The Mystery of the Failing Jobs: Insights from Operational Data from Two University-Wide Computing Systems

Rakesh Kumar¹, Saurabh Jha², Ashraf Mahgoub¹, Rajesh Kalyanam¹, Stephen L Harrell¹, Xiaohui Carol Song¹, Zbigniew Kalbarczyk², William T Kramer², Ravishankar K Iyer², Saurabh Bagchi¹

1: Purdue University, 2: University of Illinois at Urbana-Champaign

Supported by NSF

Slide 1/38

Overview

- Introduction
- System and Data Details
- Job Characteristics
- Analyses
 - Job Categories Based on Exit Statuses
 - Effect of Resource Usage on Job Failures
 - Predicting Job Failures and a Better Checkpointing Method
- Open Challenges
- Conclusion

Introduction

- · Job failure leads to resource wastage and user dissatisfaction
- University computing clusters are uniquely challenging:
 - Heterogeneity of jobs: Compute-Intensive, Memory-Intensive, IO-Intensive
 - Varied expertise level of the users
 - Relatively smaller size of the system administration staff
- The most comprehensive dataset publicly analyzed to date in terms of variety of data sources
 - Accounting logs, resource utilization stats, failure reports
 - System-A: Less expensive HW, 617 users, ∼3M jobs
 - System-B: More expensive HW, 467 users, ~2M jobs
- New insights and old insights in new environments
 - Recommendations to reduce job failure/resource wastage for both system user and system admin
 - Build an actionable failure prediction model based on resource usages

Slide 3/38

System and Data Details

- System A
 - 580 nodes, Intel Xeon E5-2670 processors, 64 GB/node, 100 MB/s local IO
 BW, 23 GB/s network IO BW
- System B
 - 26,868 nodes, AMD 6276 Interlagos processors, 64 GB/node, 1.1 TB/s network IO BW
- Data
 - Accounting logs
 - Resource Utilization Stats
 - 5-minute granularity for System A and 1-minute granularity for System B
 - Node Failure Reports

Summary of Data Analyzed

Computing Cluster		System A	System B	
Duration		Mar 2015-Jun 2017	Feb-June 2017	
# jobs		2,908k	2,219k	
shared	# single	1,125k (38.7%, 15.8%)	-	
	# multi	28k (1.0%, 1.9%)	-	
	total	1,153k (39.7%, 17.7%)	-	
	# single	1,348k (46.3%, 18.4%)	1,640k (73.9%, 5.4%)	
non-shared	# multi	407k (14.0%, 63.9%)	580k (26.1%, 94.6 %)	
	total	1,755k (60.3%, 82.3%)	2,219k (100%)	
# unique users		617	467	

- All production jobs
- Node-seconds = #nodes x execution time
- The percentages in parenthesis refers to the raw counts and node-seconds
- Sharing allows multiple jobs to run on the same node
 - System A: 39.7% by count and 17.7% by node-seconds

Slide 5/38

Job Characteristics

- · Job size
 - Single node jobs by count
 - System A: 85%, System B: 74%
 - Single node jobs by node-seconds
 - System A: 34%, System B: 5%

Job Characteristics

- Job node-seconds
 - System A and System B: 50% of the jobs run for less than ~10³ nodeseconds
 - System B: Jobs run up to $\sim 10^9$ node-seconds

Slide 7/38

Job Categories Based on Exit Statuses

Table: Job categories based on exit codes. Percentages in brackets are based on the total node-seconds

		Environment & Job Type							
		System A				System B			
		sha	shared		hared	overall	non-shared		overall
		single	multi	single	multi		single	multi	
	Success	93.1%	87.6%	87.6%	61.8 %	86.1% (48.4%)	91.6%	64.0%	84.4% (44.4 %)
Category	System	2.7%	6.5%	6.5%	8.8 %	5.3% (4.0%)	0.10%	1.0%	0.3% (1.4%)
eg	User	1.6%	2.2%	3.5%	7.2%	3.3%(12.9%)	3.8%	3.0%	3.6% (2.7%)
Cat	User/System	0.6%	0.2%	0.4%	6.1%	1.3% (1.3%)	1.2%	0.8%	3.6% (8.0%)
	Walltime	2.0%	3.5%	2.0%	16.1%	4.0% (33.4%)	3.7%	20.4%	8.0% (43.4%)
	Total	1,125k	28k	1,348k	407k	2,908k	1,640k	579k	2,219k

- Failure categories System, User, User/System
- System related failures System A: 5.3%, System B: 0.3%
- Success category
 - Multi-node System A: 61.8% (non-shared), System B: 64.0% (non-shared)
 - Single-node System A: 93.1% (shared) vs 87.6% (non-shared), System B: 91.6%
 - · Sharing does not negatively impact the jobs failure probability.
- Walltime category by node-seconds System A: 33.4%, System B: 43.3%

Effect of Resource Usage on Job Failures

- Job failure rate is defined as the fraction of jobs that fail due to system related issues
- All analyses conducted using tail utilization values

- Hypothesis testing for all correlation studies
- · Resource usage prediction models based on user profiling
 - Last: same resource usage as last finished job of a given user
 - Average: average resource usage of last 'n' finished job of a given user
 - Median: median resource usage of last 'n' finished job of a given user
 - Maximum cosine similarity: same resource usage as the most similar job based on cosine similarity

Slide 9/38

Effect of Resource Usage on Job Failures

- Memory
 - Single-node jobs: +ve correlation
 - Multi-node jobs: no correlation
 - 99th percentile value:
 - System A 11.7 GB
 - System B 45.6 GB

Jocenn	ood Type	correlation coern, p variet		
System A	Non-shared single	0.83, 1.7e-28		
	Non-shared multi	0.17, 0.4		
	Shared single	0.84, 7.2e-32		
System B	Non-shared single	0.57, 3.2e-9		
	Non-shared multi	0.13, 0.2		

Resource Usage Prediction by User Profiling

- Memory (System A)
 - MAPE of all predictors are less than 12% (for at least one history length)
 - Maximum Cosine Similarity (MCS) outperforms others
 - Use case: Predict memory usage in advance
 - · Better scheduling for heterogeneous memory cluster
 - · Better scheduling when sharing is enabled

- training set
- (a) Different models performance (b) Percentage error distribution for with different history lengths on the different models on test set with best history length as per training set.

Slide 11/38

Summary: Effect of Resource Usage on Job Failure

- Random IO access requests lead to failure even at ~1% of BW
 - Local IO (System A)
 - BW of 100MB/s while failure rate starts rising with utilization as low as 3 MB/s (shared) - 6MB/s (non-shared)
 - Remote IO (System B)
 - BW of 1.1TB/s while failures are observed with a utilization of only 46MB/s for
- Contention at remote resources (outside node) dominant in non-shared environment, while the contention at local resources (at node) dominant in shared environment.
 - Use user-based resource usage prediction while making scheduling
 - Use dynamic reconfiguration of applications based on current resource availability, such as reconfiguring the number of threads or network timeout.

Predicting Job Failure

- ML model
 - Input: current resource usages, Output: failure probability within the next monitoring window
- Better checkpointing method
 - Combine our ML model with the optimal periodic checkpointing method

Slide 13/38

A Better Checkpointing System

Normalized area under the curve (normalized with respect to jobs with no wastage execution due to failures).

	System		Periodic	ML	ML+Periodic
		shared single		0.82	0.91
MTBF=1e4,	A	non-shared single	0.81	0.89	0.94
T_S =60 sec		non-shared multi		0.90	0.95
	В	non-shared multi		0.91	0.94
		shared single	0.66	0.82	0.88
MTBF=1e5, T_S =60 sec	A	non-shared single		0.89	0.92
		non-shared multi		0.90	0.93
	В	non-shared multi		0.91	0.93
	A	shared single	0.30	0.82	0.84
MTBF=1e6,		non-shared single		0.89	0.90
T_S =60 sec		non-shared multi		0.90	0.91
	В	non-shared multi		0.91	0.92
MTBF=1e6, T_S =10 sec	A	shared single		0.95	0.95
		non-shared single	0.60	0.97	0.97
		non-shared multi		0.97	0.98
	В	non-shared multi		0.97	0.98

- ML + periodic checkpointing method outperforms the base optimal checkpointing method by between 12.3% (unreliable system with MTBF =1e4, Ts=60s) and 2X (reliable system with MTBF = 1e6 and Ts=60s).
- Savings achieved by the optimal checkpointing method in case of failure decreases as a system becomes more reliable i.e., as the MTBF increases from 1*e*4 to 1e6.

Open Challenges

- Current optimal checkpointing estimation methods take only hardware reliability (such as MTBF) into account
 - This paper integrated it with job failure likelihood information
 - A better method is to consider in addition the rate of job progress
- Current contention-aware schedulers need to profile a job first to estimate job's interference and latency-sensitivity
 - Major limitation for clusters where majority of jobs are short running
 - Use user history-based resource usage predictions to profile a job profile

Slide 15/38

Conclusion

- The most comprehensive dataset publicly analyzed to date in terms of variety of data sources
- Publicly released the dataset on which the analyses are based
- Important insights into how the clusters behave and implications for how they can be managed more effectively.

Thank You!

Slide 17/38