International Conference on Parallel Architectures and
Compilation Techniques (PACT)

Minneapolis, MN, Sep 21th, 2012

Probabilistic Diagnosis of Performance
Faults in Large-Scale Parallel Applications

Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski,
Saurabh Bagchi Todd Gamblin

PURDUE 'L.

UNIVERSITY

@— Lawrence Livermore National Laboratory Slide 1/24 PURDUE

UNI RSITY

Developing Resilient HPC Applications is Challenging

MTTF of hours in Future Exascale Supercomputers

Faults come from: Software bugs from:
Hardware Application
Software Libraries
Network OS & Runtime system

Multiple manifestations:
Hangs, crashes
Silent data corruption
Applications is slower than usual

@— Lawrence Livermore National Laboratory Slide 2/24 PURDUE
/ ERS [

UNIV ITY

10/10/2012

Some Faults Manifest Only at Large Scale

Molecular dynamics Fault Characteristics

simulation code (ddcMD)

* Application hangs with 8,000 MPI tasks
* Only fails in Blue Gene/L
* Manifestation was intermittent

» Large amount of time spent on fixing
the problem

» Out technique isolated the origin of the
problem in a few seconds

@— Lawrence Livermore National Laboratory Slide 3/24 PURDUE

UNIVERSITY

Why Do We Need New Debugging Tools?

Current Tools Future Tools

L)

Y

-0Old (breakpoint) technology

(>30 years old) - Automatic problem determination

- Less human intervention in

- Manual process to find bugs determining failure root cause

- Poor scalability - Scalable (~millions of processes)

@— Lawrence Livermore National Laboratory Slide 4/24 PURDUE

UNIVERSITY

10/10/2012

Approach Overview

* We focus on pinpointing the origin of performance faults:
— Application hangs
— Execution is slower than usual
» Could have multiple causes:
— Deadlocks, slower code regions, communication problems, etc.

FN N

Model parallel

Find faulty Find problematic
S task(s) code region
behavior 9
@— Lawrence Livermore National Laboratory Slide 5/24 PURDUE

UNIVERSITY

Summarizing Execution History

+ HPC applications generate a large amount of traces

» Use a probabilistic model to summarize traces

* We model control flow behavior of MPI tasks
» Allow us to find the least progressed task

@— Lawrence Livermore National Laboratory Slide 6/24 PURDUE

UNIVERSITY

10/10/2012

Each MPI Tasks is Modeled as a Markov Model

Sample code Markov Model

foo() {
MPI_gather() \-A .
// Computation code g
for (.) { N_

// Computation code
MPI_Send()
// Computation code
MPI_Recv()
// Computation code

1.0 1.0
MPI calls wrappers:
- Gather call stack 1.0 0.6

- Create states in the model

@— Lawrence Livermore National Laboratory Slide 7/24 PURDUE

UNIVERSITY

Approach Overview

FN N

Find faulty Find problematic
task(s) code region

Model parallel
tasks
behavior

@— Lawrence Livermore National Laboratory Slide 8/24 PURDUE

UNIVERSITY

10/10/2012

The Progress Dependence Graph

MPI program

+ Facilitates finding the origin of performance faults
* Allows programmer to focus on the origin of the problem:
* The least progressed task

@— Lawrence Livermore National Laboratory Slide 9/24 PURDUE

UNIVERSITY

What Tasks are Progress Dependent On Other Tasks?
Collective Operations
Point-to-Point Operations
Task X:

Task X: // computation code ...

// computation code...
= MPI_ Reduce(...)

MPI Recv(.., taskY, .) //

/...

- Multiple implementations

(e.g., binomial trees)
- Task X depends on task Y

- Atask can reach MPI_Reduce

- Dependency can be obtained and continue
from MPI calls parameters and
request handlers - Task X could block waiting for

another task (less progressed)

@— Lawrence Livermore National Laboratory Slide 10/24 PURDUE

UNIVERSITY

10/10/2012

Probabilistic Inference of Progress-Dependence Graph

Sample Markov Model

Progress dependence between
tasks B and C?

Probability(3 -> 5) = 1.0
Probability(5 -> 3) = 0

Task C is likely waiting for task B
(A task in 3 always reaches 5)

C has progressed further than B

@— Lawrence Livermore National Laboratory Slide 11/24 PURDUE
UNIVE

RSITY

Resolving Conflicting Probability Values

Sample Markov Model | Dependence between tasks B and D?

Probability(3 ->9) =0
Probability(9-> 3) =0
The dependency is null

| Dependence between tasks C and E?

Probability(7 -> 5) = 1.0
Probability(5-> 7) = 0.9

Heuristic: Trust the highest probability

C is likely waiting for E

@— Lawrence Livermore National Laboratory Slide 12/24 PURDUE
UNIVERS [

ITY

10/10/2012

Tasks

9 @

U B B

Distributed Algorithm to Infer the Graph

Time

o

All-reduction of current states

All tasks know the state of others

Build (locally) progress-
dependence graph

Reduction of progress-

dependence graphs
Progress dependence graph
N

¥ Reductions are O(log #tasks)

@— Lawrence Livermore National Laboratory

Slide 13/24

PUBDUE

Reduction Operations: Graph Dependencies Unions

Examples of reduction operations
X — Y: Xis progress dependenton Y

Task A | Task B Result
X->Y| X->Y | X—Y (Same dependence)
X-Y Null X — Y (First dominates)
X—=Y|Y->X Undefined (or Null)

Null Null Null

@— Lawrence Livermore National Laboratory

Slide 14/24

PURDUE

UNIVERSITY

10/10/2012

Bug Progress Dependence Graph

Hang with ~8,000 MPI tasks in BlueGene/L
(sl B
[1-2047,3073-
3135,...]

* Our tool finds that task 3136 is the origin of the hang
* How did it reach its current state?

east-progressed task

LI— Lawrence Livermore National Laboratory Slide 15/24 PURDUE

UNIVERSITY

Approach Overview

FN N

Find faulty Find problematic
task(s) code region

Model parallel
tasks
behavior

LI— Lawrence Livermore National Laboratory Slide 16/24 PURDUE

UNIVERSITY

10/10/2012

Finding the Faulty Code Region: Program Slicing

Progress done = 1;
dependence . —
h or oo o
grap if (event) {

}

if (flag == 1) {
MPI Recv() ;

}

if (done == 1) {
MPI Barrier();

}

Slicing Tool

LI— Lawrence Livermore National Laboratory Slide 17/24 PURDUE

UNIVERSITY

Code to Handle Buffered I/O in DDCMD

Wri dataWritten = 0
ﬂ f for (..) {
47 Slgnals Probe (.., &flag,..)
Sendo e if (flag = 1) {
Recv () Check if
Send() another writer
Recvo(‘é Data dataWritten = 1 asks for data
}
Send ()
Recv ()
// Write data
}
Non-Writer if (dataWritten == 0) {
Recv ()
Recv() <— Signal } Send ()
Send() — pata Reduce ()
Barrier()

LI— Lawrence Livermore National Laboratory Slide 18/24 PURDUE

UNIVERSITY

10/10/2012

Slice With Origin of the Bug

dataWritten = 0

for () { Dual condition occurs in BlueGene/L

Probe (.., &flag,..) » Atask is a writer and a non-writer

/y if (flag == 1) {
Recv () \
< Send () MPI Probe checks for source, tag and

N dataWritten = 1 -

| comm of a message

Send () * Another writer intercepted wrong

Recv () message

// Write data

}

if (dataWeitten == 0) {| | programmer used unique MPI tags to

Recv () - .
Send () isolate different I/O groups
}
Reduce () Least-
Barrier () progressed

task State

PURDUE

UNIVERSITY

@— Lawrence Livermore National Laboratory Slide 19/24

Fault Injections Methodology

+ Faults injected in Two Sequoia benchmarks:
— AMG-2006
— LAMMPS

* We injected a hang in random MPI tasks:
— 20 user function calls, 5 MPI calls
— Only injected in executed functions
— Functions are selected randomly

PURDUE

UNIVERSITY

@— Lawrence Livermore National Laboratory Slide 20/24

10/10/2012

10

Accurate Detection of Least-Prog. Tasks

» Least-progressed task detection recall:

— Cases when LP task is detected correctly
* Imprecision:

— 9% of extra tasks in LP tasks set

Example Runs: 64 tasks, fault injected in task 3

@ [27] LP task detected

Imprecision = 2/3

Example 1 Example 2

5,0 > 24,
LP task detected

[0,6-8,.. | Imprecision = 0

* Overall results:
— Average LP task detection recall is 88%
— 86% of injections has imprecision of zero

PURDUE

Slide 21/24

@— Lawrence Livermore National Laboratory

UNIVERSITY

Performance Results:
Least-Prog. Task Detection Takes a Fraction Of A Second

LAMMPS

AMG2006
Time (sec)
0.000 0.010 0.020

Time (sec)
0.030 0000 0.010 0020 0.030

512

1,000

Tasks

5,832

10,648

21,952

512

1,024

2,048

4,096

8,192

16,384

32,768 32,768

O outPuT
B FIND_LP_TASK
B BUILD_PDG

Slide 22/24

PURDUE

UNIVERSITY

@— Lawrence Livermore National Laboratory

10/10/2012

11

Performance Results:
Slowdown Is Small For a Variety of Benchmarks

Benchmark | Slowdown | Memory-usage Increase
LAMMPS Q.59 6.11
AMG2006 1.46 10.36
BT 1.08 3.75
SP 5.14
cG 1.14 2.21
FT 1.05 1.01
LU 1.39 5.37
MG 1.04 1.04

* Tested slowdown with NAS Parallel and Sequoia benchmarks
— Maximum slowdown of ~1.67

» Slowdown depends on number of MPI calls from different contexts

PURDUE

UNIVERSITY

@— Lawrence Livermore National Laboratory Slide 23/24

Conclusions

» Our debugging approach diagnose faults in HPC applications

* Novelties:
— Compression of historic control-flow behavior
— Probabilistic inference of the least-progressed tasks
— Guided application of program slicing

+ Distributed debugging method is scalable
— Takes fraction of a second with 32,000 BlueGene/P tasks

» Successful evaluation with hard-to-detect bug and
representative benchmarks

@— Lawrence Livermore National Laboratory Slide 24/24

PURDUE

UNIVERSITY

10/10/2012

12

Thank you!

@— Lawrence Livermore National Laboratory Slide 25/24 PURDUE
UNIVERSITY

Backup Slides

@— Lawrence Livermore National Laboratory Slide 26/24 PURDUE
UNIVERS [

ITY

10/10/2012

13

Dual Role Due to BlueGene/L I/O Structure
Node X Node Y

1D,
e DY
— "

Group A 3 Group B

Dual Role

. X ()
Task 6: ,.

Non-writer for its own group (B)
Writer for a different group (A)

* In BlueGenelL, I/O is performed through dedicated nodes
* Program nominates only one task per 1/0 node

LI— Lawrence Livermore National Laboratory Slide 27/24 PURDUE

UNIVERSITY

10/10/2012

14

