
10/10/2012

1

Slide 1/24 Lawrence Livermore National Laboratory

Probabilistic Diagnosis of Performance

Faults in Large-Scale Parallel Applications

Dong H. Ahn, Bronis R. de Supinski,

Todd Gamblin

International Conference on Parallel Architectures and

Compilation Techniques (PACT)

Minneapolis, MN, Sep 21th, 2012

Ignacio Laguna,

Saurabh Bagchi

Slide 2/24 Lawrence Livermore National Laboratory

Developing Resilient HPC Applications is Challenging

Faults come from:

Hardware

Software

Network

MTTF of hours in Future Exascale Supercomputers

Software bugs from:

Application

Libraries

OS & Runtime system

Multiple manifestations:

Hangs, crashes

Silent data corruption

Applications is slower than usual

10/10/2012

2

Slide 3/24 Lawrence Livermore National Laboratory

Some Faults Manifest Only at Large Scale

• Application hangs with 8,000 MPI tasks

• Only fails in Blue Gene/L

• Manifestation was intermittent

• Large amount of time spent on fixing

the problem

• Out technique isolated the origin of the

problem in a few seconds

Molecular dynamics

simulation code (ddcMD)

Fault Characteristics

Slide 4/24 Lawrence Livermore National Laboratory

Why Do We Need New Debugging Tools?

Current Tools

-Old (breakpoint) technology

(>30 years old)

- Manual process to find bugs

- Poor scalability

Future Tools

- Automatic problem determination

- Less human intervention in

determining failure root cause

- Scalable (~millions of processes)

10/10/2012

3

Slide 5/24 Lawrence Livermore National Laboratory

Approach Overview

• We focus on pinpointing the origin of performance faults:

– Application hangs

– Execution is slower than usual

• Could have multiple causes:

– Deadlocks, slower code regions, communication problems, etc.

Model parallel

tasks

behavior

1

Find faulty

task(s)

2

Find problematic

code region

3

Model parallel

tasks

behavior

Slide 6/24 Lawrence Livermore National Laboratory

Summarizing Execution History

• HPC applications generate a large amount of traces

• Use a probabilistic model to summarize traces

• We model control flow behavior of MPI tasks

• Allow us to find the least progressed task

10/10/2012

4

Slide 7/24 Lawrence Livermore National Laboratory

Each MPI Tasks is Modeled as a Markov Model

foo() {

 MPI_gather()

 // Computation code

 for (…) {

 // Computation code

 MPI_Send()

 // Computation code

 MPI_Recv()

 // Computation code

 }

Sample code

MPI_Gather

Comp. Code 1

MPI_Send

Comp. Code 2 Comp. Code 3

MPI_Recv

1.0

1.0

1.0

1.0

1.0

0.6

0.3

0.75

Markov Model

MPI calls wrappers:

- Gather call stack

- Create states in the model

Slide 8/24 Lawrence Livermore National Laboratory

Approach Overview

Model parallel

tasks

behavior

1

Find faulty

task(s)

2

Find problematic

code region

3

Model parallel

tasks

behavior

Find faulty

task(s)

2

10/10/2012

5

Slide 9/24 Lawrence Livermore National Laboratory

The Progress Dependence Graph

task A

task B task C

task C

wait wait

wait

MPI program

task A Code region

• Facilitates finding the origin of performance faults

• Allows programmer to focus on the origin of the problem:

• The least progressed task

Slide 10/24 Lawrence Livermore National Laboratory

What Tasks are Progress Dependent On Other Tasks?

Point-to-Point Operations

// computation code...

MPI_Recv(…, taskY, …)

// ...

Task X:

- Task X depends on task Y

- Dependency can be obtained

from MPI calls parameters and

request handlers

Task X:

Collective Operations

// computation code ...

MPI_Reduce(…)

// ...

- Multiple implementations

(e.g., binomial trees)

- A task can reach MPI_Reduce

and continue

- Task X could block waiting for

another task (less progressed)

10/10/2012

6

Slide 11/24 Lawrence Livermore National Laboratory

Probabilistic Inference of Progress-Dependence Graph

1

2

3

4

5 7

6

8

9

10

Sample Markov Model

1.0

0.3 0.7

1.0

1.0
1.0

1.0

1.0

0.9 1.0

0.1

1.0

…

…

Probability(3 -> 5) = 1.0

Probability(5 -> 3) = 0

Task C is likely waiting for task B

(A task in 3 always reaches 5)

C has progressed further than B

Progress dependence between

tasks B and C?

Task C

Task D

Task A

Task B

Task E

Slide 12/24 Lawrence Livermore National Laboratory

Resolving Conflicting Probability Values

1

2

3

4

5 7

6

8

9

10

Sample Markov Model

1.0

0.3 0.7

1.0

1.0
1.0

1.0

1.0

0.9 1.0

0.1

1.0

…

…

Task C

Task D

Task A

Task B

Task E

Probability(3 -> 9) = 0

Probability(9-> 3) = 0

The dependency is null

Dependence between tasks B and D?

Dependence between tasks C and E?

Probability(7 -> 5) = 1.0

Probability(5-> 7) = 0.9

Heuristic: Trust the highest probability

C is likely waiting for E

10/10/2012

7

Slide 13/24 Lawrence Livermore National Laboratory

Distributed Algorithm to Infer the Graph

1 2 3 n
Tasks

All-reduction of current states
x y z n

. 1 2 3 n
x y ... x y ... x y ... x y

All tasks know the state of others

Build (locally) progress-

dependence graph

Reduction of progress-

dependence graphs

Time

Reductions are O(log #tasks)

1 2 3 n

x

y z

x

y z

x

y z

x

y z

1
Progress dependence graph

x

y z

Slide 14/24 Lawrence Livermore National Laboratory

Reduction Operations: Graph Dependencies Unions

Task A Task B Result

X → Y X → Y X → Y (Same dependence)

X → Y Null X → Y (First dominates)

X → Y Y → X Undefined (or Null)

Null Null Null

Examples of reduction operations

X → Y: X is progress dependent on Y

10/10/2012

8

Slide 15/24 Lawrence Livermore National Laboratory

Bug Progress Dependence Graph

[3136]

[0, 2048,3072]

[1-2047,3073-

3135,…] [6841-

7995]

[6840]

Hang with ~8,000 MPI tasks in BlueGene/L

• Our tool finds that task 3136 is the origin of the hang

• How did it reach its current state?

[3136] Least-progressed task

Slide 16/24 Lawrence Livermore National Laboratory

Approach Overview

Model parallel

tasks

behavior

1

Find faulty

task(s)

2

Find problematic

code region

3

Find faulty

task(s)

2

Find problematic

code region

3

10/10/2012

9

Slide 17/24 Lawrence Livermore National Laboratory

Finding the Faulty Code Region: Program Slicing

Task 1

Task 2

Task 3 Task 4

done = 1;

for (...) {

 if (event) {

 flag = 1;

 }

}

if (flag == 1) {

 MPI_Recv();

 ...

}

...

if (done == 1) {

 MPI_Barrier();

}

Progress

dependence

graph

Task 1

State

Task 2

State

Slicing Tool

Slide 18/24 Lawrence Livermore National Laboratory

Code to Handle Buffered I/O in DDCMD

dataWritten = 0

for (…) {

 Probe(…, &flag,…)

 if (flag == 1) {

 Recv()

 Send()

 dataWritten = 1

 }

 Send()

 Recv()

 // Write data

}

if (dataWritten == 0) {

 Recv()

 Send()

}

Reduce()

Barrier()

Check if

another writer

asks for data

Writer:

Send()

Recv()

Signals

Data

Non-Writer

Recv()

Send() Data

Signal

10/10/2012

10

Slide 19/24 Lawrence Livermore National Laboratory

Slice With Origin of the Bug

dataWritten = 0

for (…) {

 Probe(…, &flag,…)

 if (flag == 1) {

 Recv()

 Send()

 dataWritten = 1

 }

 Send()

 Recv()

 // Write data

}

if (dataWritten == 0) {

 Recv()

 Send()

}

Reduce()

Barrier()

Least-

progressed

task State

Dual condition occurs in BlueGene/L

• A task is a writer and a non-writer

MPI_Probe checks for source, tag and

comm of a message

• Another writer intercepted wrong

message

Programmer used unique MPI tags to

isolate different I/O groups

Slide 20/24 Lawrence Livermore National Laboratory

Fault Injections Methodology

• Faults injected in Two Sequoia benchmarks:

– AMG-2006

– LAMMPS

• We injected a hang in random MPI tasks:

– 20 user function calls, 5 MPI calls

– Only injected in executed functions

– Functions are selected randomly

10/10/2012

11

Slide 21/24 Lawrence Livermore National Laboratory

Accurate Detection of Least-Prog. Tasks

• Least-progressed task detection recall:

– Cases when LP task is detected correctly

• Imprecision:

– % of extra tasks in LP tasks set

[3]

[1,5,…] [2,4,…]

[0,6-8,…]

[3, 5, 4]

[1,9,…] [27,…]

Example 1

LP task detected

Imprecision = 0

Example Runs: 64 tasks, fault injected in task 3

Example 2

LP task detected

Imprecision = 2/3

• Overall results:

– Average LP task detection recall is 88%

– 86% of injections has imprecision of zero

Slide 22/24 Lawrence Livermore National Laboratory

Performance Results:
Least-Prog. Task Detection Takes a Fraction Of A Second

10/10/2012

12

Slide 23/24 Lawrence Livermore National Laboratory

Performance Results:

Slowdown Is Small For a Variety of Benchmarks

• Tested slowdown with NAS Parallel and Sequoia benchmarks

– Maximum slowdown of ~1.67

• Slowdown depends on number of MPI calls from different contexts

Slide 24/24 Lawrence Livermore National Laboratory

Conclusions

• Our debugging approach diagnose faults in HPC applications

• Novelties:

– Compression of historic control-flow behavior

– Probabilistic inference of the least-progressed tasks

– Guided application of program slicing

• Distributed debugging method is scalable

– Takes fraction of a second with 32,000 BlueGene/P tasks

• Successful evaluation with hard-to-detect bug and

representative benchmarks

10/10/2012

13

Slide 25/24 Lawrence Livermore National Laboratory

Thank you!

Slide 26/24 Lawrence Livermore National Laboratory

Backup Slides

10/10/2012

14

Slide 27/24 Lawrence Livermore National Laboratory

Dual Role Due to BlueGene/L I/O Structure

Task 1

Task 2

Task 5

Task 6

Node X Node Y

I/O

Group A Group B

Dual Role

Task 6:

Non-writer for its own group (B)

Writer for a different group (A)

• In BlueGene/L, I/O is performed through dedicated nodes

• Program nominates only one task per I/O node

