Responses to Cyber Attacks in Distributed Systems

Saurabh Bagchi

The Center for Education and Research in Information
Assurance and Security (CERIAS)
School of Electrical and Computer Engineering
Purdue University

Supported by: NSF, Lockheed Martin, NEHRP

Joint work with: Eugene H. Spafford, Guy Lebanon

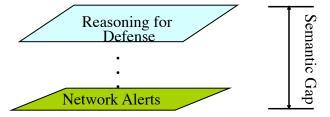
Slide 1/27

Outline

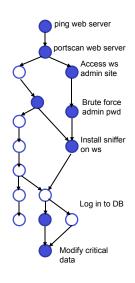
- Problem Statement
- Solution Directions
- Some Promising Solutions
- Ongoing Challenges

Defending Distributed Systems

- Large-scale distributed systems to defend
 - Heterogeneous third-party services
- Lots of points for attacks
 - Lots of points to introduce cybersecurity mechanisms
- Interactions between the services allow for attack escalation



Slide 3/27

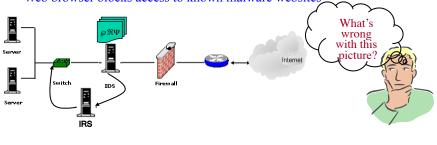

Drowning in a Sea of Alerts

- Large distributed systems get tons of alerts
 - Up to 20,000 per day
- Many of these are false alarms

CER (AS)

- Multi-stage attacks
 - Compromise outward facing services
 - Use transitive trust and privilege escalation
 - Compromise internal services
 - Access crown jewels
- Attack progresses in machine time, rather than human time
- Examples: Worms and other self-propagating malware

CERIAS


Slide 5/27

PURDUE

Signature-based Responses

- Intrusion Response Systems (IRS) take reports from IDS and carry out actions to counter the intrusion
- Many examples of IRS
 - Anti-virus software disables access to worm executables or files infected with virus
 - Iptables which terminates a session on matching a malware signature

Web browser blocks access to known malware websites

CERIAS

Slide 6/27

Dealing with Zero-Day Attacks

- Zero-day attacks are difficult to deal with through signature-based mechanisms
 - They exploit unknown vulnerabilities
 - Their path of attack spread is not known a priori
- Challenges for zero-day attacks
 - Exact matching of mechanics of attack step does not work
 - A reactive approach to security allows devastating zero-day attacks to get through
 - Learning-based approaches are predicated on exact matches and therefore do not work well

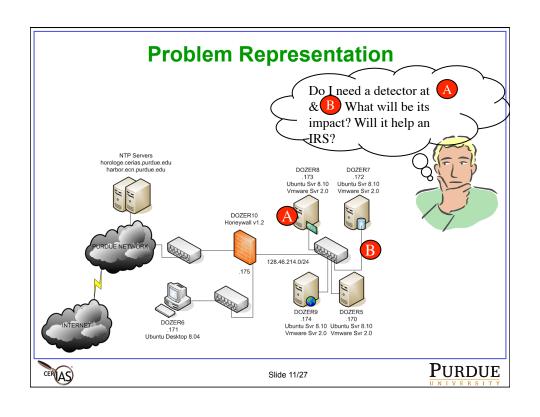
Slide 7/27

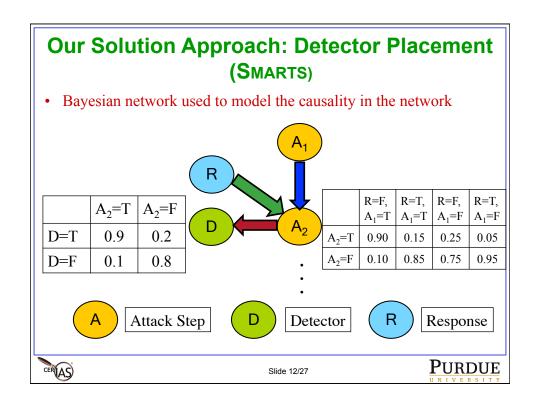
Outline

- Problem Statement
- Solution Directions
- Some Promising Solutions
- Ongoing Challenges

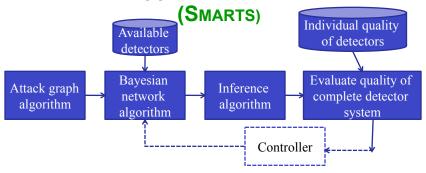
Solution Directions

- We want to perform secure configuration and intrusion response in the face of threats that are fast-changing and therefore unknown
- 1. We want to learn from past behavior
 - But not overlearn
- 2. We want to grow our knowledge structures with runtime information
 - But not learn untruths
- 3. We want to perform the learning at runtime
 - This implies expensive batch mode processing is out
- 4. We do not want to rely only on signature-based security
 - Abstractions of attack steps are useful


Slide 9/27



Outline


- Problem Statement
- Solution Directions
- Some Promising Solutions
- Ongoing Challenges

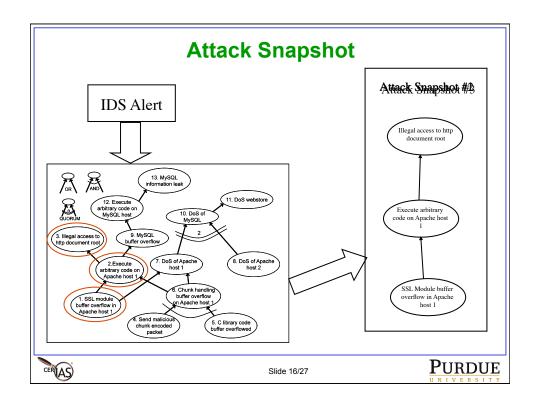
Our Solution Approach: Detector Placement

- Inference on the Bayesian network performed through different choice and placements of detectors
- Heuristic-driven choice of one detector and its placement at a time
- Heuristic depends on individual detector quality and overlap with previously chosen detectors
- Controller to adjust detector setting when network changes

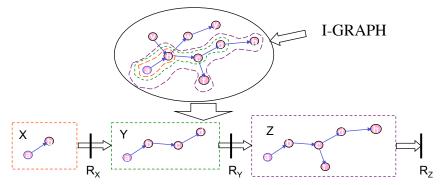
Slide 13/27

Adaptive to Current Threat Environment

- It is expensive to turn all sensor rules all the time
 - Example: Snort default rule set has > 9,000 single step attack rules, in 73 categories and takes > 5 sec to match all of them
- Approach:
 - Perform damage assessment currently through Bayesian inferencing
 - Damage assessment indicates
 - Which components are likely compromised but needs further evidence to determine with high confidence
 - Based on attack spread, which components are likely to be compromised
 - Sensor rules are activated based on results of damage assessment
- Responsive to changes in system
 - Incremental inferencing when some parts of system change


Our Solution Approach: Intrusion Response (ADEPTS)

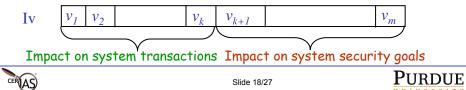
- Short-term as well as long-term goals
 - Contain the current attack
 - Recover affected services to a functional state
 - Proactive defenses for future attacks
- Leverage distributed system's characteristics
 - Determine if the alert is false
 - Determine if the impact is worth responding to
- Learn from thy observations and mistakes
 - Calibrate prior responses
 - Learn characteristics of interactions in the system through past attacks
 - Quick customized responses to polymorphs of prior attacks


Slide 15/27

Dynamics between attack and responses

• Successive attack snapshots created for incoming IDS alerts

- · Assuming an attack includes three "snapshots" X, Y, and Z
- Each snapshot includes I-GRAPH nodes which have been achieved as part of the attack thus far
- Following each snapshot k, SWIFT determines a response combination R_k (a set of response actions) to deter the escalation



Slide 17/27

Impact Vector

- A system has transaction goals and security goals that it needs to meet through the time of operation
 - Example: provide authentication service & preserve privacy of sensitive data
- Attacks are meant to impact some of these goals
- Deployed responses also impact some of these goals
 - For example, by temporarily disabling some functionality for legitimate users as well
- Assume the impact can be quantified through a vector Iv
 - − Each element in the Iv corresponds to the impact on each transaction/ security goal $\in [0, \infty]$

Optimality of Response Actions

• We formally define the cost for a response combination (a set of response actions) RC_i as:

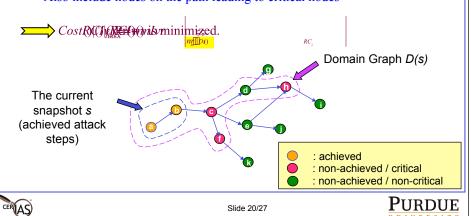
CostRCOMPT SS

 $Iv(n_k)$: Impact from reaching an attack step node n_k

 $Pr(n_k)$: Probability of reaching node n_k

 $Iv(r_k)$: Impact from deploying the response r_k

- The response combination RC_i is said to be optimal for a given attack if it achieves the minimal Cost(RC_i)
 - In ADEPTS, optimality achieved "per node and per out-going edge"

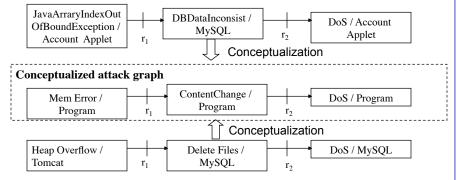


Slide 19/27

Domain Graph

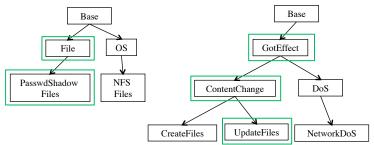
- Limit the response search space for a snapshot s to a subset of I-GRAPH, namely the **Domain Graph** D(s)
- D(s) includes critical nodes from I-GRAPH
 - A node n is critical if |Prob(n)*Iv(n)| is greater than a given threshold
 - Also include nodes on the path leading to critical nodes

Responding to the Unknown


- Zero-day attack
 - Knowledge of the steps in the attack does not exist in the IRS
- Current solution: Take a drastic response, such as disconnecting the service
- Problem:
 - May be reacting to spurious alarms
 - Cannot learn from the spread of the attack
- Our solution approach:
 - Abstract the specifics of the attack
 - At a higher level of abstraction, map the attack to a previously seen attack
 - Use the learning on the previous attack to guide the responses for the current zero-day attack

Slide 21/27

Responding to the Unknown: Example

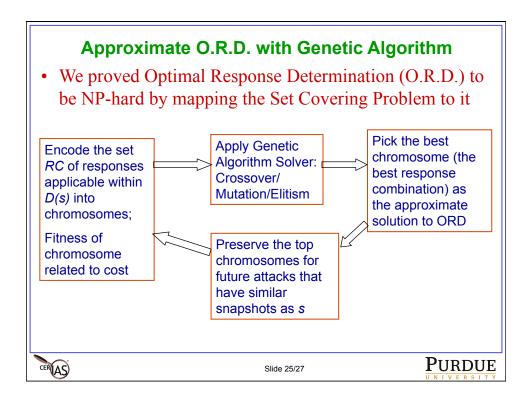

Responses: r_1 : Disable connection from tomcat/applet to MySQL; r_2 : Rollback to last data files checkpoint

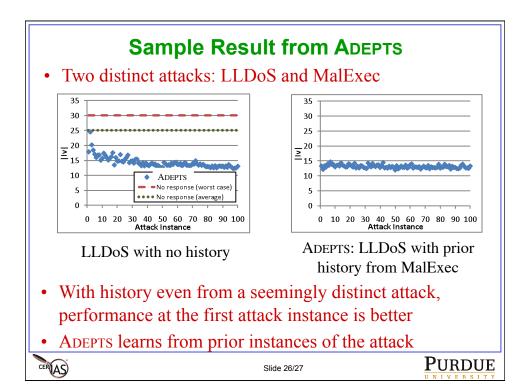
• Challenges: (1) High similarity does not necessarily give you the best response; (2) To what level should each node be conceptualized

Utilize History from Similar Attack

- How to calculate similarity between two attacks?
 - Inheritance hierarchy for components, detector alerts, and connections

- Calculate distance for each node and each connection
- Compute graph edit distance
 - Conceptually, the sequence of steps to convert one graph to another
 - Through addition, deletion, or modification of nodes and connections


Slide 23/27

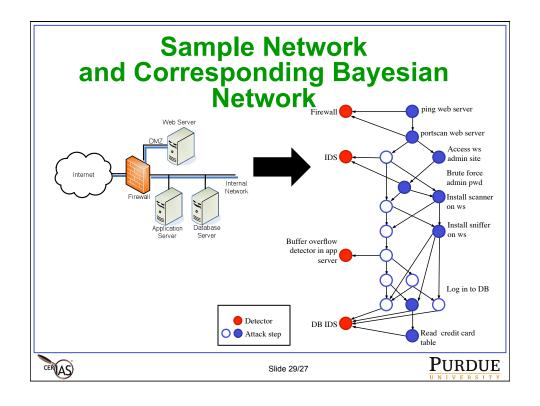


Utilize History from Similar Attack

- Acquire from the similar attack
 - Effectiveness Index (EI) values of responses
 - Edge Propagation Factor (EPF) values of edges
 - Effective Response Combinations
- Efficient search through space of prior attacks
 - Attack similarity is defined to follow metric space conditions: d(x, x) = 0; d(x, y) = d(y, x); $d(x, y) + d(y, z) \ge d(x, z)$
 - Prior work allows for efficient storage and search through attack template library
 - Disjoint parts of multiple attacks can be used in responding to the current attack

Goals of Ongoing Work

- Secure Configuration Management
 - Detector placement is a specific example of security configuration
 - Tool should detect (when insecure configuration is introduced) and diagnose (which component has been mis-configured)
 - Tradeoffs exist between security of configuration and usability
 - Tool must not make arbitrary decisions on this spectrum
- Automated Intrusion Response
 - Resilience to zero-day attacks through more effective responses (i.e., less drastic than rebooting the servers)
 - Correlation of multiple detectors to increase confidence that an attack is underway before responding



Slide 27/27

Backup Slides

Impact on Choice and Placement of Detectors • System: Three-tier webbased online service 0.8 • Objective: determine impact True Positive Rate of selecting detectors and corresponding locations $(d_{20}, x_{19}), (d_{20}, x_{16})$ Performance of detector pair 0.2 $(d_{13},x_{12}),(d_7,x_6)$ (selected from algorithm) is compared against randomly 0.2 0.4 0.6 False Positive Rate selected pairs Selection made by our algorithm **PURDUE** CER (AS) Slide 30/27