

Debugging Large-Scale Parallel Applications is Challenging Large systems will have millions of cores in near future Increased difficulty for developing correct HPC applications Traditional debuggers don't perform well at this scale Faults come from various sources Hardware: soft errors, physical degradation, design bugs Software: coding bugs, misconfigurations

Fault Injection		
 NAS Parallel Benchmarks: BT, CG, FT, MG, LU and SP 16 tasks, Class A (input) 2000 injection experiments per application: 		
Name	Description	
FIN_LOOP	Local livelock/deadlock (delay 1,5, 10 sec)	
INF_LOOP	Transient stall (infinite loop)	
DROP_MESO	MPI message loss	
REP_MESG	MPI message duplication	
CPU_THR	CPU-intensive thread	
MEM_THR	Memory-intensive thread	
Lawrence Livermore National Laboratory Slide 18/24		

