Multigrade Security Monitoring for Ad-Hoc Wireless Networks

Matthew Tan Creti, Matthew Beaman, Saurabh Bagchi, Zhiyuan Li, Yung-Hsiang Lu

School of Electrical and Computer Engineering, Department of Computer Science(*) Purdue University

Mass
Macau SAR, P.R.C.
October 13, 2009

Motivation

- Ad-hoc multi-hop routing is used to span distances more than a single radio range
- Deployment in critical applications (e.g. infrastructure, monitoring, military) requires protection against sophisticated adversaries (e.g. colluding nodes)
- Three phases in data exchange between end-points
 - Route discovery <- the focus of this work
 - Data forwarding
 - Route repair
- Existing defenses fail against colluding nodes
 - Secure AODV (SAODV)
 - Local Monitoring
- Local monitoring is low cost (i.e. energy, traffic) because it is passive in the benign case
- Local monitoring suffers from high false alarms
- We are motivated to find defenses with low false alarms that are not expensive
Contributions

• Multigrade framework combines local monitoring with more expensive defenses
 – Low cost
 – Low false alarms and low missed alarms
• Route Verification (RV) defends against colluding nodes
 – Route discovery
 – Route intrusion of data forwarding path
• Multigrade monitoring (MGM) protects route discovery
• Simulation results show
 – MGM only marginally more expensive than undefended route protocol
 – High coverage of attack detection

Outline

• Ad-Hoc On-Demand Distance Vector Routing (AODV)
• Known attacks
 – Route intrusion
 – Route discovery prevention
• Existing defenses
 – Secure AODV (SAODV)
 – Local Monitoring
• Route discovery attack definition
• Multigrade Monitoring framework
• Route Verification (RV)
• Multigrade Monitoring (MGM)
• Simulation results
Ad-Hoc On-Demand Route Discovery

- Source S wants to establish forwarding path to D
- S broadcasts route request (RREQ)
- Each node learns next hop to S
- D unicasts route reply (RREP) to c
- Each node in forwarding path learns next hop to D
- Forwarding path from S to D is established

Routing tables at each node (destination:next hop):

<table>
<thead>
<tr>
<th></th>
<th>D:a</th>
<th>D:b</th>
<th>D:c</th>
<th>D:D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:S</td>
<td>S:a</td>
<td>S:b</td>
<td>S:c</td>
<td></td>
</tr>
</tbody>
</table>

Attack: Route Intrusion

- S broadcasts RREQ
- m forwards RREQ to n using out-of-band channel (e.g. land line)
- n repeats RREQ
- D unicasts RREP to n
- n forwards RREP to m
- m repeats RREP
- The m-n link is now part of the forwarding path, this can be used to selectively drop data packets
- This paper is not focused on intrusion detection in a forwarding path. See X. Zhang, A. Jain, A. Perrig, "Packet-dropping adversary identification for data plane security," ACM CoNEXT, 2008.
Attack: Route Discovery Disruption

Routing tables at each node (destination: next hop):
- \(S: S \)
- \(S: a \)
- \(S: n \)
- \(S: n \)

\(S \) = malicious node

- \(S \) broadcasts RREQ
- \(m \) passes the RREQ to \(n \) using out-of-band channel (e.g. land line)
- \(n \) repeats RREQ
- \(D \) unicasts RREP to \(n \)
- \(n \) drops RREP
- \(S \) never learns forwarding path to \(D \)

Protection of Route Discovery: SAODV

Unprotected AODV

SAODV

SAODV Against Collusion

- Decreasing hop count allows malicious node to insert itself in route
- Secure AODV (SAODV) uses one way hashes to prevent malicious node from decreasing hop count
- SAODV is vulnerable to colluding nodes

Protection of Route Discovery: Local Monitoring

- Assume secure neighbor discovery (all nodes know neighbors and neighbor’s neighbors)
- Require any node forwarding a routing message to declare where it received the message from
- \(n \) cannot claim it received the RREQ from \(m \) because \(D \) knows that \(m \) and \(n \) are not neighbors and ignores the message
- If \(n \) claims it received the RREQ from a neighbor (e.g. \(x \)), then \(y \) (a neighbor of both \(n \) and \(x \)) will detect that \(n \) has fabricated a message
- Problem (false alarms): \(x \) might forward a message to \(n \), but due to collision \(y \) fails to overhear the message, when \(n \) forwards the message to \(D \), \(y \) now falsely detects \(n \) as malicious
- Because of false alarms a threshold is used, such that the rate of alarms must exceed some value before the monitor decides that a node is acting maliciously

Colluding Nodes Defeat Local Monitoring

- Strategies to defeat local monitoring:
 - Malicious nodes stay just under the threshold for detection
 - Spread out the attack over multiple colluding nodes (e.g. attack path A and B)
- Using \(n \) attack paths the adversary can commit \(n \) times more malicious actions globally without any of the malicious nodes being detected locally
- Adversary can disrupt more routes discoveries without detection by increasing the number of colluding malicious nodes
Multi-grade Monitoring Framework

- Highest cost, lowest false alarms
 - Local monitoring is an example monitor with high false alarms (false positives) but low missed alarms (false negatives)
 - Monitors with low false alarms are generally more costly on resources
 - We can arrange monitors into stages, such that low cost monitors (e.g. local monitors) detect necessary conditions for an attack to succeed, and then trigger monitors that detect sufficient conditions for an attack to succeed (monitors with no false alarms)

- Lowest cost, highest false alarms
 - Stages S_1 to S_n, where lower number stage triggers higher number stage (i.e. lower stages filter out events that are not malicious)
 - Monitors can be combined in a stage to reduce rate for false alarm (e.g. $M_1 \& M_2$)
 - The final stage S_n triggers diagnosis and attack mitigation

Multi-grade Monitoring (Continued)

- As long as every stage has no missed alarms then the system will have no missed alarms
- If stages are ordered by false alarm rate such that $FA(S_1) > \ldots > FA(S_n)$ then $FA(system) \leq FA(S_n)$.
- Combining points 1 and 2, if the missed alarm rate at all stages is zero and the false alarm rate S_n is also zero, then the system has perfect detection.
- Let the rate of monitored events be r. The cost to the system, in the benign case where no attack is present, is $rC(S_1) + rFA(S_1)C(S_2) + \ldots + rFA(S_n)C(S_n) < rC(S_n)$
Route Discovery Attack Definition

- **Goal:** Adversary wants to prevent route discovery for a period of time
- Adversary may compromise nodes giving it “insider” malicious nodes
- Malicious nodes may modify, fabricate, drop routing packets
- Malicious nodes have no limit to collusion

Necessary Conditions for Route Discovery Disruption

- One of these must occur for route discovery disruption:
 1. A node modifies a route packet to insert itself in the route (e.g. decreases hop count)
 2. A node fabricates a packet (e.g. forwarding a packet through a wormhole)
- Local monitoring detects packet modification with a low false alarm rate
- Local monitoring may have high false alarm detecting packet fabrication
- So we need a new defense mechanism for the highest stage that can detect fabrications with low false alarms
Route Verification (RV) Protocol

- When node B forwards a packet instance P_i from A to C a verifier node of B multicasts a verify request (VREQ)
- A verifier node of a node, is any neighbor of that node
- The VREQ is multicast to all neighbors of both A and B
- A verify response (VRES) informs that a packet instance has been correctly forwarded
- When the neighbors of A receive a VRES for packet instance P_{i-1} a verifier of A sends a VRES for packet instance P_i

What RV Provides

- The verification continues in a chain
- **Invariant 1**: If a packet instance p_i is marked verified, then the previous packet instance p_{i-1} has also been marked verified
- **Invariant 2**: The packet instance p_S is determined verified, only if node S broadcasts a VRES to its neighbors that the packet is correct
- **Lemma**: By induction, if a packet p_i is marked verified then none of the packet instances p_S to p_i have been modified or fabricated
How to Use RV

• Diagnosis of the *VREQ* and *VRES* messages can easily allow nodes to determine the source of the malicious actions when the nodes are a neighbor of the malicious node
• This allows the neighbors of the malicious node to isolate it from the network
• We assume the origin node repeats a RREQ after a timeout period
• Eventually, all of the malicious nodes will be isolated and the route will be established
• Therefore, we are protected against the route discovery disruption attack

But RV is Costly: Introducing MGM

• Necessary conditions to prevent route establishment over multiple route requests:
 1. a packet instance is fabricated
 2. verifier node in the network hears a version of each repeated route request (it may be a fabricated or modified version)
• Local monitoring detects condition 1 with low missed alarms and condition 2 can be observed from the route layer with low missed alarm
• The sufficient condition is to repeat the packet modification or fabrication over multiple route requests
• The sufficient condition is detected by RV
Simulation Setup

• 200 nodes placed randomly in a square
• The size of the box is varied to get node topologies with different number of average degree
• Collisions are simulated in TinyOS 2.x radio model
• BMAC (low power listen) is simulated so that there is an energy advantage to reducing number of packets sent in network
• During the run of a simulation random source and destination node pairs try to establish routes
• No data packets are sent on the routes

Simulation of Power Consumption

• RV and MGM are compared with AODV and SAODV (even though SAODV is not secure against wormhole attacks)
• RV quickly becomes more expensive than other protocols with increasing average degree and number of hops
• For low average degree and number of hops MGM is no more expensive than regular AODV
- The key parameter in MGM is the threshold number of route retries
- The parameter quickly stabilizes even for high average degree
- For our particular simulation 3 was the best choice

Detection Coverage

- We look at the effect of high traffic on isolation coverage
- New origin destination pairs attempt to establish routes every route period
- \(P \) is the probability of a route message being attacked by an adversary
- High traffic reduces isolation coverage, after a point traffic saturates the network
- MGM greatly reduces the amount of traffic when compared to RV, and therefore has better isolation coverage for all points
Conclusion

- Developed a low-cost technique for detecting attacks against route establishment
 - Structure the available monitors to achieve lower resource cost with negligible decrease in detection performance
 - Detect necessary conditions first with low cost monitors and then sufficient conditions with higher cost monitors

- Developed a technique – Route Verification (RV) – for detection of attacks with colluding malicious nodes
 - RV surpasses previous work in its ability to detect arbitrarily powerful collusion
 - RV has very low false alarm and missed alarm rates, but it is expensive in the additional traffic that it generates