Secure Configuration of Intrusion Detection Sensors for Changing Enterprise Systems

Gaspar Modelo-Howard, Jevin Sweval, Saurabh Bagchi

Presented by Amiya Kumar Maji

Dependable Computing Systems Lab (DCSL) &
Center for Education and Research in
Information Assurance and Security (CERIAS)
School of Electrical and Computer Engineering
Purdue University

Motivation: MSA

- Current attacks to distributed systems involve multiple steps (MSA: Multi-Stage Attacks)
 - Ultimate goal is to compromise a critical asset
 - Prior to compromising the critical asset, multiple components are compromised

Motivation: MSA

- Current detection systems are not capable of analyzing MSA scenario
 - Example: breach to Heartland Payment Systems (2009)

Motivation: Dynamism

- Distributed system changes over time
 - Static configuration for detection system could miss new (known) attacks possible in the changed configuration as well as throw off false alarms (FP)
 - Existing knowledge of the IDS needs to be updated
- Attacks change over time
 - Static configuration of IDS is not going to be useful

Slide 5

Contributions

- We design a distributed intrusion detection system (DIADS) that can choose and place sensors in a distributed system
- We imbue our solution with the ability to evolve with
 - changes to the protected system and
 - the kinds of attacks seen in the system
- Through domain-specific optimizations, we make our reasoning engine fast enough to perform reconfiguration of existing sensors in light of MSA

Agenda

- Motivation
- Contributions
- Threat Model
- Proposed Method
- Experiments
- Conclusions and Future Work

Slide 7

Threat and System Model

- Single administrative domain
- Attackers follow a MSA approach to compromise a critical asset
 - Bots/Malware can also follow the MSA approach
 - We do not address physical attacks (using a USB memory stick to steal data)
- We do not preclude having sensors that detect attacks at other assets
 - DIADS incorporates existing ID sensors
 - DIADS provides inference engine to receive input from ID sensors

Slide 9

Handling Changes to Protected System and Attack Scenarios

CPT = Conditional Probability Table; BN = Bayesian Network

 Our solution fits within the context of a security architecture already deployed in the system, which includes intrusion detection sensors and firewall

Slide 11

Algorithm 1: Update BN based on Firewall Rule Changes (1)

- INPUT: We use changes to FW rules as proxy for changes to monitored system
 - Message = < number, srcIPaddr, destIPaddr, portnumber, action, ruletype >
- OUTPUT: List of nodes and edges that should be added or deleted from Bayesian network
 - Represents changes to monitored system
- Algorithm can be divided into four phases
 - Determine nodes and edges to be added
 - Determine nodes and edges to be deleted
 - Checking for cycles from changes (Depth First Search)
 - Converting destIPaddr:port nodes into corresponding BN nodes (address:port:vulnerability)

Algorithm 1: Sample Scenario

(a) Firewall rule table

(b) Bayesian Network (1. Previous Network)

- New rule (7) in FW changes topology of Bayesian network
- 2 of 5 potential new edges will not make it to final update since they create a cycle

Slide 13

Algorithm 1: Sample Scenario

(a) Firewall rule table

(b) Bayesian Network (2. Add Edges from New Rule)

- New rule (7) in FW changes topology of Bayesian network
- 2 of 5 potential new edges will not make it to final update since they create a cycle

Algorithm 1: Sample Scenario

(a) Firewall rule table

(b) Bayesian Network (3. Identify Cycles using DFS)

- New rule (7) in FW changes topology of Bayesian network
- 2 of 5 potential new edges will not make it to final update since they create a cycle

Slide 15

Algorithm 1: Sample Scenario

(a) Firewall rule table

(b) Bayesian Network (4. Remove Cyclic Edges)

- New rule (7) in FW changes topology of Bayesian network
- 2 of 5 potential new edges will not make it to final update since they create a cycle

Experimental Setup (1)

 Used real-world distributed system which is part of an NSF Center at Purdue

Slide 17

Experimental Setup (2)

- Bayesian network was created from real-world distributed system which is part of an NSF Center at Purdue
 - Corresponding vulnerabilities generated from using the OpenVAS (old Nessus) vulnerability scanner
 - BN was pruned to include high risk vulnerabilities
 - Final BN had 90 nodes and 582 edges
 - 18 possible detectors, constrained algorithm to pick 6
- Compared results between DIADS and a static/heuristic driven choice of sensors
- DIADS' goal is to improve performance of set of detectors

Slide 19

Multi-Stage Attack Scenarios

- Five attack scenarios were used for the experiments
 - Each step in an attack scenario corresponds to a node in the Bayesian network
 - Each attack scenario has an end goal (node) representing a vulnerability in the critical asset of the testing system
 - Each node has a code (CVE-year-number) corresponding to the code assigned for the particular vulnerability, as defined in NVD
- Examples of attack scenarios
 - 1. Internet → Web Prod (CVE-2010-0742) → App Prod (CVE-2010-0742) → App Prod (CVE-2010-4028) → App Prod (CVE-2010-1848) → DB Prod (CVE-2010-2419)
 - 2. Developer 01 (download email) → Developer 01 (CVE-2009-4143) → Web Develop (CVE-2010-0742) → App Develop (CVE-2009-3546) → DB Develop (CVE-2010-2419) → DB Develop (CVE-2010-0911)

Experimental Results

- Dynamic reconfiguration of Detection Sensor
 - Compare performance between dynamic reconfiguration and a static set of detectors (all around the critical asset)
 - Set of alerts for first three attack steps given to DIADS for reconfiguration of sensors

Experimental Results

Slide 21

- Dynamism with Attack Spreading
 - Reconfigure sensors on the fly
 - Tested performance of DIADS and static setups
 - (1) Attack from the Internet
- (2) Opening ports to DB server

1.0

DIADS

Static

8.0

Conclusions and Future Work

- Design of a distributed intrusion detection system (DIADS) that detects MSA and tunes sensors according to changing environment of system monitored
 - Reconfiguration of sensors allows to detect attacks that take advantage of changing environment
- Experiments show reduction in number of FP when considering dynamism of monitored system
- Future work will include experimenting further with size of Bayesian network and exploring impact of evasion techniques targeted against DIADS

Slide 23

THANK YOU! QUESTIONS?

