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Developing Resilient HPC Applications is Challenging 

Faults come from: 

Hardware 

Software 

Network 

MTTF of hours in Future Exascale Supercomputers 

Software bugs from: 

Application 

Libraries 

OS & Runtime system 

Multiple manifestations: 

Hangs, crashes 

Silent data corruption 

Applications is slower than usual 
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Some Faults Manifest Only at Large Scale 

• Application hangs with 8,000 MPI tasks 

 

• Only fails in Blue Gene/L 

 

• Manifestation was intermittent 

 

• Large amount of time spent on fixing 

the problem 

 

• Out technique isolated the origin of the 

problem in a few seconds 

 

Molecular dynamics 

simulation code (ddcMD) 

Fault Characteristics 
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Why Do We Need New Debugging Tools? 

Current Tools 

-Old (breakpoint) technology 

(>30 years old) 

 

- Manual process to find bugs 

 

- Poor scalability 

Future Tools 

- Automatic problem determination 

 

- Less human intervention in 

determining failure root cause 

 

- Scalable (~millions of processes) 
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Approach Overview 

• We focus on pinpointing the origin of performance faults: 

– Application hangs 

– Execution is slower than usual 

• Could have multiple causes: 

– Deadlocks, slower code regions, communication problems, etc. 

Model parallel 

tasks 

behavior 

1 

Find faulty 

task(s) 

2 

Find problematic 

code region 

3 

Model parallel 

tasks 

behavior 
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Summarizing Execution History 

• HPC applications generate a large amount of traces 

 

• Use a probabilistic model to summarize traces 

 

• We model control flow behavior of MPI tasks 

• Allow us to find the least progressed task 
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Each MPI Tasks is Modeled as a Markov Model 

foo() { 

   MPI_gather( ) 

   // Computation code 

   for (…) { 

      // Computation code 

      MPI_Send( ) 

      // Computation code 

      MPI_Recv( ) 

      // Computation code 

   } 

Sample code 

MPI_Gather 

Comp. Code 1  

MPI_Send 

Comp. Code 2 Comp. Code 3 

MPI_Recv 

1.0 

1.0 

1.0 

1.0 

1.0 

0.6 

0.3 

0.75 

Markov Model 

MPI calls wrappers: 

- Gather call stack 

- Create states in the model 
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Approach Overview 

Model parallel 

tasks 

behavior 

1 

Find faulty 

task(s) 

2 

Find problematic 

code region 

3 

Model parallel 

tasks 

behavior 

Find faulty 

task(s) 

2 
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The Progress Dependence Graph 

task A 

task B task C 

task C 

wait wait 

wait 

MPI program 

task A Code region 

• Facilitates finding the origin of performance faults 

• Allows programmer to focus on the origin of the problem: 

• The least progressed task 
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What Tasks are Progress Dependent On Other Tasks? 

Point-to-Point Operations 

// computation code... 

 

MPI_Recv(…, taskY, …) 

 

// ... 

Task X: 

- Task X depends on task Y 

 

- Dependency can be obtained 

from MPI calls parameters and 

request handlers 

Task X: 

Collective Operations 

// computation code ... 

 

MPI_Reduce(…) 

 

// ... 

- Multiple implementations  

(e.g., binomial trees) 

 

- A task can reach MPI_Reduce 

and continue 

 

- Task X could block waiting for 

another task (less progressed) 
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Probabilistic Inference of Progress-Dependence Graph 

1 

2 

3 

4 

5 7 

6 

8 

9 

10 

Sample Markov Model 

1.0 

0.3 0.7 

1.0 

1.0 
1.0 

1.0 

1.0 

0.9 1.0 

0.1 

1.0 

… 

… 

Probability(3 -> 5) = 1.0 

Probability(5 -> 3) = 0 

 

Task C is likely waiting for task B 

(A task in 3 always reaches 5) 

 

C has progressed further than B 

Progress dependence between 

tasks B and C? 

Task C 

Task D 

Task A 

Task B 

Task E 
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Resolving Conflicting Probability Values 

1 

2 

3 

4 

5 7 

6 

8 

9 

10 

Sample Markov Model 

1.0 

0.3 0.7 

1.0 

1.0 
1.0 

1.0 

1.0 

0.9 1.0 

0.1 

1.0 

… 

… 

Task C 

Task D 

Task A 

Task B 

Task E 

Probability(3 -> 9) = 0 

Probability(9-> 3) = 0 

The dependency is null 

Dependence between tasks B and D? 

Dependence between tasks C and E? 

Probability(7 -> 5) = 1.0 

Probability(5-> 7) = 0.9 

 

Heuristic: Trust the highest probability 

 

C is likely waiting for E 
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Distributed Algorithm to Infer the Graph 

1 2 3 n . . . . .  
Tasks 

All-reduction of current states 
x y z n 

. . . . .  1 2 3 n 
x y ... x y ... x y ... x y 

All tasks know the state of others 

Build (locally) progress-

dependence graph 

Reduction of progress-

dependence graphs 

Time 

Reductions are O(log #tasks) 

1 2 3 n . . . . .  

x 

y z 

x 

y z 

x 

y z 

x 

y z 

1 
Progress dependence graph 

x 

y z 
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Reduction Operations: Graph Dependencies Unions 

Task A Task B Result 

X → Y X → Y X → Y (Same dependence) 

X → Y Null X → Y (First dominates) 

X → Y Y → X Undefined (or Null) 

Null Null Null 

Examples of reduction operations 

X → Y:  X is progress dependent on Y 
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Bug Progress Dependence Graph 

[3136] 

[0, 2048,3072] 

[1-2047,3073-

3135,…] [6841-

7995] 

[6840] 

Hang with ~8,000 MPI tasks in BlueGene/L 

• Our tool finds that task 3136 is the origin of the hang 

• How did it reach its current state? 

 

[3136] Least-progressed task 
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Approach Overview 

Model parallel 

tasks 

behavior 

1 

Find faulty 

task(s) 

2 

Find problematic 

code region 

3 

Find faulty 

task(s) 

2 

Find problematic 

code region 

3 
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Finding the Faulty Code Region: Program Slicing 

Task 1 

Task 2 

Task 3 Task 4 

done = 1; 

 

for (...) { 

   if (event) { 

 flag = 1; 

   } 

} 

 

if (flag == 1) { 

   MPI_Recv(); 

   ... 

} 

... 

if (done == 1) { 

  MPI_Barrier(); 

} 

Progress 

dependence 

graph 

Task 1 

State 

Task 2 

State 

Slicing Tool 
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Code to Handle Buffered I/O in DDCMD 

dataWritten = 0 

for (…) { 

   Probe(…, &flag,…) 

   if (flag == 1) { 

      Recv() 

      Send() 

      dataWritten = 1 

   } 

   Send()  

   Recv() 

   // Write data 

} 

if (dataWritten == 0) { 

   Recv() 

   Send() 

} 

Reduce() 

Barrier() 

Check if 

another writer 

asks for data 

Writer: 

 

Send() 

 

 

Recv() 

Signals 

Data 

Non-Writer 

 

Recv() 

Send() Data 

Signal 
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Slice With Origin of the Bug 

dataWritten = 0 

for (…) { 

   Probe(…, &flag,…) 

   if (flag == 1) { 

      Recv() 

      Send() 

      dataWritten = 1 

   } 

   Send()  

   Recv() 

   // Write data 

} 

if (dataWritten == 0) { 

   Recv() 

   Send() 

} 

Reduce() 

Barrier() 

Least-

progressed 

task State 

Dual condition occurs in BlueGene/L 

• A task is a writer and a non-writer 

 

MPI_Probe checks for source, tag and 

comm of a message 

• Another writer intercepted wrong 

message 

 

Programmer used unique MPI tags to 

isolate different I/O groups 
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Fault Injections Methodology 

• Faults injected in Two Sequoia benchmarks: 

– AMG-2006 

– LAMMPS 

 

• We injected a hang in random MPI tasks: 

– 20 user function calls, 5 MPI calls 

– Only injected in executed functions 

– Functions are selected randomly 
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Accurate Detection of Least-Prog. Tasks 

• Least-progressed task detection recall: 

– Cases when LP task is detected correctly 

• Imprecision: 

– % of extra tasks in LP tasks set 

 

[3] 

[1,5,…] [2,4,…] 

[0,6-8,…] 

[3, 5, 4] 

[1,9,…] [27,…] 

Example 1 

 

LP task detected 

Imprecision = 0 

Example Runs:   64 tasks,   fault injected in task 3 

Example 2 

 

LP task detected 

Imprecision = 2/3 

• Overall results: 

– Average LP task detection  recall is 88% 

– 86% of injections has imprecision of zero 
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Performance Results:  
Least-Prog. Task Detection Takes a Fraction Of A Second 
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Performance Results:  

Slowdown Is Small For a Variety of Benchmarks 

• Tested slowdown with NAS Parallel and Sequoia benchmarks 

– Maximum slowdown of  ~1.67 

 

• Slowdown depends on number of MPI calls from different contexts 
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Conclusions 

• Our debugging approach diagnose faults in HPC applications 

 

• Novelties: 

– Compression of historic control-flow behavior 

– Probabilistic inference of  the least-progressed tasks 

– Guided application of program slicing 

 

• Distributed debugging method is scalable 

– Takes fraction of a second with 32,000 BlueGene/P tasks 

 

• Successful evaluation with hard-to-detect bug and 

representative benchmarks 
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Thank you! 
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Backup Slides 
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Dual Role Due to BlueGene/L I/O Structure 

Task 1 

Task 2 

Task 5 

Task 6 

Node X Node Y 

I/O 

Group A Group B 

Dual Role 

Task 6: 

Non-writer for its own group (B) 

Writer for a different group (A) 

• In BlueGene/L, I/O is performed through dedicated nodes 

• Program nominates only one task per I/O node 


