Human Biases Meet Cybersecurity of Embedded and Networked Systems

Saurabh Bagchi and Shreyas Sundaram
School of Electrical and Computer Engineering
CERIAS
Purdue University

Vision for Security of Embedded Systems

- Foundations for designing highly secure and resilient networked embedded systems
 - That can achieve mission success
 - Under component failures and sophisticated cyber/physical attacks
- Enable:
 - Systematic and rigorous design principles to build in security and resilience into software code bases of embedded systems
 - Real-time self-diagnostics to detect, identify, and isolate attacks and failures at millisecond level resolution
 - Rational process for deciding on where to spend security budget
 - Self-healing, real-time adaptation, and reconfiguration to achieve mission objectives
Problem Statement

- Many of our critical infrastructures run on large-scale, multi-organizational, interdependent cyberphysical systems (CPS)
- The CPS is subjected to a variety of security threats
 - cyber (e.g., sending malware against a control system)
 - physical (e.g., physically damaging a distribution line)
- Ensuring the security is a complex multi-faceted problem, and requires understanding
 - dynamics of physical systems
 - information exchange and attack propagation in cyber systems
 - human decision making during the design and operation of the coupled system
- Homogeneity in the system eases attack propagation

One Solution Direction: Randomization

- Randomization-based security[3]
 - Randomizes data as well as control to design provably secure systems
 - You cannot acquire one device and reverse engineer it to mount attacks
 - Deals with limited entropy available on embedded devices
 - Bounds degradation in resource usage or performance

Can Randomization Work for Embedded?

- Consider a class of low-end embedded platforms
- Constraints
 - Small memory sizes
 - 1 MB Flash, 128 KB’s of RAM
- Tight constraints on
 - Running time
 - Active power consumed
- Either: single application
 - No kernel/user space separation
- Or: OS with coarse-grained protection
 - Example: Entire thread needs to be provided elevated privileges

Current State of Security on Embedded Applications

Bare-metal Application

- Security Hardware
- Sensitive IO
- IO
- Global Data
- Stack
- Code
- Single (Root) execution domain

- Unused or trivially bypassed
- Always accessible
- Vulnerable to:
 - Stack smashing
 - Code injection
 - Global data corruption
- No ROP defenses
Why is Defense Hard?

- Often single binary image
 - No separation privilege levels (e.g. kernel, user)
- At best large root of trust
 - Much of code runs with elevated privileges
- Systems lack a Memory Management Unit (MMU)
 - Diversification or page-level protection of virtual memory absent
 - Defenses are limited to physical memory space
- Small memory sizes
- Tight run-time constraints: Both on mean overhead and variability

Threat Model and Requirements

- **Threat Model**
 - Arbitrary memory corruption
 - Attacker goals:
 - Take control of execution
 - Corrupt specific global data
 - Does *not* have physical access
- **Requirements**
 - Hardware support for two execution privilege modes
 - Memory Protection Unit (MPU)
 - Hardware that enforces access permissions on physical memory
Our Solution: EPOXY
Embedded Privilege Overlay across X hardware for Y software

- LLVM based compiler
- Protects against
 - Code injection
 - Control flow hijacking
 - Data corruption
 - Direct manipulation of IO
- Privilege Overlays
 - Creates two privilege levels
 - Security-sensitive operation done at higher privilege level
 - Static analysis identifies code that requires higher privileges

IoT Application After EPOXY

- Security Hardware
- Sensitive IO
- IO
- Global Data
- Stack
- Code

- Privileged Execution
- Unprivileged Execution

- Enabled enforcing DEP
 - Access Restricted
- Access Restricted
- Set to RW-NX
 - Stopping Code Injection
- Set to RX
 - Providing Code Integrity
Performance Impact

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>PO</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEEEbs Runtime</td>
<td>Min</td>
<td>Ave</td>
<td>Max</td>
</tr>
<tr>
<td>Min</td>
<td>-7.3%</td>
<td>-3.5%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Ave</td>
<td>-1.3%</td>
<td>0.1%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Max</td>
<td>-11.7%</td>
<td>1.1%</td>
<td>14.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>PO</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEEEbs Power</td>
<td>Min</td>
<td>Ave</td>
<td>Max</td>
</tr>
<tr>
<td>Min</td>
<td>-4.2%</td>
<td>0.2%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Ave</td>
<td>-10.3%</td>
<td>-0.2%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Max</td>
<td>-10.2%</td>
<td>2.5%</td>
<td>17.9%</td>
</tr>
</tbody>
</table>

SS - SafeStack Only, PO - Privilege Overlay Only

What If I Cannot Afford The Performance Impact?

- Modern critical infrastructures have a large number of assets, managed by multiple stakeholders
 - Security depends critically on interdependencies among assets
- We develop a framework for **optimal and strategic** allocation of defense resources in large-scale systems
- Example: SCADA network

Attack Graphs to the Rescue

- **Used to**
 - Analyze risk to large-scale embedded system from multi-stage attack
 - Reduction in risk by strategic investments

- **Significant prior work**
 - Bayesian analysis to determine best placement of sensors and response agents

Systematic and Rigorous Analysis of Decision-Making for Security

Key questions:
- How do we reason systematically and rigorously about the actions of the various defenders and attackers in large-scale interdependent systems?
- What kinds of security outcomes can arise under distributed and decentralized decision-making?
- How do human biases impact the security decisions?

In the rest of the talk: bring together ideas from game theory and behavioral economics/psychology to answer the above questions

What is Game Theory?

- Consider a scenario with multiple decision-makers ("players")
- Each player has an available set of actions
- Each player gets a benefit that depends on their actions, and the actions of the other players; captured by a utility function

Game Theory:
Given a set of players, a set of actions for each player, and a utility function for each player, analyze/predict the outcomes under selfish decision-making by the players

Example: Prisoner’s Dilemma

- **Players:** Two prisoners
- **Actions:** Remain Quiet / Testify
- **Utilities:**

<table>
<thead>
<tr>
<th></th>
<th>Remain Quiet</th>
<th>Testify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remain Quiet</td>
<td>5, 5</td>
<td>10, 3</td>
</tr>
<tr>
<td>Testify</td>
<td>3, 10</td>
<td>8, 8</td>
</tr>
</tbody>
</table>

Length of sentence to Player 1 if both players remain quiet
Length of sentence to Player 2 if both players remain quiet
Example: Prisoner’s Dilemma

- No matter what Player 2 does, it is best for Player 1 to testify (and vice versa)
- Outcome: both players testify (and serve 8 years)
- “Optimal” outcome: both players remain quiet (and serve 5 years)
- Selfish decision-making leads to a suboptimal outcome for both players!

```
\begin{tabular}{|c|c|c|}
\hline
\text{Prisoner 1} & \text{Remain Quiet} & \text{Testify} \\
\hline
\text{Remain Quiet} & 5, 5 & 10, 3 \\
\hline
\text{Testify} & 3, 10 & 8, 8 \\
\hline
\end{tabular}
```

Key Concept in Game Theory: Nash Equilibrium

- Consider a set of players, each taking an action
- The set of actions is said to be a Nash Equilibrium if no player can improve their utility by changing their action, when all other players keep playing their original action
- In Prisoner’s Dilemma, both players testifying is a Nash Equilibrium

- Nash equilibrium can be:
 - Pure: each player picks one specific action
 - Mixed: each player randomizes over their actions
Example: A Simple Security Game

Scenario:
- Two players: an attacker and a defender
- There are two targets
- Attacker has to choose whether to attack Target 1 or Target 2
- Defender has to choose whether to defend Target 1 or Target 2
- Defender wins if she chooses the same target as the attacker
- Attacker wins if she chooses a different target from the defender

Security Game: Utilities

- Utility matrix:

<table>
<thead>
<tr>
<th></th>
<th>Attacker</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target 1</td>
<td>Target 2</td>
</tr>
<tr>
<td>Target 1</td>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Target 2</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

- No Pure Nash Equilibrium in this game: both the attacker and defender must randomize over their actions
- Mixed Nash Equilibrium: Each player picks one of the targets to attack/defend with 50% probability
Behavioral Decision-Making

- Classical game theory assumes that the players (decision-makers) are rational, and take actions to maximize the expected value of the outcomes.
- However, behavioral economics and psychology have shown that humans systematically deviate from “classical” models of decision making.

Prospect Theory

Perceptions of values:
- **Reference dependence**: utility is derived from change in wealth rather than absolute levels of wealth.
- **Diminishing sensitivity**: risk averse in gains and risk seeking in losses.
- **Loss aversion**: disutility due to loss larger than utility due to gain of equal magnitude.

Perceptions of probabilities:
- **Overweighting** of small probabilities
- **Underweighting** of large probabilities
- **Diminishing sensitivity** for mid-range probabilities
Applications to Security: Interdependent Security Games Under Behavioral Probability Weighting

Interdependent Security Games

Players make their security investments in a shared system independently. Probability of attack is a function of investments of all players.

Question
What is the impact of behavioral perceptions of attack probabilities on the security investments?
Interdependent Security Games

- Consider a network consisting of n nodes (e.g., an attack graph)
- Each node has an associated player, who has 1 to invest in securing their node against attacks
 - Let player i’s investment be denoted by $s_i \in [0,1]$
- Probability that a node is successfully attacked is a function of security investments in the neighborhood of that node

Example: Total Effort Game
- Probability that node is successfully attacked depends on average investment in the neighborhood of that node

Optimal Security Investments Under Non-Behavioral Decision-Making

- Utility of each player in the total effort game:
 \[u_i = -L_i \left(1 - \frac{s_i + \sum_{j \in N(i)} s_j}{d_i} \right) - s_i \]
 - L_i is the loss experienced by player i due to a successful attack
 - $N(i)$: neighbors of node i
 - d_i: $1 +$ number of neighbors of node i

- Optimal investment by player i: \[s_i^* = \begin{cases} 1, & \text{when } \frac{d_i}{L_i} < 1 \\ 0, & \text{when } \frac{d_i}{L_i} \geq 1 \end{cases} \]
 - “All or nothing” investment strategy
Impact of Behavioral Probability Weighting

Question
What happens under behavioral probability weighting?

- Does a pure Nash equilibrium exist under probability weighting?
- How do the investments and security levels at equilibrium depend on the properties of weighting functions?
- How do the investments and security levels at equilibrium depend on the topological properties of the network?

Existence and Properties of Nash equilibrium

Theorem
Theorem
There exists a Pure Nash equilibrium (PNE), with player-specific probability weighting functions and cost parameters. Furthermore, in any graph (and with potentially heterogeneous players), the attack probability at each node is always less than 1 at a PNE.

- Recall: Without probability weighting, players invest 0 in certain cases
- Probability weighting eliminates such cases
Does Probability Weighting Lead to More Secure Equilibria?

Theorem
Consider a d-regular graph. Then there exists a threshold t such that:
- If $d > t$: larger probability weighting leads to a smaller attack probability at equilibrium
- If $d < t$: larger probability weighting leads to a larger attack probability at equilibrium

Interpretation:
- Effect of probability weighting most beneficial when the attack probability is high
 - e.g., in networks where each node has many neighbors
- For moderate equilibrium attack probabilities, less probability weighting results in more secure equilibrium.

Expected Fraction of Attacked Vertices

Question:
Within the class of graphs with a given number of nodes and edges, which graphs minimize the expected fraction of nodes that are successfully attacked at a Nash equilibrium?

Definition:
A quasi-complete graph $QC(n, e)$ with n nodes and e edges is defined via the following construction:
- Use as many edges as possible to build a clique
- Add the remaining edges to a single additional node and connect them to the nodes in the clique

Example: $QC(6,3)$

Example: $QC(6,5)$
Theorem:
- Within the class of graphs with n nodes and e edges, the quasi-complete graph $QC(n, e)$ minimizes the bounds on the expected fraction of successfully attacked vertices at a PNE in the Total Effort game.
- Among all connected graphs on n nodes, the expected fraction of successfully attacked nodes is smallest in the star graph.
- Among all connected graphs with a given number of edges and nodes, the expected fraction of successfully attacked nodes is highest in degree-regular graphs.

Key insight:
Collect edges on as few nodes as possible in order to concentrate attack risks on those nodes.

Ongoing Research

- Extensions to more classes of embedded devices and applications
 - Multiple privilege levels with effective switching among them
 - Handling binary libraries
 - Handling variety of third-party peripherals and their firmware
- Extensions to more general attack graph settings
 - Each defender can manage multiple assets
 - There can be multiple rounds of attack-defense
 - Different stakeholders have different degrees of knowledge about each other
- Preliminary insights:
 - It is possible to enforce multiple privilege levels for security even on low-end embedded devices
 - Behavioral decision-making can cause defenders to invest suboptimally
 - In settings with multiple defenders, behavioral players can benefit the other players
 - Removing restrictions on the locations of security investments can significantly improve system-wide security
Summary

- Current state of work:
 - Developed a suite of protocols specialized to embedded systems for control flow and data integrity protection
 - Examined the impact of behavioral perceptions of values and probabilities on security of interdependent systems and networks
- In interdependent security games:
 - Behavioral probability weighting gives rise to a much richer spectrum of Nash equilibrium than under classical models
 - Misperceptions of probabilities can be helpful for security in dense networks, where the security risk is high
 - Optimal networks to mitigate security risks involve concentrating the edges on as few nodes as possible

Thanks!