Vrisha: Using Scaling Properties of Parallel Programs for Bug Detection and Localization

Bowen Zhou, Milind Kulkarni and Saurabh Bagchi
School of Electrical and Computer Engineering
Purdue University

Scale-dependent Bugs in Parallel Programs

• What are they?
 – Bugs that arise often in large-scale runs while staying invisible in small-scale ones
 – Examples? Race condition, integer overflow, etc.
 – Severe impact on HPC systems: performance degradation, silent data corruption

• Difficult to detect, let alone localize
Scale-dependent Bugs in Parallel Programs

• Why do parallel programs have such bugs?
 – Coded and tested in small-scale development machines with small-scale test cases
 – Deployed in large-scale production systems

When Statistical Debugging Meets Scale-dependent Bugs

• Previous methods of statistical debugging for parallel programs
 [Mirgorodskiy SC’06] [Gao SC’07] [Kasick FAST’10]
When Statistical Debugging Meets Scale-dependent Bugs

• To address scale-dependent bugs with previous methods
 - Either be very restricted in your feature selection
 - Or have access to a bug-free run on the large-scale system

• Our method solved the problems of previous methods
 - Capable of modeling scaling behavior of parallel program
 - Only need access to bug-free runs from small-scale systems

Key Insights

• "Natural scaling behavior" of an application can be captured and used for bug detection
• Instead of looking for deviations from scale invariant behavior, we will look for deviations from the scaling trend
Contributions

- We build Vrisha to use scale of run as a parameter to statistical model for debugging scale-dependent bugs
- Vrisha is capable of building a model to deduce the correlation between scale of run and program behavior
- Vrisha detects both application and library bugs with low overhead as validated with two real bugs from a popular MPI implementation

Example of Scale-dependent Bugs

- A bug in MPI_Allgather in MPICH2-1.1
 - Allgather is a collective communication which lets every process gather data from all participating processes
Example of Scale-dependent Bugs

- MPICH2 uses distinct algorithms to do Allgather in different situations
- Optimal algorithm is selected based on the total amount of data received by each process

```c
int MPIR_Allgather ( 
    …
    int recvcount,
    MPI_Datatype recvtype,
    MPID_Comm *comm_ptr ) 
{ 
    int comm_size, rank;
    int curr_cnt, dst, type_size, left, right, jnext, comm_size_is_pof2;
    …
    if ((recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG) &&
    (comm_size_is_pof2 == 1))
    { /* Short or medium size message and power-of-two no. of processes.*/
        * Use recursive doubling algorithm */
    …
    else if (recvcount*comm_size*type_size < MPIR_ALLGATHER_SHORT_MSG)
    { /* Short message and non-power-of-two no. of processes. Use */
        * Bruck algorithm (see description above). */
    
    else { /* long message or medium-size message and non-power-of-two */
    * no. of processes, use ring algorithm. */
    …
```
Key Observation

- We observe that some program properties are predictable by the scale of run in parallel programs
- These are called **scale-determined** properties

Bug Detection

- **Localization** of bug is done by identifying the properties that cause the gap and the code regions that affect these properties

Large gap means bug detected!
Vrisha’s Workflow

a. Collect bug-free data from training runs of different scales
b. Aggregate data into scale and program property
c. Build a model from the scale and property
d. Collect data from the production run
e. Perform detection and diagnosis for the production run

Challenges

• What features should we use to build the model of scaling behavior?
Control Feature

- We generalize the concept of “scale” to **control features**
- A set of parameters given by system or user
 - number of processors in the system
 - command-line arguments
 - Input size
- Control features are the predictors of program behavior

Observational Feature

- To characterize program behavior, we use **observational features**
- A set of vantage points in source code to profile various runtime properties
- Observational features are the manifestations of program behavior
Observational Feature

- What does Vrisha use for observational feature?
 - Each unique call stack at the socket level under the MPI library as a distinct vantage point
 - Record the amount of data communicated at each vantage point as observational feature

- Why?
 - Capture both application and library bugs
 - Not need to modify application code
 - Impose low overhead
 - Provide source level diagnosis

Challenges

- What model should we use to capture the relationship between scale and behavior?
 - Can describe both linear and non-linear relationships
Model: Canonical Correlation Analysis

\[
\begin{align*}
\text{Control feature} & \quad X & \quad Xu \\
\text{Observational feature} & \quad Y & \quad Yv \\
\text{maximize} & \quad \text{corr}(Xu, Yv) \\
\text{such that} & \quad \|u\| = \|v\| = 1
\end{align*}
\]

Model: Kernel CCA

We use “kernel trick”, a popular machine learning technique, to transform non-linear relationship to linear ones via a non-linear mapping \(\varphi(.) \).
Challenges

- How does Vrisha do bug detection and diagnosis?

Bug Detection

We declare a bug in the production run if the correlation between the control feature X' and the observational features Y' in the subspace defined by u and v is below certain range.
Bug Localization

- Normalize communication volume of training and production runs to the same scale
- Comparing training (bug-free) with production (buggy) runs
- Identify the call stacks for the biggest changes as the potential location for bug

Evaluation

- We validated Vrisha with two real bugs from the MPICH2 library and Vrisha was able to detect and localize both of them
- Experiment setup
 - 16-node cluster
 - dual-socket 2.2GHz quad-core CPU
 - 512K L2, 8G RAM
 - MPICH2-1.1.1
Detect the Bug in Allgather

- The bug is configured to be triggered at 16-node run only
- A KCCA model is built solely on 4- to 15-node runs
- Vrisha is capable of revealing this scale-dependent bug with the very low correlation in the 16-node buggy run

Locate the Bug in Allgather

- All the training runs like 4- and 8-node runs share the same pattern
- The 16-node run shows a different pattern
- The most radical difference happens between feature #9 and #16 which leads us to find the program makes a wrong choice at the buggy if statement
Vrisha’s Overhead

- We measured the average overhead of Vrisha with NAS Parallel Benchmarks
- Vrisha’s instrumentation overhead is less than 8% execution time on average
- Vrisha takes less than 30 ms to build model and less than 5 ms to detect bug, equivalent to around 1/10000 of the running time of these benchmarks on average

Conclusion

- Some program properties are scale-determined in parallel programs and can be exploited to detect and localize scale-dependent bugs
- We built a system called Vrisha leveraging this idea and successfully detected two real bugs from the MPICH2 library with low overhead