AutomaDeD: Automata-Based
Debugging for Dissimilar Parallel Tasks

Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi,
Bronis R. de Supinski, Dong H. Ahn, and Martin Schulz

DSN, 2010
Jun, 30th

‘ Lawrence Livermore National Laboratory Slide 1/24 L
OENIVERGITY

Debugging Large-Scale Parallel Applications is
Challenging

 Large systems will have millions of cores in near future
— Increased difficulty for developing correct HPC applications
— Traditional debuggers don’t perform well at this scale

 Faults come from various sources
— Hardware: soft errors, physical degradation, design bugs
— Software: coding bugs, misconfigurations

‘ Lawrence Livermore National Laboratory Slide 2/24 , I FAR) -
ERIVEESITY

Developer Steps When Debugging a Parallel

Application

Questions a developer has to answer when an application fails:

c Line of code?

Code region?

< Parallel task that failed?

c When did it fail?
(detect abnormal application phase)

— AutomaDeD

» Need for tools to help developers find root cause quickly

‘ Lawrence Livermore National Laboratory

Slide 3/24

OENIVERGITY

AutomaDeD’s Error Detection Approach

Offline

[Phase Annotation]

[[Task,][Task,] [E;

Application]

Online

Offline [

(2) Abnormal Tasks

(1) Abnormal Phases J
(3) Characteristic Transitions

‘ Lawrence Livermore National Laboratory

Slide 4/24

UBIVERSITY

Types of Behavioral Differences

Between runs

/\
Run 1 Run 2 Run 3
MPI Application MPI Application MPI Application
Tasks Tasks Tasks
Spatial _~|
(between
tasks)
Temporal
(between
time points)
v V V v v V V v v V V v
time time time
‘ Lawrence Livermore National Laboratory Slide 5/24

ODNIFERSITT

Semi-Markov Models (SMM)

 Like a Markov model but with time between transitions
— Nodes: application states
— Edges: transitions from one state to another

Transition Time spent in current state
probability (before transition)

0.1, 50003

‘ Lawrence Livermore National Laboratory Slide 6/24 PURDUE
ERIVEESITY

SMM Represents Task Control Flow

« States correspond to:

— Calls to MPI routines
— Code between MPI routines

Application Code

main() {
MPI_Init()
... Computation ...
MPI_Send(..., 1, MPI_INTEGER, ...);
for(...)
foo();
MPI_Recv(..., 1, MPI_INTEGER, ...);
MPI_Finalize();
}

foo() {
MPI_Send(..., 1024, MPI_DOUBLE, ...);
...Computation...
MPI_Recv(..., 1024, MPI_DOUBLE, ...);
...Computation...

}

Semi-Markov Model

n

main()—>Send-INT

i—)foo()—)Send—DBL
S 7

(Computation]
Al

—)

Different state
for different
calling context

[main()—>foo()—>Recv-DBL]]

¥
[Computation]

([main)>Recy-INT]

main()—>Finalize

‘ Lawrence Livermore National Laboratory

PURDUE

Slide 7/24
OEIVERSITY

Data

Two Approaches for Time Density Estimation:
Parametric and Non-parametric

Samples (B ee) (% o (o)
Time Values
Gaussian Distribution Histograms
(Parametric model) (Non-parametric model)
Density Bucket
Function Counts
Line Connectors
e TN \// ~~~~ Gaussian Tail
“—/,’/ \~\\"_ __/,,"H \D" \sz__
! Time Values Time Values
* Cheaper * More Expensive
 Lower Accuracy * Greater Accuracy
‘ Lawrence Livermore National Laboratory Slide 8/24 PURDUE
ORIVEESITY

AutomabDeD’s Error Detection Approach

Offline [Phase Annotation }

Application
[[Taskl][Taskz] | Task;]

/ Online

Offline

N
(1) Abnormal Phases
(2) Abnormal Tasks
(3) Characteristic Transitions

‘ Lawrence Livermore National Laboratory Slide 9/24 PURD‘]E
ONIFEERESITY

, .
User’s Phase Annotations
Sample Code:
main(Q) { ‘
MPI_Init(Q)
.. Computation ..
MP1_Send(.., MPI_INTEGER, ..); Phase 1
MPI1_Pcontrol();
for(.) { |
MP1_Send(.., MP1_DOUBLE, ..):
..Computation..
MP1_Recv(.., MPI_DOUBLE, .); Phase 2

3
MP1_Pcontrol(); ‘
..Computation..

MP1_Recv(.., MPI_INTEGER, .);
MPI_Finalize(): Phase 3
MPI_Pcontrol(); ‘

}
» Phases denote dynamically repeated regions of execution

» Developers annotate phases in the code
— MPI_Pcontrol is intercepted by wrapper library

‘ Lawrence Livermore National Laboratory Slide 10/24 PURDI]E
ORIVEESITY

A Semi-Markov Model per Task, per Phase

(sMM) (sMM) (sMM) (svMMm)

Task 1 ? e Lol e > time
©) o o o v
\O | \© | \© | \© Y,
(smm)| (sMm Y| (smm) | (sMM)
> time

g hgn gl

PARNS | \© | \© Y,

(sMM) (SMM) (SMM N | (sMMm)

Task n_\gﬁg -— (r P ? P m-gj%;@ > time

J J

Phase 1 Phase 2 Phase 3 Phase 4

‘ Lawrence Livermore National Laboratory Slide 11/24 PURD‘]E
ONIFEESITTY

AutomaDeD’s Error Detection Approach

—

/ Offline [Phase Annotation]
¥

B Application]

[[Task,][Task,] [Ev

PNMPI Profiler

Clustering

(1) Abnormal Phases
(2) Abnormal Tasks
(3) Characteristic Transitions

Offline

‘ Lawrence Livermore National Laboratory Slide 12/24 PURDI]E

URIFEENSITY

Faulty Phase Detection:
Find the Time Period of Abnormal Behavior

 Goal: find phase that differs the most from other phases
Sample runs available:

Sample Runs

,SMM, | SMM, _SMM,

A ~ SMM,— SMM,

SMM, | | SMM, Compare to SMM, SMM, SMM,
counterpart

SMM, ¢ SMM, |
SMM, | | SMM, 3!

Phase 1 Phase 2 Phase 1 Phase 2 Phase M

Compare each phase
to all others

Phase 1 Phase 2 Phase M

‘ Lawrence Livermore National Laboratory Slide 13/24 PURD‘]E
ONIFEESITTY

Clustering Tasks’ Models:
Hierarchical Agglomerative Clustering (HAC)

Diss(SMM,, SMM,) = L2 Norm (Transition prob.) + L2 Norm (Time prob.)

Each task starts in its own cluster

s N N
Step 1 Task 1 Task 2 Task 3 Task 4
SMM SMM SMM SMM >
N\ JAN J,
s s N

-

N\ (<

s N N
Step 3 Task 1 Task 2 Task 3 Task 4
SMM SMM SMM SMM >
\ AN ¥
?

Step 4

N
Step 2 Task 1 Task 2 Task 3 Task 4
SMM SMM SMM SMM >
))

Do we stop? or,
Do we get one
cluster?

We need a threshold to decide when to stop

‘ Lawrence Livermore National Laboratory Slide 14/24 PURDI]E

URIFEENSITY

How To Select The Number Of Clusters

Option 1:
 User provides application’s natural cluster count k

Option 2:
» Use sample runs to compute clustering threshold t that
produces k clusters
— Use sample runs if available
— Otherwise, compute T from start of execution
— Threshold based on highest increased in dissimilarity

 During real runs, cluster tasks using threshold t

‘ Lawrence Livermore National Laboratory Slide 15/24 PURD‘]E
OENIVERGITY

Cluster Isolation Example

Cluster Isolation: to separate buggy task in unusual cluster

Master-Worker Application Example

Normal Execution Buggy Execution

Cluster 3

Cluster 2

Bug in Task 9

‘ Lawrence Livermore National Laboratory Slide 16/24 PURDI]E

UBIVERSITY

Transition Isolation:
Erroneous Code Region Detection

¢ Method 1:

— Find edge that distinguishes
faulty cluster from the others

— Recall: SMM dissimilarity is
based on L2 norm of edge’s
parameters

* Method 2:
— Find unusual individual edge

— Edge that takes unusual amount
of time (compared to observed
times)

Visualization of Results

[Waitall
Cluster 1: Tasks

_Computation | {0, 1,3,5,7, 8
v
[Isend-DOUBLE |
_Isend-DOUBLE |

| S Cluster 2:
[_ Computation | Task {6}
[Treev DOUBLE | pugey
(Computation]
v
¥ Wait (Computation |
A

Isolated transition (cluster 2)

‘ Lawrence Livermore National Laboratory

Slide 17/24

ODNIFERSITT

Fault Injection

* NAS Parallel Benchmarks:
- BT, CG, FT, MG, LU and SP

— 16 tasks, Class A (input)

» 2000 injection experiments per application:

Name Description

FIN_LOOP Local livelock/deadlock (delay 1,5, 10 sec)
INF_LOOP Transient stall (infinite loop)
DROP_MESG | MPI message loss

REP_MESG MPI message duplication

CPU_THR CPU-intensive thread

MEM_THR Memory-intensive thread

‘ Lawrence Livermore National Laboratory

Slide 18/24

PURDUE

URIFEENSITY

Phase Detection Accuracy

* ~90% for Loops and Message drops

» ~60% for Extra threads
— Training = sample runs available
— Training significantly better than no training
— Histograms better than Gaussians

100%

Training vs. | | 80

No Training 60% .
W Taultl (- Gaunss

BT aultl0- Ihistogram

Some Faults vs.
NoFault Samples %o

= MoFault - Gauss

B MoFaull - Histogram
Gaussian vs. 0% NoSample - Gauss
Histogram B MNoSample - ITistogram
A0S
(}
‘ Lawrence Livermore National Laboratory Slide 19/24 PURD'UE
CRIVERSITT

Cluster Isolation Accuracy:
Isolating the abnormal task(s)
» Results assume phase detected accurately
» Accuracy of Cluster Isolation highly variable

Accuracy up to 90% Poor detection elsewhere '
for extra threads because of fault propagation:
buggy task = normal task(s)
100% > \\ ~
80° I Application
60 =BT
mCG
40% FT
LU
ul
20 aMG
0% " msp
&
‘ Lawrence Livermore National Laboratory Slide 20/24 PURDI]E
ERIVEESITY

Transition Isolation

* Injected transition in top 5 candidates
— Accuracy ~90% for loop faults
— Highly variable for others
— Less variable if event order information is used

100%
80%
o0% =BT

B

KT
nll’

MG
mSP

40%
20%
0%

‘ Lawrence Livermore National Laboratory Slide 21/24
ONIFEESITTY

MVAPICH Bug

 Job execution script failed to clean up at job end
— MPI tasks executer (mpirun, version 0.9.9)
— Left runaway processes on nodes

 Simulation:
— Execute BT (affected application)
— Run concurrently runaway applications (LU, MG or SP)
— Runaway tasks interfere with normal BT execution

‘ Lawrence Livermore National Laboratory Slide 22/24 PURDI]E
ORIVEESITY

MVAPICH Bug Results:
SMMs Deviation Scores in Affected Application

Affected application: BT benchmark
Interfering applications: SP, LU, MG benchmarks

16-task BT / 16-task SP/LU/MG

LE+5

LE+4 (A
VTN oG Nortrnee

LE+3 & Concurrent 8T
LE+2 - = — " Concurrent LU
1E+1 ==Concurreni MG+

LE+H) \ \. T T T T T T T 1

SNV Deviation Score

Constant (average) SMM
difference in regular BT runs

Abnormal phase detected in phase 1
in SP and LU, and in phase 2 in MG

‘ Lawrence Livermore National Laboratory Slide 23/24
ONIFEESITTY

Concluding Remarks

 Contributions:
— Novel way to model and compare parallel tasks’ behavior
— Focuses debugging efforts on time period, tasks and code
region where bug is first manifested
— Accuracy up to ~90% for phase detection, cluster and transition
isolation (delays and hangs)

« Ongoing work:
— Scaling implementation to work on millions of tasks

— Improving accuracy through different statistical models
(e.g., Kernel Density Estimation, Gaussian Mixture Models)

PURDUE

‘ Lawrence Livermore National Laboratory Slide 24/24
ERIVEESITY

