interconnected systems (e.g., [Laszka et. al., CSUR 2015, La, TON 2016, Alpcan et. al., CUS 2010]).
 - Rely on classical economic models of perfectly rational and optimal behavior for human decision-makers.

- However, behavioral economics shows humans are only partly rational and consistently deviate from the above-mentioned classical models.
 - Prospect theory (Kahneman and Tversky 2002 Nobel Prize in economics).

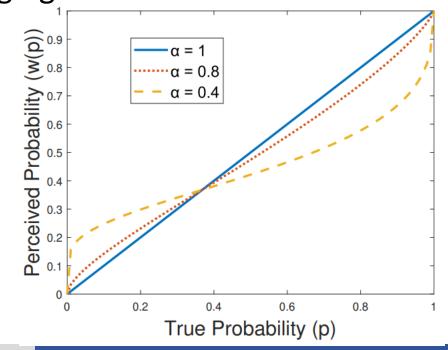
Behavioral Weighting Function

 Prospect theory showed that human perceptions of rewards and losses can differ substantially from their true values.

• These perceptions can have a significant impact on the investments made to protect the systems that the individuals are managing.

- Humans overweight low attack probabilities and underweight large attack probabilities.
- Example: Prelec [1998] weighting function: $w(p) = \exp(-(-\ln(p))^{\alpha})$ where $\alpha \in (0,1]$.

• The smaller is α , the greater is the degree of bias.



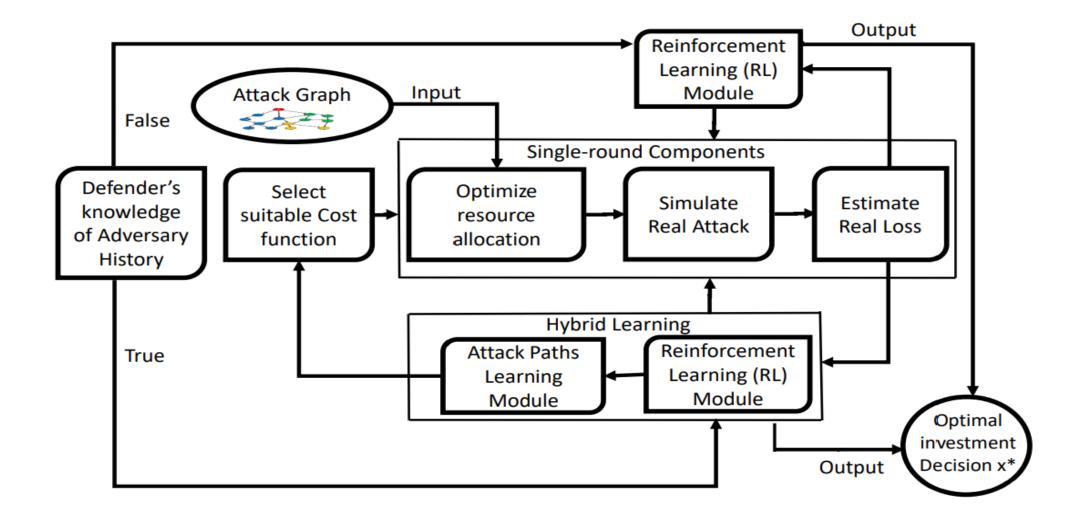
Main Contributions

- We propose a security investment guiding technique for the defenders of interdependent systems where defenders' assets have mutual interdependencies.
- We show the effect of behavioral biases of human decision-making on system security under different attack types.
- We propose different learning techniques for a multi-round setup to enhance behavioral decision-making in our game-theoretic framework involving attack graph models of large-scale interdependent systems.
- We evaluate our algorithms via **five interdependent systems** with real attack scenarios and validate our findings by controlled **human subject experiment**.

Related Work

System	Multiple Defenders	Interdependent Subnetworks	Analytical Framework	Behavioral Biases	Various Attack Types	Multiple Rounds
RAID08 [Howard et. al.] MILCOM06 [Lipman et. al.]	×	√	×	×	*	*
S&P02 [Sheyner et. al.] CCS12 [Yan et. al.]	×	*	✓	×	*	*
S&P09 [Acquisti] EC18 [Redmiles et. al.] ACSAC12 [Anderson]	*	*	*	√	*	*
TCNS20 [Abdallah et. al.] TCNS18 [Hota et. al.]	\checkmark	\checkmark	\checkmark	✓	*	×
MORSHED	✓	\checkmark	\checkmark	✓	✓	\checkmark

High Level System Overview



Single Round Gain for Different Systems

- We evaluate Morshed using five synthesized attack graphs that represent realistic interdependent systems and attack paths through them.
- The Avg Gain is the ratio of the weighted sum of total system loss by behavioral decision-maker to the total system loss by Morshed assuming that 50% of the decision-makers are fully rational and 50% are behavioral defenders.
- The Max Gain is the ratio of the total system loss of the highest behavioral defenders to that with rational defenders.

System	# Nodes	# Edges	# Min-cut Edges	Avg Gain	Max Gain
SCADA-external	13	20	2	1.43	2.63
SCADA-internal	13	26	8	4.43	9.42
DER.1	22	32	2	1.29	2.38
IEEE 300-bus	300	822	98	5.85	11.25
E-Commerce	18	26	1	3.70	18.28
VOIP	20	28	2	4.46	18.66

Analysis of Multi-Rounds

- We consider a defender who plays multiple rounds of the game.
- The defender learns from observing the attack in each round.
- In each round, each defender plays **single-shot** game with the attacker, allocating all her security budget.
- Research Questions: we explore two different forms of learning:
 - Q1: What can the defender learn about an attacker over time?
 - Q2: How can repeated interactions lead to decrease in the defenders' extent of behavioral decision-making (i.e., increase in α)?

Learning Attack Paths over Time

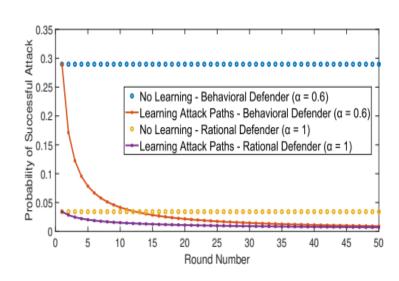
```
Algorithm 1: Learning Attack Paths
 Input: Set of attack paths \mathcal{P}_m, number of rounds N_R and
         history of attack paths (P^{t-N}, \cdots, P^{t-1})
 Output: Vector of investments over rounds, O
 Round Number = t = 0
 while t < N_R do
     for v_m \in V_k do // Estimate Paths' weights for each critical asset
      C_k^t(x_k) = \sum_{v_m \in V_k} L_m \Big( \sum_{P \in P_m} \beta_P^t \prod_{(v_i, v_j) \in P} w(p_{i,j}(x_{i,j})) \Big) \text{ // Modify the perceived cost based on estimated weights} x_k^t \in \underset{X_k}{argmin_{x_k \in X_k}} C_k^t(x_k) Append (O, x_k^t)
 Return O
```

Attack Types

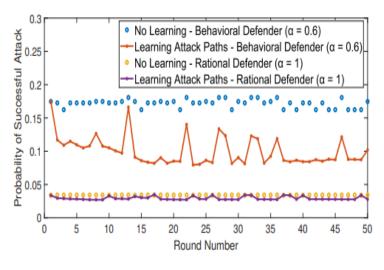
- Replay attacker: chooses the same attack path for every critical asset in every round (limited observations or automated attack process).
- Randomizing attacker: chooses an attack path (for every critical asset)
 randomly each round with a probability following a uniform distribution
 over the possible attack paths to that asset.
- Adaptive attacker: chooses the least chosen attack path in the past N moves (for every critical asset).
- Minmax attacker: chooses the attack path with the highest probability of successful attack (for every critical asset).

Results of Learning History Attack Paths

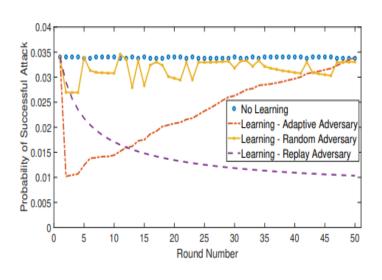
- Replay attacker pattern can be expected in less rounds and thus the defender can decreases its adverse effects.
- Random attacker distribution can be expected in some sense.
- Adaptive attacker is the most challenging attack type.



(a) Attacker chooses same attack paths



(b) Attacker chooses attack paths randomly



(c) Different attack types comparison

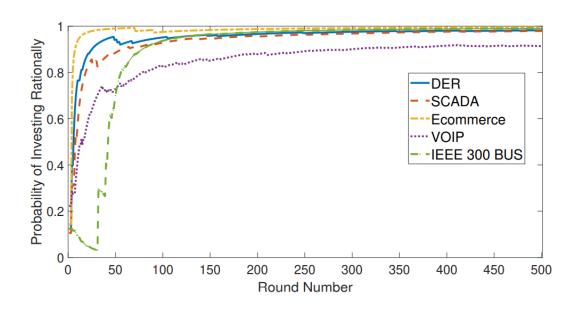
Reinforcement Learning of Behavioral Bias

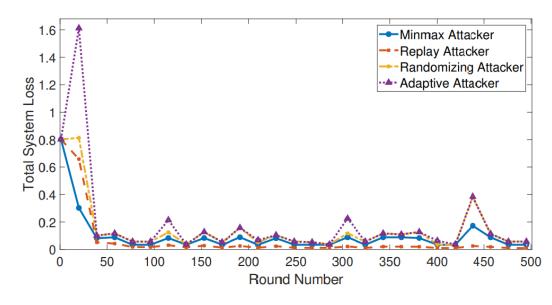
```
Algorithm 2: Reinforcement Learning to Reduce
Behavioral Biases
 Input: Set of behavioral levels \alpha and number of rounds N_R
 Output: Vector of behavioral level over rounds O
 Round Number = t = 0
 q^0(\alpha_i) = A and q^0(\alpha_i) = B \forall j \neq i
 while t < N_R or not Convergence to \alpha_i = 1 do
     for \alpha_i \in \alpha do
          if \alpha_i was observed in round t then
      x_k^t \in argmin_{x_k \in X_k} C_k^t(x_k, \alpha_i)
R^t = \hat{C}_{max} - \hat{C}_k^t(x_k^t) \quad // \text{ Receive reward (punishment) of that round}
q^{t+1}(\alpha_i) = q^t(\alpha_i) + R^t
        else
     Sample random \alpha_i with probability p^{t+1}(\alpha_i) to get \alpha^{t+1}
     Append (O, \alpha^{t+1})
 Return O
```

Results of Reinforcement Learning

- Our Reinforcement learning algorithm converges to rational behavior for the five studied interdependent systems.
- The defense is enhanced under learning (in terms of Total System Loss).

 The spikes (that represents investing suboptimally) decrease in later rounds.





Comparison with Baselines

We compare our system with two baselines:
 O. Sheyner, S&P 2002 [31] (allocates security investments using classical decision-making models).

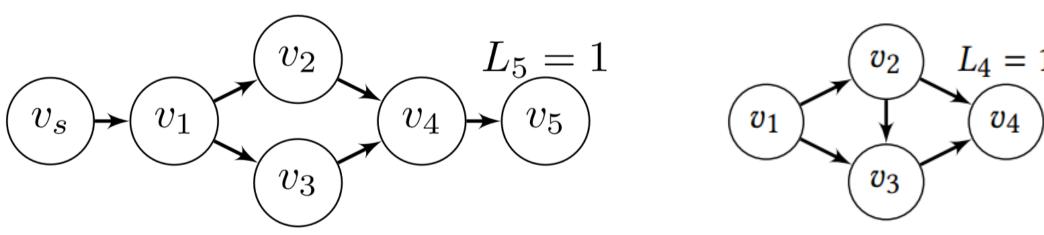
Lippmann, MILCOMM 2006 [21] (uses **defense in depth** technique by traversing all edges that can be used to compromise each critical asset and distribute resources equally on them).

- Same performance (probability of successful attack (PSA)) in single-round.
- In multi-round, learning in Morshed is dynamic in contrast to the baselines which results in better performance (i.e., lower PSA).

System Setup	[31]	[21]	Morshed				
DER.1							
	PSA						
Single-round	0.075	0.208	0.075				
Multi-round, Random Att.	0.095	0.205	0.080				
Multi-round, Replay Att.	0.075	0.208	0.037				
Multi-round, Adaptive Att.	0.091	0.209	0.080				
SCADA							
Single-round	0.035	0.110	0.035				
Multi-round, Random Att.	0.034	0.582	0.029				
Multi-round, Replay Att.	0.033	0.110	0.010				
Multi-round, Adaptive Att.	0.035	0.582	0.035				
VOIP							
Single-round	0.337	0.556	0.337				
Multi-round, Random Att.	0.348	0.559	0.313				
Multi-round, Replay Att.	0.337	0.556	0.084				
Multi-round, Adaptive Att.	0.354	0.559	0.313				
E-commerce							
Single-round	0.124	0.276	0.124				
Multi-round, Random Att.	0.139	0.572	0.097				
Multi-round, Replay Att.	0.124	0.276	0.007				
Multi-round, Adaptive Att.	0.139	0.569	0.097				
IEEE 300-BUS							
Single-round	0.431	0.653	0.431				
Multi-round, Random Att.	0.439	0.680	0.168				
Multi-round, Replay Att.	0.431	0.653	0.086				
Multi-round, Adaptive Att.	0.448	0.680	0.186				

Human Subject Experiments

- All experiments have been performed by Daniel Woods.
- 145 Students from different departments and different levels.
- Each subject took 10 rounds of investments for four different networks.
- Instructions about experiments were written and provided to subjects.
- Monetary awards were given to the subject who defends correctly (by choosing one random round).



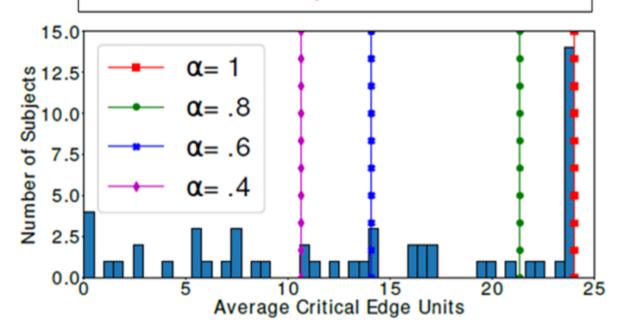
Network with critical edge (Probability Weighting Bias)

Network with cross-over edge (Spreading Bias)

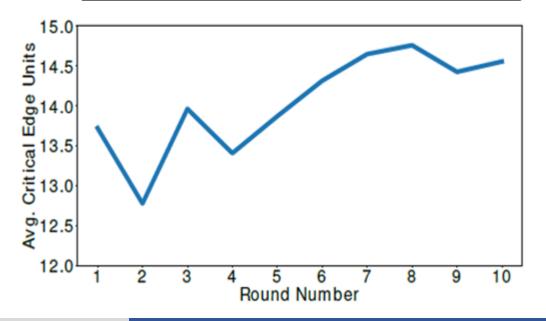
Human Subject Experiments

A) Probability Weighting Bias

- 24% of the subjects make rational decisions
- 76% of the subjects are behavioral



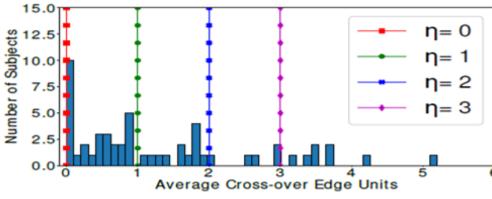
- 20.45% make worse decisions in later rounds,
- 45.45% exhibit no learning across rounds,
- 34.10% improve their investments.

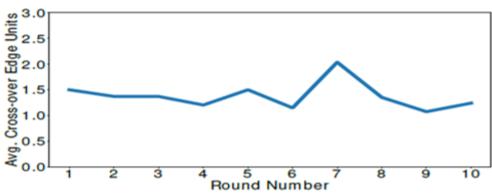


Human Subject Experiments

B) Spreading Heuristics Bias

18.5% of the subjects are non-spreaders81.5% of the subjects are spreadersWeak downward trend across rounds





- Experiments motivated a new bias parameter (spreading level η), which shows that human tends to spread the budget even over the edges that does not affect the loss.
- In sum, Human subject Experiments validated our results about suboptimal investments made by human security decision-makers.

Conclusion

- Proposed a game-theoretic framework involving attack graph models of large-scale interdependent systems and multiple behavioral defenders.
- Proposed different learning modules for enhancing decision-making.
 - Learning History: Predict chosen attack paths over time.
 - Reinforcement Learning: Learn rational behavior over time.
- Evaluated our system via **five interdependent systems** with real attack paths.
- Human experiments validated our predictions.

Thank you

Questions!