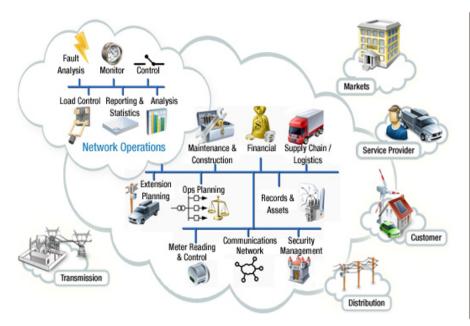
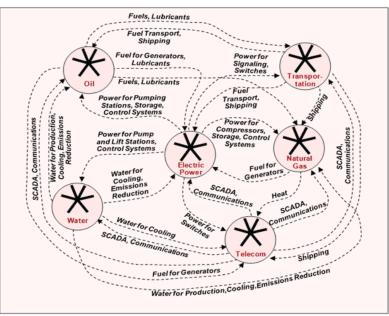
Optimal and Game-Theoretic Deployment of Security Investments in Interdependent Assets

Ashish R. Hota, Abraham A. Clements, Shreyas Sundaram and Saurabh Bagchi

School of Electrical and Computer Engineering Purdue University

Challenge

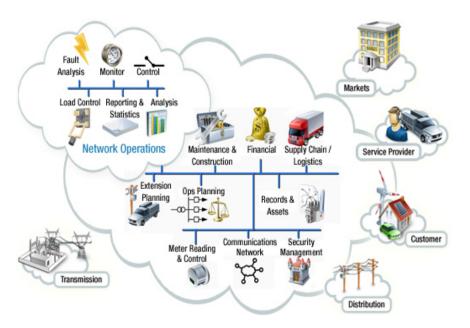


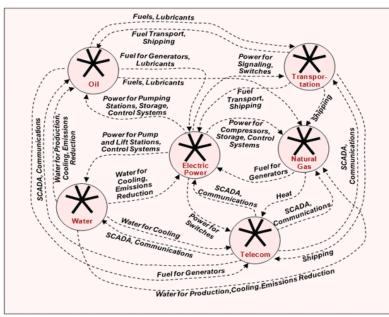


- Modern critical infrastructures have a large number of assets, managed by multiple stakeholders.
- The security of these complex systems depends critically on the interdependencies between these assets.

Image credits: sgip.org, USC.

Contribution





We propose a systematic framework for optimal and strategic allocation of defense resources in interdependent large-scale networks.

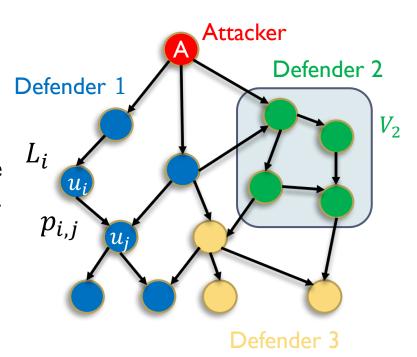
Image credits: sgip.org, USC.

Related Work

- Interdependent Security Games: each node is a decision-maker.
 - [Laszka et. al., ACM CSUR 2014, Hota and Sundaram, GameSec 2015, ...]
- Two player attacker-defender games
 - Stackelberg Security Games [Jain et. al., AAMAS 2013, ...]
 - Colonel Blotto Games [Gupta et. al., GameSec 2014, ...]
 - Network Interdiction Games [Israeli and Wood, Networks 2002, ...]
- · Our framework captures externalities between the above two extremes.
 - Multiple defenders, each responsible for a set of assets.
 - The assets that belong to multiple defenders are interdependent.
- Closely related work:
 - Multidefender Security Game [Lou et. al., 2016]

Interdependency Graph

- A directed graph where each node represents an asset in a networked system.
- Multiple defenders, denoted by the set D, each responsible for a subset of assets.
- When an asset u_i is compromised, it can be used to attack asset u_i if (u_i, u_i) is an edge.
- $p_{i,j}^0 \in (0,1]$: the probability of the above attack being successful. Independent across edges.
- L_i ≥ 0: loss experienced by the defender if asset u_i is attacked successfully.

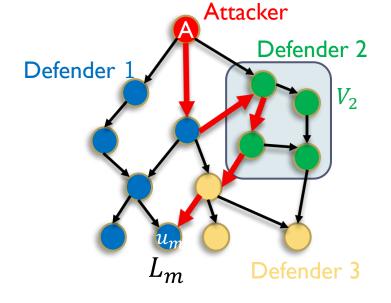


Attack Probability

- Defense strategies reduce the attack probabilities of the <u>edges</u>.
- Joint strategy profile

$$x = (x_1, x_2, ..., x_{|D|}),$$

where each x_k drawn from a convex and compact subset of \mathbb{R}^{q_k} .



- Let \mathbb{P}_m : set of paths from A to u_m
- The attack probability on a node u_m due to a given path $P \in \mathbb{P}_m$ is

$$\prod_{(u_i,u_j)\in P} p_{i,j}(\mathbf{x})$$

Cost of a Defender

Defender 2

V₂

L_m

Defender 3

• The cost of a defender D_k is given by

$$C_k(\mathbf{x}) \triangleq \sum_{u_m \in V_k} L_m \left(\max_{P \in \mathbb{P}_m} \prod_{(u_i, u_j) \in P} p_{i,j}(\mathbf{x}) \right)$$

Captures the notion of "weakest link."

Defense Strategies

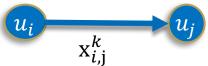
- $x_{i,j}^k$: defense allocation by defender D_k on edge (u_i, u_j) .
- Multiple defenders can potentially assign defense resources on a single edge.



Defense Strategies

- $x_{i,j}^k$: defense allocation by defender D_k on edge (u_i, u_j) .
- Multiple defenders can potentially assign defense resources on a single edge.

More Generally:

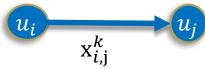


- Let $T_k: \mathbb{R}^{q_k} \to \mathbb{R}^{|E|}$ be a linear map that transforms defense strategy of defender D_k , denoted by x_k , to the edges of the graph.
- $[T_k x_k]_{i,j}$: defense allocation by defender D_k on edge (u_i, u_j) .

Defense Strategies

- $x_{i,j}^k$: defense allocation by defender D_k on edge (u_i, u_j) .
- Multiple defenders can potentially assign defense resources on a single edge.

More Generally:



• Let $T_k: \mathbb{R}^{q_k} \to \mathbb{R}^{|E|}$ be a linear map that transforms defense strategy of defender D_k , denoted by x_k , to the edges of the graph.

Example: Edge-based defense strategy

- Defender D_1 can only defend the edge (A, D_1) .
- D_2 only defends (A, D_2) .
- x_1 and x_2 are scalars.

$$T_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Transformation of Probabilities

Define the length of an edge (i,j) as $l_{i,j}^0 \triangleq -\log(p_{i,j}^0) \in [0,\infty)$

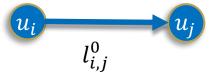
$$l_{i,j}^0 \triangleq -\log(p_{i,j}^0) \in [0, \infty)$$

Under a joint defense strategy, the modified length is given by

$$l_{i,j}(\mathbf{x}) \triangleq l_{i,j}^0 + \sum_k \mathbf{x}_{i,j}^k$$

$$= l_{i,j} (x_{-k}) + x_{i,j}^{k}$$

Initial length



Length under joint defense strategy x

$$u_i \longrightarrow u_j$$

$$l_{i,j}^0 + \sum_k \mathbf{x}_{i,j}^k$$

Transformation of Probabilities

Define the length of an edge (i,j) as $l_{i,j}^0 \triangleq -\log(p_{i,j}^0) \in [0,\infty)$

$$l_{i,j}^0 \triangleq -\log(p_{i,j}^0) \in [0,\infty)$$

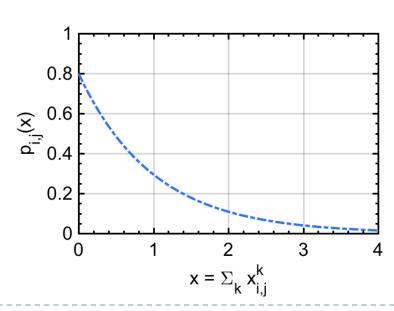
Under a joint defense strategy, the modified length is given by

$$l_{i,j}(\mathbf{x}) \triangleq l_{i,j}^0 + \sum_{k} \mathbf{x}_{i,j}^k$$

Equivalently

$$p_{i,j}(\mathbf{x}) \triangleq p_{i,j}^0 \exp\left(-\sum_k \mathbf{x}_{i,j}^k\right)$$

Satisfies the assumptions in the Gordon-Loeb model.



Observation

• The attack probability on a node u_m due to a given path $P \in \mathbb{P}_m$ is

$$\prod_{(u_i,u_j)\in P} p_{i,j}(\mathbf{x}) = \exp\left(-\sum_{(u_i,u_j)\in P} \left[l_{i,j}^0 + \sum_k \mathbf{x}_{i,j}^k\right]\right)$$

Path with the highest attack probability has the smallest length.

Equilibria in the Multidefender Game

The cost of Defender D_k can be stated as

$$C_k(\mathbf{x_k}, \mathbf{x_{-k}}) \triangleq \sum_{u_m \in V_k} L_m \left(\max_{P \in \mathbb{P}_m} \prod_{(u_i, u_j) \in P} p_{i,j}(\mathbf{x}) \right)$$

$$= \sum_{u_m \in V_k} L_m \exp\left(-\min_{P \in \mathbb{P}_m} \sum_{(u_i, u_j) \in P} l_{i,j} (\mathbf{x}_{-\mathbf{k}}) + \mathbf{x}_{i,j}^k\right)$$
Convex in \mathbf{x}_k for given $\mathbf{x}_{-\mathbf{k}}$

Equilibria in the Multidefender Game

The cost of Defender D_k can be stated as

$$C_k(\mathbf{x_k}, \mathbf{x_{-k}}) \triangleq \sum_{u_m \in V_k} L_m \left(\max_{P \in \mathbb{P}_m} \prod_{(u_i, u_j) \in P} p_{i,j}(\mathbf{x}) \right)$$

$$= \sum_{u_m \in V_k} L_m \exp\left(-\min_{P \in \mathbb{P}_m} \sum_{(u_i, u_j) \in P} l_{i,j} (\mathbf{x}_{-\mathbf{k}}) + \mathbf{x}_{i,j}^k\right)$$
Convex in \mathbf{x}_k for given $\mathbf{x}_{-\mathbf{k}}$

Theorem

The multidefender game is an instance of *concave game* [Rosen, Econometrica, 1965] and a pure Nash equilibrium exists.

Computing Best Response

Theorem

The best response of Defender D_k can be computed by solving the following convex optimization problem.

$$\min_{\mathbf{y} \in \mathbb{R}_+^{|V|}, \mathbf{x} \in \mathbb{R}_+^{|q_k|}} \sum_{u_m \in V_k} L_m e^{-\mathbf{y}_m}$$

s.t.
$$y_j - y_i - x_{i,j}^k \le l_{i,j}(x_{-k}), \forall \text{ edge } (u_i, u_j)$$

$$y_a = 0$$

$$1^T \mathbf{x}_k \le B_k$$

Budget constraint

 y_m : feasible potential of node u_m , at most the length of the shortest path from node u_a

 y_a : potential of attacker node

$$u_i \longrightarrow u_j$$

$$y_j \le y_i + \sum_k x_{i,j}^k$$

Computing Best Response

Theorem

The best response of Defender D_k can be computed by solving the following convex optimization problem.

$$\min_{\mathbf{y} \in \mathbb{R}_+^{|V|}, \mathbf{x} \in \mathbb{R}_+^{|q_k|}} \sum_{u_m \in V_k} L_m e^{-\mathbf{y}_m}$$

s.t.
$$y_j - y_i - x_{i,j}^k \le l_{i,j}(x_{-k}), \forall \text{ edge } (u_i, u_j)$$

$$y_a = 0$$

$$1^T \mathbf{x}_k \leq B_k$$

node u_m , at most the length of the shortest path from node u_a

 y_m : feasible potential of

• When the graph does not have a cycle of negative length, a feasible potential exists and the potential at every node is equal to the length of the shortest path from the source [Cook et al, 1998].

Observation

• Given the defense strategies of other players, a player can compute her best response efficiently.

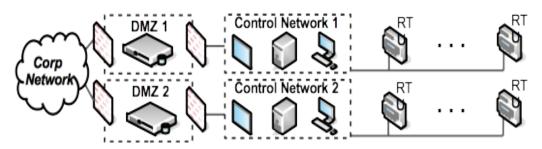
 A social planner can efficiently compute optimal defense allocations over the entire network.

Computing Nash Equilibrium

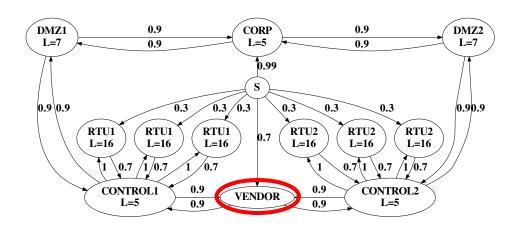
- Expected loss of a player in the original formulation is nondifferentiable.
- In the modified convex formulation, the constraints of a player depend on the strategies of other players.
 - Leads to a Generalized Nash Equilibrium Problem.
 - When each player values a single asset in the network, equilibrium strategies can be computed by solving a Linear Complementarity Problem [Sreekumaran, Hota and others, arxiv: 1503.01100, 2015].
- In this work, we compute Nash equilibrium strategies by iteratively computing the best responses of the players.

Case Studies

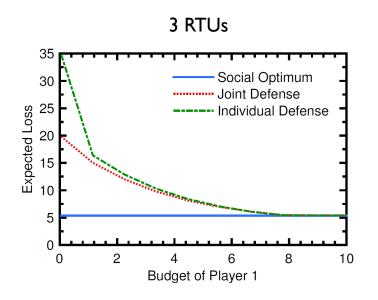
Example – 1: SCADA Network

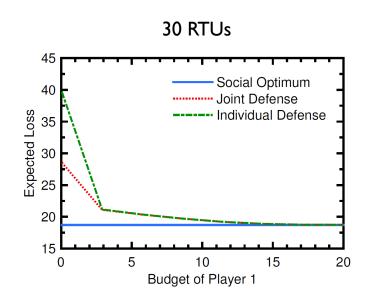


- Two interdependent control subsystems.
- Shared corporate network.
- Common vendor for remote terminal units (RTUs).



Expected Loss at Equilibrium





- Total budget: 20 and 40, respectively.
- Edge-based defense.
- Individual defense: Each player can assign resources within its subsystem.
- Joint defense: a player can defend anywhere in the network.

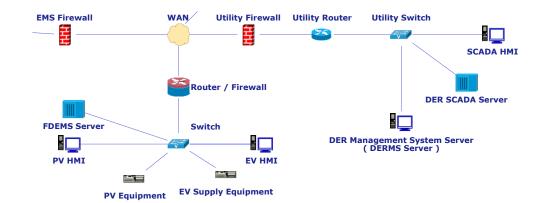
When the budgets are asymmetric, it is in the selfish interest for the player with a higher budget to defend certain assets of the other player.

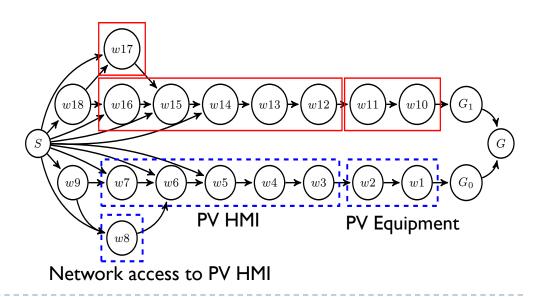
Example – 2: Distributed Energy Resource

 Instance of NESCOR failure scenario:

Attacker tries to gain access to the DER so that it does not trip during low voltage.

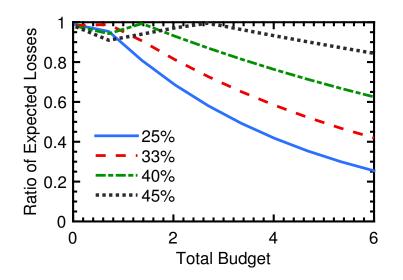
- Example network borrowed from [Jauhar et.Al., PRDC 2015.]
- Each node corresponds to an attack step.





Inefficiency of Equilibrium Investments

- We plot $\frac{\text{Minimum Total Cost}}{\text{Total Cost at a Nash Equilibrium}}$ against the total budget.
- Inefficiency increases when
 - a. total budget increases, and
 - b. difference in the budgets of the players increases.
- Similar trends for both edge-based and node-based defenses.



Percentage denotes the fraction of total budget that belongs to the PV defender.

Summary and Conclusion

- Proposed a general framework to compute optimal and gametheoretic defense allocation under network interdependencies.
- Demonstrated its applications in industrial control systems and the smart grid.
- Future work:
 - Analytical investigations on the equilibrium computation problem
 - Theoretical bounds on Price of Anarchy
 - Validation of this approach in large-scale practical problems

Thank you!

