International Conference for High Performance Computing, Networking, Storage and Analysis (SC11) Seattle, Nov, 2011

Large Scale Debugging of Parallel Tasks with AutomaDeD

Ignacio Laguna, Saurabh Bagchi

Todd Gamblin, Bronis R. de Supinski, Greg Bronevetsky, Dong H. Ahn, Martin Schulz, Barry Rountree

Lawrence Livermore National Laboratory

Slide 1/23

Purdue

Debugging Large-Scale Parallel Applications is Challenging

- Millions of cores soon in largest systems
- Increased difficulty in developing correct HPC applications
- Poor scalability of traditional debuggers

Faults come from various sources

Hardware

- · Physical degradation
- Soft / hard errors
- Performance faults

Software

- Coding bugs
- Misconfigurations

Lawrence Livermore National Laboratory

Slide 2/23

CURRENT WORK

Contributions and Remaining Agenda

- Online fault detection using AutomaDeD
 - Efficient model comparison
 - Scalable faulty-task detection: CAPEK clustering, NN
- Accurate faulty-task isolation: model graph compression
- Evaluation at scale (> 5K processes)

Lawrence Livermore National Laboratory

Slide 7/23

Purdue

Faulty-Task Isolation Using Nearest-Neighbor (NN)

Nearest-Neighbor Approach

- (1) Sample constant number of tasks
- (2) Broadcast samples to all tasks
- (3) Find NN distance
- (4) Sort tasks based on distances and select top-k ones
- Assumption is that faulty task will be far from its NN
 - Faster than clustering
 - Works well only when we have one (or a few) faulty task(s)
 - Complexity O(log #tasks)

Lawrence Livermore National Laboratory

Slide 13/23

PURDUE

Too Many Graph Edges - The Curse of Dimensionality

Sample SMM graph

- Too many edges = Too many dimensions
- Poor performance of Clustering & Nearest-Neighbor

Lawrence Livermore National Laboratory

Slide 14/23

PURDUE

Fault Injection Types

- · We inject faults into the NAS Parallel Benchmarks:
 - BT, SP, CG, FT, LU
 - Injections occur at random {MPI call, task}
 - Linux Sierra cluster at LLNL (six-core nodes, 2.8 GHz, 24GB RAM)
 - Total of 960 experiments

Туре	Description
CPU_INTENSIVE	CPU-intensive code region – triply nested loop
MEM_INTENSIVE	Memory-intensive code – filling 1GB buffer at random locations
HANG	Local deadlock – process suspend execution indefinitely
TRANS_STALL	Transient stall – process suspend execution for 5 seconds

Lawrence Livermore National Laboratory

Slide 17/23

Purdue

Evaluation Metric

· Task Isolation Recall:

Fraction of runs in which the faulty task (where fault is injected) is in the top-5 abnormal processes

Example:

Fault injected in task 7

Run 1	Run 2	Run 3	
10 103 7 24 8	25 158 3 1	7 1 32 14 109	Top-5 abnormal tasks
4	103	108	
3	24	20	
80	73	38	

Task-Isolation Recall = 2 / 3 = 0.67

Lawrence Livermore National Laboratory

Slide 18/23

PURDUE

Performance Experiments at Scale

- Use Algebraic Multigrid Benchmark (AMG 2006)
 - Scalable multigrid solver
 - Demonstrated up to 125,000 tasks in BlueGene/L
- Ran with over 5,000 tasks in LLNL Sierra Linux cluster
 - Measure time of edge / task isolation and compression

Lawrence Livermore National Laboratory

Slide 21/23

Purdue

Concluding Remarks

- Contributions:
 - Scalable technique to detect faults in MPI applications
 - Implementation scales easily to thousands of tasks
 - Compressing task graph improves anomaly detection accuracy
- Future work:
 - Extend compression technique to allows finer grained instrumentation of function calls
 - Capture more information to detect a wider range of faults

Lawrence Livermore National Laboratory

PURDUE

Bring us your fault / bug at large scale

- performance anomaly
- coding bug

...we'll be happy to try AutomaDeD on it

Ignacio Laguna <ilaguna@purdue.edu>

