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Motivation

0 DBMS have numerous configuration parameters

NoSQL Datastores (Cassandra)

Challenges

= NoSQL Cassandra has 50+ 0 Non-relational (flexible design) 0 Configurations space is huge.
RO SIS i 2 istri 0 Searching in runtime is non-
0 Configuration parameters control the system’s 0 D'St_”bUted (fault tolerant) . |g
behavior 0 Horizontally scalable practica . .
O Parameter tuning is time-consuming for DBAs (performance scales with [# of 0 A fast and efficient approach is
o Optlma_l configurations are workload dependent inst ] needed to adapt with sudden
0 Dynamic workloads instances]) .
= MG-RAST (Metagenomic Rapid Annotations 0 25+ Conﬁguration parameters workload shifts
using Subsystems Technology): automatic | d d
phylogenetic and functional analysis of O Interdependent parameters (one-

metagenomes. It is also one of the biggest
repositories for metagenomic data.
= Wikipedia workloads

by-one tuning provides sub-
optimal performance)

Rafiki reaches within 15% of grid
search performance using only
1/10000-th of the search time

Phase 1: Varying workloads and configurations are applied to the NoSQL
datastore to identify the key configuration parameters and to generate training
data for a surrogate model.
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Phase 2: A prediction model is
used to identify the relation of
configurations and workloads to
performance.

Rafiki:
The sagacious monkey in Lion Kingh

avg. throughput

Phase 3: A search strategy is applied for a
given workload to find close-to-optimal

A high-level overview of Rafiki searching through the configuration parameters’ space of NoSQL datastores to achieve close-to-
optimal performance. Rafiki is agile enough to quickly adapt to changing workloads, such as in the MG-RAST system.

Evaluation
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Triumphs of Rafiki

We design and develop Rafiki for automatically configuring NoSQL
datastore parameters in a workload-centric manner, using traces from
MG-RAST.

We apply ANOVA-based analysis to identify the key parameters that are
the most impactful toward improving datastore throughput.

We create a DNN framework (surrogate model) to predict the
performance for unseen configurations and workloads. It achieves a
performance prediction with an error in the range of 5-7% for Cassandra
and 7-8% for ScyllaDB.

We then create a Genetic Algorithm-based search process through the
configuration parameter space, which improves the throughput for
Cassandra by 41.4% for read-heavy workloads (more relevant to MG-
RAST), and 30% on average.

To get an estimate of the upper bound of improvement, we compare
Rafiki to an exhaustive search process and see that Rafiki, using 4 orders
of magnitude lower search time than exhaustive grid search, reaches
within 15% and 9.5% of the theoretically best achievable performances
for Cassandra and ScyllaDB, respectively.

configuration. Three points are shown for the Network, as a function of the number of training
theoretically optimal performance using samples.

exhaustive searching.
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