NETWORK COVERT TIMING CHANNELS

Confidential Data

RECENT WORK

- O IP Covert Timing Channels: Design and Detection, CCS'04 by S. Cabuk, C. Brodley, and C. Shields
 - data rate 16.67 bits/sec (error rate 2%)
- O Keyboards and Covert Channels, USENIX Security'06 by G. Shah, A. Molina, and M. Blaze
 - low data rate

- OCapacity Bounds for BSTC, ISIT '07 by S. Sellke, C. C. Wang, N. Shroff, and S. Bagchi
 - Information Theoretical Analysis

OUR CONTRIBUTION

- Design of two Timing Channels:
 - Timing Channel 1 achieves higher leak rate:
 - significantly improved data rate (5 x)
 - Timing Channel 2 concealable :
 - o mimics i.i.d. normal traffic
 - o computationally indistinguishable from i.i.d. normal traffic
- Validation of the design
 - Software implementations
 - Experiments on PlanetLab nodes

OUTLINE

- Design of High Rate Timing Channel
- Experimental Results
- Concealable Timing Channels

NETWORK TIMING CHANNEL DESIGN

• L-bits to n-packets scheme:

- Maps L-bits to n-packets inter-transmission times
- o Two design parameters : Δ and δ
 - A 4-bits to 2-packets scheme ($\Delta = 60 \text{ ms}$, $\delta = 10 \text{ ms}$)
 - T1, T2: packet inter transmission times

Bit String	0000	0001	0010	0011	0100		1111
(T1, T2)	(60,60)	(60,70)	(70,60)	(70,70)	(60,80)		(100,100)

• T1, T2, T3, ..., Tn takes values from the set $E = \{T: T = \Delta + k * \delta, k = 0, 1, 2, ...\}$

EXAMPLE OF DECODING ERROR

- Decoding error caused by small $\delta = 8 \text{ ms}$
- Transmission delays: 30ms +/- 5ms

DESIGN CHALLENGE

- Determine the optimal values of L and n
- Two simple examples ($\Delta = 60 \text{ ms}$, $\delta = 20 \text{ ms}$):
 - 2-bits to 1-packets scheme: 22 bits/sec

Bit strings	00	10	01	11
T1	60	80	100	120

• 4-bits to 1-packets scheme: 19 bits/sec

Bit strings	0000	1001	•••	1111
T1	60	80	•••	360

DATA RATE FOR TYPE 1 TIMING CHANNEL

- K: an auxiliary parameter
 - Used to bound the packet transmission time
- o (n, K)-code: a special L-bits to n-packet code
 - $T(i) = \Delta + k(i) * \delta$
 - $K: k(1)+k(2)+...+k(n) \le K$
 - total transmission time $\leq n^* \Delta + K^* \delta$
- Fact: $2^L \le C(n+K, K)$;
 - choose $L = floor(log_2C(n+K, K))$

DATA RATE FOR TYPE 1 TIMING CHANNEL

• Lemma: Given the system parameters (Δ, δ) , the data rate R(n,K) of an (n, K)-code

$$R(n, K) \approx \frac{\log_2 C(n + K, K)}{n \cdot \Delta + \frac{n}{n+1} \cdot K \cdot \delta}$$
 bits/sec.

- o Main Result:
 - o Optimal Data Rate R*(n) given (Δ , δ):

$$R^*(n) \approx \max_{K \geq 0} \frac{\log_2 C(n + K, K)}{(n \cdot \Delta + \frac{n}{n+1} \cdot K \cdot \delta)}$$
 bits/sec.

PLOT OF DATA RATE R(n,K)

- \circ $\Delta = 50 \text{ ms}, \delta = 10 \text{ ms}$
 - n=3
 - R*(3) = 37 b/s
 - o L*=9,
 - 9-bits to 3-packets
 - n=5
 - \circ R*(5) = 38 b/s
 - L*=15
 - 15-bits to 5-packets

- Performance Tradeoffs
 - R* = 39 b/s requires 66-bits to 32-packets scheme

OUTLINE

- Design of Timing Channel 1
- Experimental Results
- Concealable Timing Channels

EXPERIMENTS

DECODING ERRORS

Princeton and Purdue

ERROR CORRECTION

- □ Net error-free rate = raw rate * $(1-H_{255}(byte error rate)/8)$
 - ∘ 8% error → 87% raw data rate
 - 4% error → 93%
 - 2% error **→** 96%
 - ∘ 1% error **→** 98%

DECODING ERRORS

Princeton and Purdue

OUTLINE

- Design of Timing Channel 1
- Experimental Results
- Concealable Timing Channel

TYPE 2 TIMING CHANNEL: CONCEALABLE

- Goal:
 - Immune against current and future detection
- How do we achieved this goal?
 - Mimic the statistical property of i.i.d. normal traffic
 - o Computationally indistinguishable from i.i.d. normal traffic
- Timing channel is a serious security concern

CONCEALABLE TIMING CHANNEL

Achieving Design Goals:

- Mimics statistical property
- ➤ Computationally indistinguishable from i.i.d. normal traffic

1: Codeword Look Up.

$$c(i) \rightarrow (x(2i-1), x(2i)) = (15/16, 3/16)$$

2: Codeword Masking using CSPRNG.

a) CSPRNG
$$\rightarrow$$
 u(1), u(2), ... u(2n)

b)
$$r(i) = x(i) + u(i) \mod 1$$
, for $i=1,...,2n$

3: Inter-Transmission Time Generation:

$$T(i) = F^{-1}(r(i))$$

F(x): CDF of a normal traffic

Decoding:

Reversal of the above three steps

CONCEALABLE TIMING CHANNEL

• Advantages:

- > Immune from current and future detection
- > Same codebook for different traffic patterns
- No handshaking necessary

• Experiments:

➤ Purdue → Princeton Telnet (i.i.d. Pareto)

Data rate: 5 bits/sec

> Error rate: 1%

CONCLUSION

- Demonstrated considerably higher threat of information leaking through the network covert timing channels
 - leaks information at much higher rate
 - hard to detect
 - leaking information long term at constant rate (e.g. 5 b/s)
- Future Direction:
 - Efficient algorithm to mimic correlated traffic, such as HTTP traffic

Thank You!

DECODING ERRORS

Purdue and Zurich

CONCEALABLE TIMING CHANNEL DECODER

Experiments:

➤ Purdue → Princeton

➤ Telnet (i.i.d. Pareto)

➤ Data rate: 5 bits/sec

Error rate: 1%

SECURE ENCODER

- Step 1: one-time pad
 - Crypto Secure Pseudo Random Number Generator
 - Uniform (0,1): u(1), u(2), u(3),...
 - Symbol masking: $r(i) = x(i) + u(i) \mod 1$
 - \circ r(1), r(2), ... are i.i.d. uniform random variables on (0,1)
- Step 2: Getting desired statistical property
 - $\bullet \quad T(i) = F^{-1}(r(i))$
- Claim: T(1), T(2), ... is computational indistinguishable from a normal traffic with distribution F(x)

SKETCH OF PROOF

- Proof by contradiction:
 - Assume Q, a polynomial time algorithm, can tell T(1), T(2), ... and a true sequence of i.i.d. random variable with c.d.f. F(x) apart
 - Can construct Q*, another polynomial time algorithm based on Q, to tell u(1), u(2), ... and a true i.i.d. uniform random variable apart.
 - Contradiction! Because u(1), u(2),, are crypto secure PRNG.

25 of 20

MOTIVATIONS

- How fast can information be leaked through network covert timing channel?
 - on-off scheme: 17 bits/sec by Cubak, et al.
 - keyboard jitter bug: slow???
- Can we design a network timing channel that is impossible to detect?

SUMMARY OF DECODING ERROR

Δ (ms)	δ ms	data rate (bits/sec)	Princeton mean(%)	stdev (%)	(
50	10	36.85	0.82	0.12	
50	5	42.92	6.15	3.10	E
40	10	42.75	0.82	0.11	Ī
40	5	51.14	5.12	1.88	Г
30	10	50.90	1.46	0.50	Γ
30	5	63.24	5.00	1.24	
20	10	62.87	2.59	0.55	
20	5	84.15	5.72	1.47	Γ
10	10	82.21	4.06	1.00	Γ
10	5	124.28	6.16	1.49	
		Average RTT (ms)		39.96	

Current Result (ccs'04):

Data rate: 17 b/s

error rate: 2%

TIMING CHANNEL SOFTWARE

• Implementation:

- Java Client/Server
- Shared codebook (8-bits to 3-packets)
- One way channel: no feedbacks from receiver
- No need for time synchronization
- Decoding errors do not propogate
- Deployment and Experiments:
 - Sender (Server) is deployed on a Purdue host
 - Receivers (Client) are deployed on PlaneLab nodes

OPTIMAL DATA RATE

CONCEALABLE TIMING CHANNEL

Design Goals:

- **►** Mimics statistical property
- Indistinguishable from normal traffic (computationally)

Advantages:

- ➤ Immune from current and future detection
- ➤ Same codebook for different traffic patterns.
- ➤ No handshaking needed

