Spam Detection in Voice-over-IP Calls through Semi-Supervised Clustering

Yu-Sung Wu, **Saurabh Bagchi** Purdue University, USA

Navjot Singh Avaya Labs, USA **AVAVA** Ratsameetip Wita Chulalongkorn University, Thailand

Slide 1/29

PURDUE

Voice-over-IP (VoIP) Overview

- Session Initiation Protocol (SIP) or H.323 for signaling
- Real-time Transport Protocol (RTP) for media
- Media flow happens after a successful call setup, which is achieved through signaling
- Real-time Transport Protocol (RTCP) for feedback
- Other supporting protocols: DNS, DHCP, ICMP

- 1. VoIP Overview
- 2. Challenges in VoIP Spam Detection
- 3. System Architecture
- 4. Semi-supervised Clustering
- 5. Efficient Clustering for Spam Detection: e-MPCK-Means, p-MPCK-Means
- 6. Call Trace and Experiments
- 7. Conclusions

Spam Calls in VoIP Systems

- SPam over Internet Telephony (SPIT)
- Unsolicited and unwanted phone calls from (malicious) parties
 - Telemarketing calls
 - Harassing calls
 - Survey / polling calls
- Why is this a growing phenomenon?
 - VoIP calls are cheap to make
 - SPIT is very easy to automate
- Comparison with e-mail spam:
 - Motives and impacts are analogous
 - But, more disruptively, a VoIP spam intrudes in real-time

Slide 5/29

Challenges for Dealing with VolP Spam

- A spam call in many ways appears like a normal (non-SPIT) call
 - Both follow the same protocols (SIP, H.323, RTP, RTCP)
 - No malformed packets
 - No exploitation of protocol vulnerabilities
 - Existing NIDS systems (Snort, SciDive^[1],...) do not apply
- VoIP is a real-time system
 - Before you pick up the call, can you tell if it's going to be a spam call?

[1] Y-S. Wu, S. Bagchi, S. Garg, N. Singh, T. Tsai, "SCIDIVE: A Stateful and Cross Protocol Intrusion Detection Architecture for Voice-over-IP Environments," DSN 05, pp. 401-410.

Challenges for Dealing with VoIP Spam

- VoIP system is a dynamic environment
 - Call duration, call frequency, the words you say, ... can all be changing from one deployment to another
 - Different persons have different perspectives on what constitute a spit call
 - Some might be interested in buying merchandise from telemarketers while they do dislike other harassing phone calls.
 - Therefore, fixed threshold-based rules for detection are not suitable for filtering spam calls

Slide 7/29

Contribution

- Identify features from a VoIP call for spam detection
- Clustering of VoIP calls to identify spam calls
- Use of user-feedback and semi-supervised clustering technique to differentiate between spam and legitimate calls
- Adapting the original MPCK-Means^[2] algorithm into:
 - eMPCK-Means : A O(N) algorithm for clustering a batch of VoIP calls
 - pMPCK-Means : A real-time algorithm for detecting VoIP spam

[2] M. Bilenko, S. Basu, and R. J. Mooney, "Integrating constraints and metric learning in semi-supervised clustering," in *ICML*, 2004, pp. 81-88.

- 1. VoIP Overview
- 2. Challenges in VoIP Spam Detection
- 3. System Architecture
- 4. Semi-supervised Clustering
- 5. Efficient Clustering for Spam Detection: e-MPCK-Means, p-MPCK-Means
- 6. Call Trace and Experiments
- 7. Conclusions

Slide 9/29

- 1. VoIP Overview
- 2. Challenges in VoIP Spam Detection
- 3. System Architecture
- 4. Semi-supervised Clustering
- 5. Efficient Clustering for Spam Detection: eMPCK-Means, pMPCK-Means
- 6. Call Trace and Experiments
- 7. Conclusions

Basic Clustering

- Objective: Cluster calls into legitimate and spam calls
- Classic K-Means clustering

$$\sum_{j=1}^{K} \sum_{x_i \in X_j} \|x_i - \mu_i\|^2 \quad \text{is minimized}$$

- Objective function puts weight on each feature evenly
- However, there may be only a few call features that can distinguish between the different clusters
- Putting equal weight on all the selected features can drown out the influence of these distinguishing features

Slide 13/29

Semi-supervised clustering

- MPCK-Means
 - Distance from centroids (reweighted by *A* matrix)
 - Cost from violating must-link constraints (pairs of data points which should be put in the same cluster)
- Cost from violating cannot-link constraints (pairs of data points which should be put in different clusters)

PURDUE

PURDUE

How to Update A matrix

• The A matrix A_h for cluster h is acquired by solving

$$\frac{\partial \tau_{\text{mpckm}}}{\partial A_h} = 0$$

- Covariance of data points in cluster h
- Cost from violating must-link constraints related to cluster h
- Cost from violating cannot-link constraints related to cluster h
- $\begin{aligned} \mathbf{A}_{h} &= \left| X_{h} \right| \left(\sum_{x_{i} \in X_{h}} (x_{i} \mu_{h}) (x_{i} \mu_{h})^{T} \\ &+ \sum_{\left(x_{i}, x_{j}\right) \in M_{h}} \frac{1}{2} w_{ij} \left(x_{i} x_{j}\right) \left(x_{i} x_{j}\right)^{T} \mathbf{1} \left[l_{i} \neq l_{j} \right] \\ &+ \sum_{\left(x_{i}, x_{j}\right) \in C_{h}} \left(\overline{w_{ij}} \left(x_{h}^{'} x_{h}^{"}\right) \left(x_{h}^{'} x_{h}^{"}\right)^{T} \\ &- \left(x_{i} x_{j}\right) \left(x_{i} x_{j}\right)^{T} \mathbf{1} \left[l_{i} = l_{j} \right] \right) \right)^{-1} \end{aligned}$

Slide 15/29

Outline

- 1. VoIP Overview
- 2. Challenges in VoIP Spam Detection
- 3. System Architecture
- 4. Semi-supervised Clustering
- 5. Efficient Clustering for Spam Detection: e-MPCK-Means, p-MPCK-Means
- 6. Call Trace and Experiments
- 7. Conclusions

PURDUE

Our Contribution: eMPCK-Means

- Batch mode of operation
- Improvement in runtime:
 - A O(N) approximation version of MPCK-Means
 - MPCK-Means is $O(N^3)$
 - -O(N) complexity cluster initialization
 - Skip the pair-wise constraints $=> O(N^2)$
 - Use the set of flagged spam calls, flagged legitimate calls, and the set of the rest of calls directly for cluster initialization
 - Efficient estimation of maximally separated points
 - Embed the estimation in the distance calculation
 - Use a constant number of constraints in cluster assignment step
 - Experiment results from [2] suggest that MPCK-Means can work reasonably well with only a few constraints

Slide 17/29

Our Contribution: eMPCK-Means

- Improvement in clustering quality:
 - Pre metrics update on the starting cluster(s)
 - Update A matrix once before entering the main-loop of MPCK-Means
 - Results in an initial A matrix which reflects the user feedback information better
 - In comparison, an identity matrix is used as the initial *A* matrix in MPCK-Means

pMPCK-Means

- For real-time spam detection: Hang up a suspect call even before media flow starts
- Only allowed to use features available at call establishment phase
 - From URI, To URI, Start time, and Time since the last call from the originator of the current call
- For most of the time, each new data point (an incoming call) only involves a cluster assignment operation
 - O(1) complexity
- Occasionally, eMPCK-Means is invoked to recondition the clustering
 - Re-compute the clusters, A matrix, etc.
 - Can be carried out in an asynchronous manner in the background

Slide 19/29

eMPCK-Means (multi-class)

- With MPCK-Means, eMPCK-Means, and pMPCK-Means, we create only two clusters:
 - Cluster of spam calls and cluster of legitimate calls
 - Because user feedback only provides a binary predicate on whether a call is spam / legitimate
- eMPCK-Means (multi-class)
 - Use of expert knowledge to differentiate different types of calls
 - Split each cluster (spam or legitimate) into three sub-clusters based on call types:
 - Calls going to voice mail box
 - Calls terminated by the user immediately after the call is established
 - The remaining types of calls

- 1. VoIP Overview
- 2. Challenges in VoIP Spam Detection
- 3. System Architecture
- 4. Semi-supervised Clustering
- 5. Efficient Clustering for Spam Detection: e-MPCK-Means, p-MPCK-Means
- 6. Call Trace and Experiments
- 7. Conclusions

Slide 21/29

Call Traces for Experiments

Name	Legitimate Call Length	Legitimate Call Inter- arrival time	Spam Call Length	Spam Call Inter- arrival time	Total # of Legitimate Calls	Total # of Spam Calls
v4	5	30	1	2	171	212
v5	5	10	1	10	338	45
v6	5	30	1	10	289	94
v7	5	30	5	10	302	81

Common characteristics for spam calls:

- There are 6 spitters in the system
- ➤ 10% chance of a call being hung up by the caller
- Non-silence period in media stream is dominated by the spitter

Common characteristics for legitimate calls:

- ➤ There are 90 legitimate users in the system
- ➤ 60% chance of a call being hung up by the caller

- 1. VoIP Overview
- 2. Challenges in VoIP Spam Detection
- 3. System Architecture
- 4. Semi-supervised Clustering
- 5. Efficient Clustering for Spam Detection: e-MPCK-Means, p-MPCK-Means
- 6. Call Trace and Experiments
- 7. Conclusions

Conclusion

- Propose a solution to detect VoIP spam
- Our solution is built upon semi-supervised clustering
 - Able to adapt to different environments and needs
- Come up with scalable algorithm for batch detection of VoIP spam
 - Useful and practical for service provider
- Detect VoIP spam in real-time is hard
 - pMPCK-Means is barely usable due to the limited available features during call establishment
- Future Work
 - Better real-time detection
 - Sharing signatures of spam calls across ISPs

Slide 29/29

