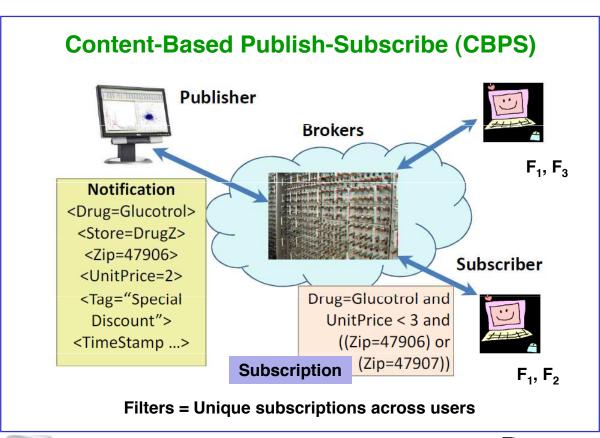
# v-CAPS: A Confidentiality and Anonymity Preserving Routing Protocol for Content-Based Publish-Subscribe Networks

### Amiya Kumar Maji and Saurabh Bagchi

Dependable Computing Systems Lab (DCSL) & The Center for Education and Research in Information Assurance and Security (CERIAS) School of Electrical and Computer Engineering Purdue University


















### **Advantages of CBPS Networks**

- Dynamic many-to-many communication
- Asynchronous
- Publisher-subscriber decoupling
- Fine-grained expression of interest
- Low latency
- Example pub-sub systems
  - Siena [TOCS01]
  - Gryphon [DSN02]
  - RTI Data Distribution Service [www.rti.com/products/dds/]
  - PubSubHubbub [code.google.com/p/pubsubhubbub/]



Slide 3



# **Security Goals**

- Baseline CBPS trusts Brokers
  - What if Brokers are compromised (malicious)?
  - What if Publishers, Subscribers do not trust Brokers?
- Can we build an **efficient** CBPS system where
  - Brokers do not know notification content
    - Notification Confidentiality
  - Brokers do not know subscription content
    - Subscription Confidentiality
  - A Subscriber does not know other recipients of a notification
    - Subscriber Anonymity
  - Brokers can learn which filters match a notification only if the filter is present locally
    - Filter Anonymity





### **Contributions**

- Present *v*-CAPS, a secure CBPS routing scheme, consisting of two protocols
  - Routing Vector (RV) Protocol supports
    - Notification Confidentiality
    - Subscription Confidentiality
  - Secure Routing Vector (SRV) Protocol additionally supports
    - Subscriber Anonymity
    - Filter Anonymity
- Deploy SRV, RV, and Baseline (Siena) on PlanetLab and measure their performances



Slide 5



### **Contents**

- CBPS Overview
- Security Goals
- Contributions
- Solution Idea
- RV at a Glance
- SRV at a Glance
- Results
- Conclusion





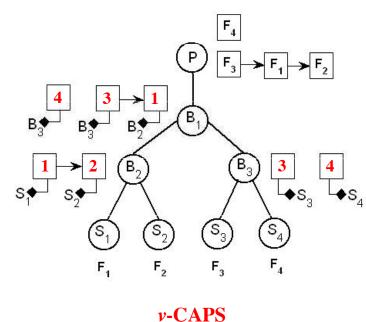
### **Threat Model and Assumptions**

- Publishers
  - Trusted
- Brokers
  - Honest but curious
- Subscribers
  - Curious
- Assumptions
  - Solution to group key distribution [Prakash et al., Usenix Security 2001]
  - Distributed spanning tree building



Slide 7




### **Solution Idea**

- Observations
  - Filter matching on encrypted notifications is several orders costlier than matching plaintext notifications
  - Brokers in baseline perform two tasks
    - Match notification against filters
    - Compute recipient list of matched filters
- Separation of duty
  - Publisher computes filter *Match*() in plaintext
  - Send result of filter *Match*() to brokers
  - Brokers compute recipient list





# **CBPS Data Structures: Filter Posets**



P: Publisher

B: Broker

S: Subscriber

F: Filter

### **Covering Relation:**

$$F_2 \prec F_1 \prec F_3$$

 $F_2 < F_1$  means  $F_2$  is more specific than  $F_1$ 

$$F_1 = (price > 5)$$
  
 $F_2 = (price > 10)$ 



Slide 9



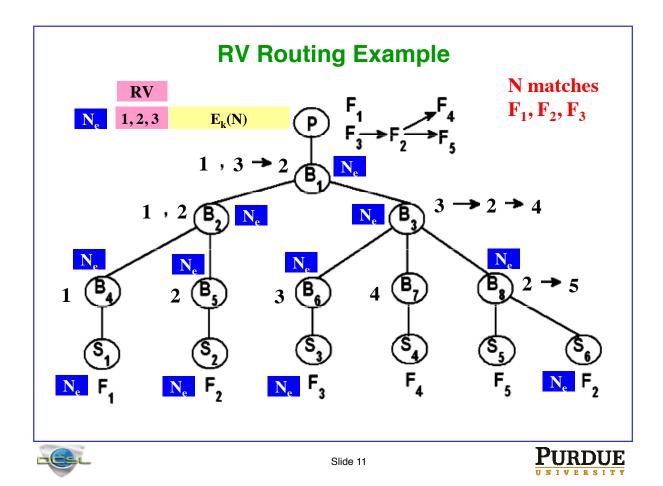
### **RV Overview**

- Replace filters with filterIDs at Brokers
- Publishers maintain filter posets (no network info)
- Primitives
  - Subscribe
    - Phase I:

Subscriber contacts Publisher Gets filterID, location in filter poset

• Phase 2:

Propagate subscription message among Brokers based on filterID


Publish

$$N_e = <$$
RV> $F_{match} <$ /RV> $E_{K_N}(N) <$ /Payload>

- Match
  - Read  $F_{match}$  and compute recipients





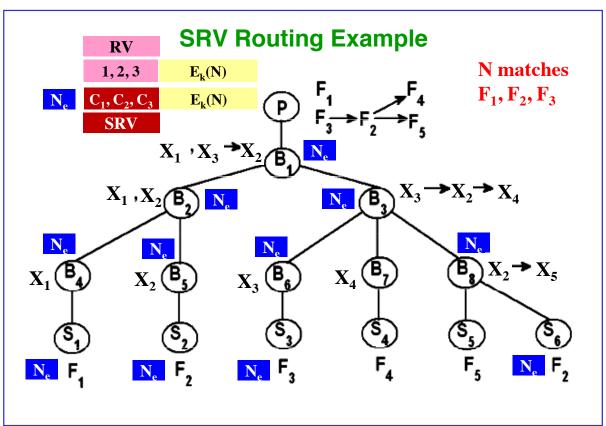


### **Need for SRV**

- Brokers can inspect all filterIDs in RV
  - Can infer recipient information with external knowledge
- Subscriber x knows y received message with filterID 1
  - Future message with filterID 1 in header (RV) will go to y
- Stricter requirements:
  - Brokers should know presence of filters in RV only if they have that filter (Filter Anonymity)
  - Subscribers should not learn commonality across notifications (Subscriber Anonymity)






### **SRV Overview**

- Encrypt RV with encryption technique by Song et al. [S&P 2000]
  - Restricted form of computation on encrypted data
- Does not hamper the generality of matching a filter with a notification
- To detect presence of filterID 1 Brokers need *match key* for 1
- match key sent to Brokers during subscription
- Pseudorandom sequence ensures successive invocations of  $E_k(1)$  produce different cipher text
- *Match*() is much more expensive than in RV



Slide 13





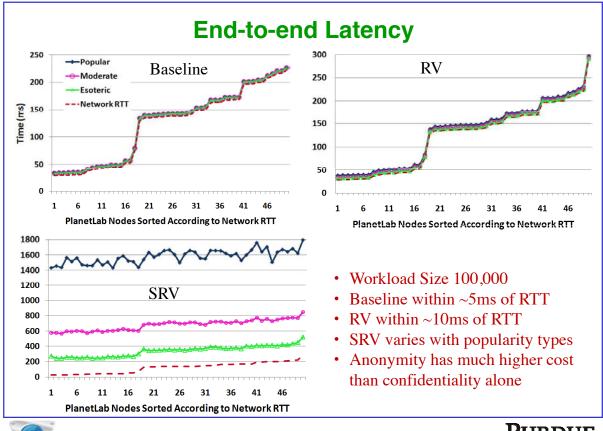




# **Experimental Results**

- We measure
  - End-to-end latency for notification propagation
    - Notification Popularity
    - Classify Popular, Moderate, Esoteric based on popularity distribution
  - Computational overhead for notification propagation
  - Subscription cost
    - Compute time for adding a **new** subscription
  - Message overhead
    - Additional bytes per notification per subscriber

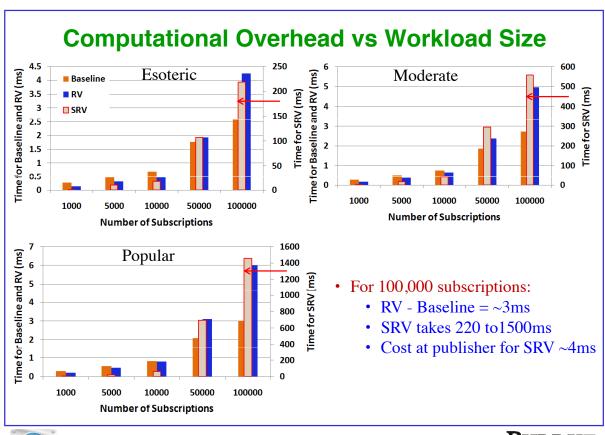





# Experimental Setup End-to-end Latency Brokers at Purdue Subscribers at PlanetLab • ssbg workload generator • 1000 processes, upto 100,000 subscriptions

Slide 15

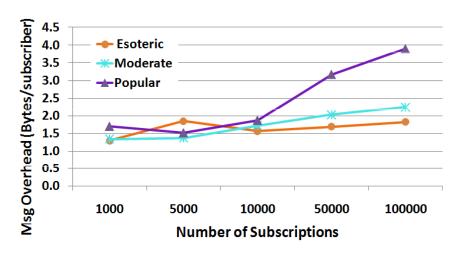









Slide 17










# **Message Overhead**



- Worst case cost per subscriber 16 bytes
  - "Virtual destination address"
- CBPS is built on the assumption that filters are subscribed by many subscribers



Slide 19



# **Comparison with Related Work**

- Computation on encrypted data [SecureComm06, Purdue TR09]
  - Expensive in terms of time
  - Misrouting
  - Cannot support full generality of baseline filters
  - Message overhead
- Commutative Encryption [Sec09]
  - Need to send multiple copies of notifications
- v-CAPS can
  - Support full generality of baseline filters
  - Preserve confidentiality with very little overhead (RV)
  - No trusted third-party
- v-CAPS disadvantage
  - Loss of decoupling in Phase I of Subscribe()





### **Conclusion and Future Work**

- Presented Confidentiality and Anonymity preserving routing protocol for CBPS networks (*v*-CAPS)
- Largest wide-area deployment and experimentation of CBPS protocols
- End-to-end latency of RV is comparable to baseline
- SRV is costly, need to compute *Match*() in parallel for lower latency
- Fault tolerance of Publishers and Brokers
- Anonymizing layer between Subscribers and lowest level Brokers



Slide 21



# **Thank You**





