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Debugging Large-Scale Parallel Applications is 
Challenging

• Large systems will have millions of cores in near future
– Increased difficulty for developing correct HPC applications
– Traditional debuggers don’t perform well at this scale

• Faults come from various sources
– Hardware: soft errors, physical degradation, design bugs
– Software: coding bugs, misconfigurations
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Developer Steps When Debugging a Parallel 
Application

When did it fail?
(detect abnormal application phase)

When did it fail?
(detect abnormal application phase)

Parallel task that failed?Parallel task that failed?

Code region?Code region?

Line of code?Line of code?

Questions a developer has to answer when an application fails:

AutomaDeD

• Need for tools to help developers find root cause quickly
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AutomaDeD’s Error Detection Approach

Phase Annotation

Task1Task1 Task2Task2
… TasknTaskn

Application

Model1Model1 …

Clustering

(1) Abnormal Phases
(2) Abnormal Tasks

(3) Characteristic Transitions

PNMPI Profiler

Offline

Online

Offline

Model2Model2 ModelnModeln
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Types of Behavioral Differences

1 …

MPI Application

2 3 n

Tasks

Spatial
(between 

tasks)

Temporal
(between 

time points)
time

1 …

MPI Application

2 3 n

Tasks

time

Run 1 Run 2

1 …

MPI Application

2 3 n

Tasks

time

Run 3

Between runs
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Semi-Markov Models (SMM)

• Like a Markov model but with time between transitions
– Nodes: application states
– Edges: transitions from one state to another

0.2 , 5μs
0.7, 15μs

0.1, 500μs

A

B

C

D

Transition
probability

Time spent in current state 
(before transition)
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SMM Represents Task Control Flow

• States correspond to:
– Calls to MPI routines
– Code between MPI routines

Computation

main()→foo()→Send-DBL

Computation

main()→foo()→Recv-DBL

Computation

main()→Finalize

main()→Initmain() {
MPI_Init()
… Computation …
MPI_Send(…, 1, MPI_INTEGER, …);
for(…)

foo();
MPI_Recv(…, 1, MPI_INTEGER, …);
MPI_Finalize();

}

foo() {
MPI_Send(…, 1024, MPI_DOUBLE, …);
…Computation…
MPI_Recv(…, 1024, MPI_DOUBLE, …);
…Computation…

}

Application Code Semi-Markov Model

main()→Send-INT

main()→Recv-INT

Different state
for different 

calling context
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Two Approaches for Time Density Estimation:
Parametric and Non-parametric

Bucket 
Counts

Gaussian Tail
Line Connectors

Time Values

Density
Function

Data
Samples

• Cheaper
• Lower Accuracy

• More Expensive
• Greater Accuracy

Time Values Time Values

Gaussian Distribution
(Parametric model)

Histograms
(Non-parametric model)



Slide 9/24Lawrence Livermore National Laboratory

AutomaDeD’s Error Detection Approach

Phase Annotation

Task1Task1 Task2Task2
… TasknTaskn

Application

Model1Model1 …

Clustering

(1) Abnormal Phases
(2) Abnormal Tasks

(3) Characteristic Transitions

PNMPI Profiler

Offline

Online

Offline

Model2Model2 ModelnModeln
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Phase 3

Phase 2

Phase 1

User’s Phase Annotations
main() {

MPI_Init()
… Computation …
MPI_Send(…, MPI_INTEGER, …);
MPI_Pcontrol();
for(…) {

MPI_Send(…, MPI_DOUBLE, …);
…Computation…
MPI_Recv(…, MPI_DOUBLE, …);

}
MPI_Pcontrol();
…Computation…
MPI_Recv(…, MPI_INTEGER, …);
MPI_Finalize();
MPI_Pcontrol();

}

• Phases denote dynamically repeated regions of execution
• Developers annotate phases in the code

– MPI_Pcontrol is intercepted by wrapper library

Sample Code:
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A Semi-Markov Model per Task, per Phase 

SMM

SMM

SMM

. . .

SMM

SMM

SMM

. . .

Task 1

Task 2

Task n

SMM

SMM

SMM

. . .

SMM

SMM

SMM

. . .

Phase 1 Phase 2 Phase 3 Phase 4

time

time

time
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AutomaDeD’s Error Detection Approach

Phase Annotation

Task1Task1 Task2Task2
… TasknTaskn

Application

Model1Model1 …

Clustering

(1) Abnormal Phases
(2) Abnormal Tasks

(3) Characteristic Transitions

PNMPI Profiler

Offline

Online

Offline

Model2Model2 ModelnModeln
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Faulty Phase Detection:
Find the Time Period of Abnormal Behavior

• Goal: find phase that differs the most from other phases 

SMM1

SMM2

SMMn

Phase 1

SMM1

SMM2

SMMn

Phase 2

SMM1

SMM2

SMMn

Phase M

…

Sample runs available:

SMM1

SMM2

SMMn

Phase 1 Phase 2 Phase M

…
SMM1

SMM2

SMMn

SMM1

SMM2

SMMn

Sample Runs

SMM1

SMM2

SMMn

Phase 1

SMM1

SMM2

SMMn

Phase 2

SMM1

SMM2

SMMn

Phase M

…

Without sample runs:

Compare to 
counterpart

Compare each phase 
to all others
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Clustering Tasks’ Models:
Hierarchical Agglomerative Clustering (HAC)

Task 1 
SMM

Task 2 
SMM

Task 3 
SMM

Task 4 
SMM

Task 1 
SMM

Task 2 
SMM

Task 3 
SMM

Task 4 
SMM

Task 1 
SMM

Task 2 
SMM

Task 3 
SMM

Task 4 
SMM

Step 1

Step 2

Step 3

Step 4

Do we stop? or, 
Do we get one 
cluster?

Diss(SMM1, SMM2) = L2 Norm (Transition prob.) + L2 Norm (Time prob.)

We need a threshold to decide when to stop

Each task starts in its own cluster

?
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How To Select The Number Of Clusters

Option 1:
• User provides application’s natural cluster count k

Option 2:
• Use sample runs to compute clustering threshold τ that 

produces k clusters
– Use sample runs if available
– Otherwise, compute τ from start of execution
– Threshold based on highest increased in dissimilarity  

• During real runs, cluster tasks using threshold τ
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Cluster Isolation Example

Task 3

Task 4 Task 5 Task 6

Task 7 Task 8 Task 9

Task 1

Task 2

Master-Worker Application Example

Normal Execution

Cluster 1

Cluster 2

Task 3

Task 4 Task 5 Task 6

Task 7 Task 8 Task 9

Task 1

Task 2

Buggy Execution

Cluster 1

Cluster 2

Cluster 3

Bug in Task 9

Cluster Isolation:  to separate buggy task in unusual cluster
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Transition Isolation:
Erroneous Code Region Detection

• Method 1:
– Find edge that distinguishes 

faulty cluster from the others
– Recall: SMM dissimilarity is 

based on L2 norm of edge’s 
parameters

• Method 2:
– Find unusual individual edge
– Edge that takes unusual amount 

of time (compared to observed 
times)

Visualization of Results

Isolated transition (cluster 2)
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Fault Injection

• NAS Parallel Benchmarks:
– BT, CG, FT, MG, LU and SP 
– 16 tasks, Class A (input)

• 2000 injection experiments per application:

Name Description
FIN_LOOP Local livelock/deadlock (delay 1,5, 10 sec)
INF_LOOP Transient stall (infinite loop)
DROP_MESG MPI message loss
REP_MESG MPI message duplication
CPU_THR CPU-intensive thread 
MEM_THR Memory-intensive thread
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Phase Detection Accuracy
• ~90% for Loops and Message drops 
• ~60% for Extra threads

– Training = sample runs available
– Training significantly better than no training 
– Histograms better than Gaussians

Training vs.
No Training

Some Faults vs. 
NoFault Samples

Gaussian vs. 
Histogram

Faults
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Cluster Isolation Accuracy:
Isolating the abnormal task(s)

• Results assume phase detected accurately
• Accuracy of Cluster Isolation highly variable

Application

Faults

Accuracy up to 90% 
for extra threads

Poor detection elsewhere 
because of fault propagation: 
buggy task normal task(s)
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Transition Isolation

• Injected transition in top 5 candidates
– Accuracy ~90% for loop faults
– Highly variable for others
– Less variable if event order information is used
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MVAPICH Bug

• Job execution script failed to clean up at job end
– MPI tasks executer (mpirun, version 0.9.9)
– Left runaway processes on nodes

• Simulation:
– Execute BT (affected application)
– Run concurrently runaway applications (LU, MG or SP)
– Runaway tasks interfere with normal BT execution
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MVAPICH Bug Results:
SMMs Deviation Scores in Affected Application

Affected application:   BT benchmark
Interfering applications:  SP, LU, MG benchmarks

Abnormal phase detected in phase 1 
in SP and LU,  and in phase 2 in MG

Constant (average) SMM 
difference in regular BT runs
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Concluding Remarks
• Contributions:

– Novel way to model and compare parallel tasks’ behavior
– Focuses debugging efforts on time period, tasks and code 

region where bug is first manifested
– Accuracy up to ~90% for phase detection, cluster and transition 

isolation (delays and hangs)

• Ongoing work:
– Scaling implementation to work on millions of tasks
– Improving accuracy through different statistical models 

(e.g., Kernel Density Estimation, Gaussian Mixture Models)


