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Voice-over-IP (VolP) Overview

« Session Initiation Protocol (SIP) or H.323 for
signaling
 Real-time Transport Protocol (RTP) for media

Media flow happens after a successful call setup,
which is achieved through signaling

Real-time Transport Protocol (RTCP) for
feedback

Other supporting protocols: DNS, DHCP, ICMP

D@L_ Slide 2/29 JPI]RDUE

NEHIVFEABRITY




Sample Call Flow in VolIP
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Spam Calls in VoIP Systems

SPam over Internet Telephony (SPIT)

Unsolicited and unwanted phone calls from (malicious)
parties

— Telemarketing calls

— Harassing calls

— Survey / polling calls

Why is this a growing phenomenon?

— VolIP calls are cheap to make

— SPIT is very easy to automate

Comparison with e-mail spam:

— Motives and impacts are analogous

— But, more disruptively, a VoIP spam intrudes in real-time
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Challenges for Dealing with VolP Spam

» A spam call in many ways appears like a normal (non-
SPIT) call
— Both follow the same protocols (SIP, H.323, RTP, RTCP)
— No malformed packets
— No exploitation of protocol vulnerabilities
— Existing NIDS systems (Snort, SciDivelll,...) do not apply

* VOIP is a real-time system

— Before you pick up the call, can you tell if it’s going to be a
spam call?

[1] Y-S. Wu, S. Bagchi, S. Garg, N. Singh, T. Tsai, “SCIDIVE: A Stateful and
Cross Protocol Intrusion Detection Architecture for VVoice-over-1P
Environments,” DSN 05, pp. 401-410.
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Challenges for Dealing with VoIP Spam

* VoIP system is a dynamic environment

— Call duration, call frequency, the words you say, ... can all be
changing from one deployment to another

— Different persons have different perspectives on what constitute
a spit call

» Some might be interested in buying merchandise from telemarketers
while they do dislike other harassing phone calls.

— Therefore, fixed threshold-based rules for detection are not

suitable for filtering spam calls
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Contribution
Identify features from a VVolP call for spam detection
 Clustering of VolP calls to identify spam calls
 Use of user-feedback and semi-supervised clustering
technique to differentiate between spam and legitimate
calls
 Adapting the original MPCK-Means!4 algorithm into:

— eMPCK-Means : A O(N) algorithm for clustering a batch of
VolIP calls

— pMPCK-Means : A real-time algorithm for detecting VVoIP
spam

[2] M. Bilenko, S. Basu, and R. J. Mooney, "Integrating constraints and metric
learning in semi-supervised clustering,” in ICML, 2004, pp. 81-88.
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System Architecture

Legend

=K normal user

: spitter

SIP based Server-side
\olIP Proxy Detector Tl
Server #1 Y Spit Detector

N

_________________

! ] 1
: ! :
Client-side Client-side Client-side
Detector Detector Detector

Our Contribution

SIP based
\oIP Proxy
Server #2

I'S| 12
E F
A B C
&L Sido 102 PURDUE




VolIP Call Features

17 call features extracted from VoIP signaling and media traffic used
here for clustering

A Call B. Media Stream
Estab.lishment (RTP/RTCP)/ Call C. Call Tear Down
Maintenance

1-2. From/To URI
3. Start time

4. Duration

5. # of SIP INVITE messages

6. # of SIP ACK messages

7-8. # of SIP BYE messages from caller/callee

9. Time since the last call from the originator of the current call

10-15. # of 1xx, 2xx, 3xX, 4xX, 5xx, and 6xx SIP response messages

16. Call frequency of the originator of the current call

17. Ratio of non-silence duration of the callee to the caller media streams
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Basic Clustering

Obijective: Cluster calls into legitimate and spam calls
Classic K-Means clustering

K 2
> %= s minimized
j=l % eX;

Objective function puts weight on
each feature evenly

However, there may be only a few
call features that can distinguish
between the different clusters
Putting equal weight on all the
selected features can drown out the
influence of these distinguishing

features
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Semi-supervised clustering
 MPCK-Means

» Distance from centroids
(reweighted by A matrix)

» Cost from violating
must-link constraints
(pairs of data points which
should be put in the same
cluster)

» Cost from violating

cannot-link constraints
(pairs of data points which
should be put in different
clusters)
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How to Update A matrix

0T,
« The A matrix A, for cluster h is acquired by solving —=*" -

e Covariance of data
points in cluster h

 Cost from violating
must-link constraints
related to cluster h

* Cost from violating

h
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Our Contribution: eMPCK-Means
 Batch mode of operation

* Improvement in runtime:
— A O(N) approximation version of MPCK-Means
e MPCK-Means is O(N?)
— O(N) complexity cluster initialization
« Skip the pair-wise constraints => O(N?)

 Use the set of flagged spam calls, flagged legitimate calls, and the set of
the rest of calls directly for cluster initialization

— Efficient estimation of maximally separated points
« Embed the estimation in the distance calculation
— Use a constant number of constraints in cluster assignment step

» Experiment results from [2] suggest that MPCK-Means can work
reasonably well with only a few constraints
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Our Contribution: eMPCK-Means

* Improvement in clustering quality:

— Pre metrics update on the starting cluster(s)
« Update A matrix once before entering the main-loop of MPCK-Means
 Results in an initial A matrix which reflects the user feedback
information better

* In comparison, an identity matrix is used as the initial A matrix in
MPCK-Means
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pMPCK-Means

 For real-time spam detection: Hang up a suspect call even before
media flow starts
* Only allowed to use features available at call establishment phase

— From URI, To URI, Start time, and Time since the last call from the
originator of the current call

» For most of the time, each new data point (an incoming call) only
involves a cluster assignment operation
— O(1) complexity
» Occasionally, eMPCK-Means is invoked to recondition the
clustering
— Re-compute the clusters, A matrix, etc.
— Can be carried out in an asynchronous manner in the background
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eMPCK-Means (multi-class)

* With MPCK-Means, eMPCK-Means, and pMPCK-
Means, we create only two clusters:
— Cluster of spam calls and cluster of legitimate calls
— Because user feedback only provides a binary predicate on
whether a call is spam / legitimate
* eMPCK-Means (multi-class)
— Use of expert knowledge to differentiate different types of calls

— Split each cluster (spam or legitimate) into three sub-clusters
based on call types:
« Calls going to voice mail box
« Calls terminated by the user immediately after the call is established
 The remaining types of calls
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Call Traces for Experiments
Name Legitimate | Legitimate | Spam Call | Spam Call | Total # of | Total # of
Call Call Inter- | Length Inter- Legitimate | Spam
Length arrival arrival Calls Calls
time time
v4 5 30 1 2 171 212
v5 5 10 1 10 338 45
v6 5 30 1 10 289 94
v7 5 30 5 10 302 81
Common characteristics for spam calls:
»  There are 6 spitters in the system
»  10% chance of a call being hung up by the caller
»  Non-silence period in media stream is dominated by the spitter
Common characteristics for legitimate calls:
»  There are 90 legitimate users in the system
»  60% chance of a call being hung up by the caller
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Experiment: Effect of user feedback
eMPCK True Positive Rate across call traces

True Positive: (# of actual spam calls detected) / (# of detected calls)
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| V4 is the easiest, followed closely by v6, and then v7. v5 is the hardest. |
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Experiment: Effect of user feedback

Comparing 4 algorithms (use call trace v4)

—»%—MPCK  ——eMPCK (Multi Class) —®—eMPCK —&—pMPCK

=
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False Positive Rate
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ratio of calls with feedback ratio of calls with feedback

e Pre metric update boosting improves the performance in eMPCK
e Asmall amount of user feedback is enough to make the detection
accurate enough
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Experiment: Noise in user feedback

Call trace 6, user feedback fixed at 0.3
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* pMPCK is not really usable

e The others work with low noise level

e The use of pre-metric update hurts the performance of eMPCK when noise
level is past 0.5 (the majority of user feedback is inaccurate)
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volume = -0.271882

Experiment: Quality and quantity of user feedback
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Experiment: Scalability
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» eMPCK is at least 15X faster than MPCK
» eMPCK exhibits linear time complexity
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Conclusion

 Propose a solution to detect VVoIP spam

 Our solution is built upon semi-supervised clustering

— Able to adapt to different environments and needs

» Come up with scalable algorithm for batch detection of

VolIP spam

— Useful and practical for service provider

Detect VVoIP spam in real-time is hard
— pMPCK-Means is barely usable due to the limited available

features during call establishment

» Future Work
— Better real-time detection
— Sharing signatures of spam calls across ISPs
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Experiment / Effect of user feedback
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