FALCON – A System for Reliable Checkpoint Recovery in Shared Grid Environments

Tanzima Zerin Islam, Saurabh Bagchi And Rudolf Eigenmann

School of Electrical and Computer Engineering Purdue University

Work supported by: National Science Foundation Purdue Research Foundation

Background

- What is a grid or cycle sharing (CS) system
 - Machines share their unused computation cycles
- ➤ What is a Fine-Grained CS (FGCS)?
 - Guest and host jobs can coexist
 - Example: Condor
- > Resources are extremely volatile
 - In BoilerGrid (DiaGrid), eviction rate 1.3 per job per hour on average
 - Checkpoint-recovery provides fault-tolerance

State of the Art Checkpoint-Recovery Scheme

Problem Motivation

High overhead for application users

- Submitting machine
 - If the submitter is behind a slow network (say, DSL modem)
- Central storage server
 - High latency of transferring checkpoints back and forth between different university campuses (12% of the time)
 - High overhead when multiple machines are sending data to a single server
 - High overhead of sending data to a loaded server

> Stress on shared network resource

- Transferring large amount of checkpoint data (gigabytes)
- Transferring data across distant points in the network

Potential Solution and Challenges

Shared Grid Environment

Contribution

- Goal: Can we improve the performance of the guest jobs by storing checkpoints in shared grid environment?
- Developed a reliable checkpoint-recovery system FALCON
 - Provides fault-tolerance through "Erasure Coding"
 - Selects reliable storage hosts which are nearby
 - Builds a failure model for storage hosts
 - Stores and retrieves checkpoints in efficient manner
- Deployed FALCON in BoilerGrid (DiaGrid)
 - ➤ Performance improvement of benchmark applications in production grid is between 11% to 44%

Failure Model

- ➤ Aids in predicting availability of the storage nodes
- ➤ Load: %utilization of I/O

Storage Repository Selection

Predict availability of storage nodes

Storage Repository Selection

- Calculate network transfer overhead
 - Network Overhead = Amount of data to send (MB) / Available Bandwidth between a storage host and a compute host
- Minimize an objective function
 - Objective function: checkpoint storing overhead benefit from the fact that a job can restart from the last saved state
 - Overhead includes network overhead
 - Benefit computed using the correlated temporal reliability
- ➤ Select a set of m+k storage nodes that minimizes this objective function

Checkpoint-Recovery Scheme

Structure of FALCON

Evaluation

- **➤** Overall performance evaluation:
 - Average job makespan the time a job takes to complete
- Efficiency of the checkpoint-recovery schemes:
 - Checkpoint storing overhead
 - Recovery Overheads
- > Setup:
 - Submitted jobs to BoilerGrid
 - Applications MCF (SPEC CPU 2006), TIGR (BioBench)
 - Erasure encoding parameters: m=3, k=2

Checkpoint Storing & Recovery

- Performance of Falcon scales with the increase in the checkpoint sizes
- Lower network transfer overhead and lower utilization of shared network bandwidth

Overall Performance Comparison

➤ Performance improvement of the applications are between 11% and 44%

Handling Simultaneous Clients

- > Performance of dedicated scheme suffers
- Performance of Random scheme suffers because of choosing machine behind slow network

Handling Storage Failures

- > Robustness at no extra cost for Falcon
- Pessimistic incurs large overhead

Contributions of Components

- > Pxfer parallel network transfer, Sxfer serial network transfer
- Largest contribution comes from compression

Conclusion

- Developed a multi-state failure model for storage nodes
 - Also provides load balancing
- Developed a failure-aware storage selection technique
- Checkpoint-recovery scheme
 - Fault-tolerant
 - Scalable
 - Robust
- > All the components are user level applications
- > No simulation, no synthetic checkpoint
- User level checkpoint
- Question: Can we improve the performance of the guest jobs by storing checkpoints in a shared grid environment?
 - ➤ Answer: Yes FALCON can

Thank You

Future Direction

- How about taking advantage of the multiple cores available on the compute hosts?
- How about looking at other system parameters in addition to the I/O load to predict the failure states of the storage hosts?
- How to provide security to the storage hosts in such a shared grid environment?