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Intrusion Detection: What?

• Intrusion Detection System (IDS) detects deviation of 
allowable system behaviors or subversion of security policy

• IDS market is divided into two groups
– Host-based
– Network-based
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Intrusion Detection: A little bit of past and present

• Past:
– IDSs came about in 1970s and looked very different
– Mainframe computers were pricey beasts and people had to pay good 

money for cycles on them
– IDS were for checking if anyone was stealing cycles

• Present: 
– The US Treasury Department estimates cybercrime proceeds in 2004 were 

$105 billion, greater than those of illegal drug sales.
– 2005 FBI/CSI Computer Crime and Security Survey found nearly nine out of 

10 U.S. businesses suffered from a computer virus, spyware or other online 
attack in 2004 or 2005

– The process of downloading and installing the latest Microsoft patches which 
may be as small as 70 megabytes (MB) or as large as 260 MB, takes longer 
then the time it takes for an unpatched computer to be compromised

– IDS and Firewalls are the first line of defense
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Intrusion Detection: Types

• IDSs are based on two alternative choices
– Anomaly based: Specify the normal behavior of users or machines

• Example: System CPU utilization between midnight and 5 am is no more 
than 50%

– Misuse based: Specify the signatures of attacks
• Example: Detect a string like ‘rm –rf /’

• Metrics for evaluating IDSs
– False positives, or False alarms
– False negatives, or Missed alarms

False alarms are often seen in anomaly based IDS
Missed alarms are often seen in misuse based IDS
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Challenges of current IDS

• Traditional IDS only probes at a point of a system 
– Limited view of the whole system
– The coverage and accuracy of your detection depends solely on the 

ingenious pattern description or signature definition corresponding to 
that specific point

– Loose rules => Better coverage but more false alarms (ex: 
“/usr/bin/gcc”)

– Strict rules => Better accuracy but more missing alarms (ex: 
“/usr/bin/gcc wormX.c”)

• Our approach: Collaborative Intrusion Detection Systems 
(CIDS)
– Multiple detectors specialized for different parts of system
– Manager infrastructure for combining alarms from multiple detectors
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CIDS Approach - Motivation

• Single IDS (detector) can have false positives (false alarms) or false 
negatives (missed alarms)
– It only tells you YES or NO. 
– Usually can’t tell you how much the alarm can be trusted.

• Single IDS (detector) is specialized for certain kinds of attacks
– Limited view of the whole attack => less accuracy
– An single attack could have multiple symptoms (cascaded attack)

• Combining information from multiple detectors might help detection 
accuracy

• Future automatic responses mechanism will heavily rely on the quality of 
the alarms from IDS

• Timing and correlation information might be useful for estimating speed 
of propagation of attack
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CIDS Architecture
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CIDS Components
• Elementary Detectors (EDs): Specialized detectors 

distributed through the system 
– The EDs may be off-the-shelf and minimal change is required for 

integration into CIDS (e.g. Snort, Libsafe)
– Different hosts may have different configurations of EDs

• Message Queue (MQ): Communication layer for multiple 
CIDS components
– Secure through a shared secret key and hash digest

• Connection Tracker (CT): Kernel level entity to track which 
process has active connection on which port (bridge 
between NIDS and HIDS)

• Manager: Responsible for collating alerts from EDs and 
generating a combined alert expected to be more accurate
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Manager Architecture
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Graph-Based Inference Engine

A

B

C

D

E

2

1

2

4

1

Rule Object #1

S
3 A

B

C

D

E

2

1

2

4

1

Rule Object #1

S
3

•Rules are represented as 
graphs
•Nodes are events and Edges 
represent sequencing of 
events
•Edge weights represent 
assurance values indicating 
likelihood of sequence

• Assurance Value (AV) for an attack given by sum of edge weights
• An event is matched with a rule object if it is fusionable, i.e., belongs to 

the same disruption instance
• Discounted Assurance Value (DAV) for partial matches

DAV = AV × (Partial path length/Complete path length)
Alert Probability = DAV/(maximum AV)
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• AC,Snort => 2/7=0.286
• AC,Libsafe =>[(2+2)*2/3]/7=0.38
• AC,Snort,Libsafe=>(2+2)/7=0.57

Graph-Based Inference Engine (cont’d)
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Bayesian Network Based Inference Engine
• In a Bayesian Network, the nodes represent random variables modeling 

the events and edges the direct influence of one variable on another
• Three step process for creating rule object

– Nodes to represent events
– Edges to represent conditional probability relations among the events
– Creation of table with conditional probability values
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stream
• Output is conditional 
probability of root (the start 
node – OpenSSL Attack 
here)
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CIDS System: Current Implementation
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CIDS Elementary Detectors

• Application level: Libsafe. Middleware to intercept “unsafe” C 
function calls and prevent stack overflow attacks.

• Network level: Snort. Sniffs on incoming network packets 
and matches against rulebase to perform misuse based 
detection.

• Kernel level: Sysmon. Home-grown new detector.
– Intercepts system calls for file accesses and executions.
– Takes a set of rules for disallowed accesses or executions

• Can be specified using wildcards or directory tree
– Intercepts signals of interest that can flag illegal operations.

• SIG_SEGV to indicate segmentation violation that may be caused by 
buffer overflow
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Simulated Attacks
• Three classes of attacks, multiple types within each class, 

and multiple variants within each type
– Buffer overflow: Can be used to overwrite parts of stack and write 

and execute malicious code
• Apache chunk attack
• Open SSL attack

– Flooding: Overwhelm the network with redundant or malicious 
packets causing a denial of service

• Ping flood
• Smurf

– Script based: Exploit poorly written scripts which do not do input 
validation to execute arbitrary commands

• Used unchecked Perl open() and system() calls
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Results: Performance – Without Attacks
• Measured without and with attacks
• 30 web clients running concurrently
• (Transactions/second) of workload transaction measured
• When multiple EDs present, manager with both Inference Engines is deployed
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• Degradation overall: 3.95% with Snort rules modified, 5.60% without
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Results: Performance – With Attacks

• OpenSSL Attack performance degradation is 6.33%
• Chunk Attack performance improves!!!

– Having Libsafe prevents core dumping

• Highest performance degradation due to Matlab Bayesian 
Network toolbox 
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Results: Accuracy of Detection
Snort Libsafe Sysmon (Signal) Sysmon

(File)
CIDS
(Alert Prob. 
> 0.5 ? )

No attacks Yes (1807,1933) No No No No attack

Open SSL Yes (1881,1887) No Yes R1 Yes

Open SSL variant No No Yes R1 Yes

Apache Chunk Yes (1807, 1808, 
1809)

Yes Yes R1 Yes

Smurf  1000 Yes (499) No No No Yes

Smurf  500 No No No No No

Ping Flooding Yes (523, 1322) No No No Yes

Script No No No Yes Yes

• Yes: Detected. Figures in parentheses are the rule numbers within Snort. 
Sysmon(File) is the file access detection part, Sysmon(Signal) is the 
illegal signal detection part; R1: The attack was not successful in 
creating a file.
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CIDS Summary

• CIDS can accommodate best-of-breed detection techniques 
(existing off-the-shelf detectors can be easily integrated) and 
provides management and correlation facility

• Two algorithms for correlating alerts
– Graph-based
– Bayesian network based

• Both false alarms and missing alarms are reduced
• Output of the two correlation algorithms are probability 

values telling you how possible that attack has happened.
• Performance degradation after using CIDS is around 3.95% 

under normal operations (without attacks) and 6.33% when 
being operated under OpenSSL attacks
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Application of CIDS to a Voice over IP (VoIP) 
Application
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VoIP Basics
• First launched in Feb 1995 – Vocaltec Inc.
• Allows transport of voice traffic over IP networks

– Cost savings due to convergence of networks
– Do away with internal EPABX systems

• Protocols
– RTP: Data transport
– SIP, H.323: Signaling 

• Some VoIP predictions:
– 12 million VoIP users by end of 2007 [Forrester Research]
– 100 million VoIP users by the end of 2011 [ON World Research]

"By 1985, machines [computers] will be capable of doing any work Man can 
do." – Herbert A. Simon, of Carnegie Mellon University, one of the founders 
of the field of artificial intelligence (1965)
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VoIP Call Mechanism
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Distributed IDS for VoIP Application

• Distributed Intrusion Detection System for VoIP networks -
SPACEDIVE

• Why build an IDS just for VoIP?
– Soft real-time requirements
– Attack can take place across a session
– Attack across protocols

• Why correlation based detection?
– Multiple components in a VoIP system
– One attack may span many components
– One detector cannot have a complete view of the different stages of attack

• Approach:
– Local detector using fast network pattern matching
– Remote detector to correlate alerts
– Stateful and cross-protocol detection
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Rule Matching Engine (RMEL)
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SPACEDIVE Design – Remote Level
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Low Level Rule Language

• Snort rules
– Limited capability for remembering state
– Events span multiple packets
– Events span multiple protocols

• New constructs
– var – set the value of a state variable
– event – trigger a local event
– net_event – trigger a network-level event
– seqwin (protocol specific - RTP) – specify maximum tolerance for out-

of-order packets
– Connectors: AND/OR/NOT/BEFORE/AFTER 



Slide 27/39DCSL: Dependable Computing Systems Lab

Sample Rules

1. alert udp Client_IP any -> Server_IP 5060 
(content:”INVITE”; var invite;)

2. alert udp Server_IP any -> Client_IP any 
(content:”sip:OK”; var ok;)

3. event(ok AFTER invite;) # trigger local event

4. alert rtp my_IP 6000 (seqwin:50; var:dos);

5. event(dos;)
6. net_event(dos;) # network event –

# notification 
# sent to RMER
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High Level Rule Language
• Specified at the RMERs
• General format

R =((wherei:whati)conni)response  (i= 1,…,N)

• Sample Rule

(C1:RTP_DATA) AFTER (C2:SESSION_TERM) alert
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Efficient Matching
• event ((rv3 OR (rv1 AND rv2)) AND rv4)

AND

OR rv4

AND

rv1 rv2

rv3

TRUE

AND

rv4TRUE

“tree roll-up”
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Experimental Testbed
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Attack Scenarios
• Call Hijacking
• Man in the Middle Attack
• BYE Attack
• Compromised SIP Proxy
• Billing Fraud
• Denial of Service (DoS) Attack
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Man in the Middle Attack
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Rules for Detection

(S1:SIP_OK) AND (S2:SIP_OK) AND 
(NOT(B:SIP_OK)) alert

RMEH

alert  udp S2_IP any -> B_IP any (var:rv3; 
content:OK;) 
net_event (rv3;)

B

alert  udp S1_IP any -> S2_IP any (var:rv2; 
content:OK;) 
net_event (rv2;)

S2

alert udp A_IP any -> S1_IP any (var:rv1; 
content:OK;) 
net_event (rv1;)

S1

RuleComponent
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Timeline for correlated detection
Local event 

detection at S1
Local event 

detection at S2 Attack detected 
at RMER

Time (ms)

t = 0 t=3.6 t=5.2

• Detection latency depends upon timeout interval
• Timeout interval is a configurable parameter dependent on

– Network delay
– Processing capacity
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Resilience to DoS

• Case 1: Client A without SPACEDIVE

• Case 2: Client A with SPACEDIVE
drop rtp A_IP 6000 (seqwin:50; var:dos);

Client A

M

B64 kbps
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Resilience to DoS: Results
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SPACEDIVE Summary
• We designed and built an IDS for VoIP systems
• We showed that it could correlate across protocols and 

components
• It was scalable and could perform fast matching of network 

packets
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What’s Next?
• What do we do once we know with reasonable certainty that an 

intrusion is in progress
– Send alert to the poor system admin at midnight asking her to hurry into the 

lab and do something
– Place the order for a new cluster of machines and tell my lab mates that their 

data and code is gone – heck! I detected it
– Provide automatic containment of the current attack and response to make 

the system less vulnerable to future attacks

• We did it for client-server VoIP applications. What about peer-to-
peer VoIP applications? Think Skype.
– Looser trust relations
– Arbitrary joins and leaves of entities
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Come Join Us at DCSL
• We are looking for 2 PhD students who can make it happen
• Desirables

– Good programming skills in C and C++
– Good network programming skills
– Not afraid to do experiments with real systems, real code, and real attacks

• If interested, send mail to: dcsl@ecn.purdue.edu explaining why 
you think there is a fit and attaching a plain text resume
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Backup Slides
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Manager Architecture
• Manager communicates with other entities through MQ and 

has shared secret key with each ED
• Manager components are 

– Translation engine: Translates native alert formats into CIDS format
– Event dispatcher: Dispatches the event to the appropriate host’s 

Inference Engine instance
– Inference Module: An Inference Module contains multiple Inference 

Engines and a Combining Engine. We have an Inference Module for 
each host and we also have a global Inference Module.

– Inference Engine: Matches the received events against the Rule 
Objects to come up with a determination of disruption.

• A separate instance of the Local Inference Engine for each host 
• A Global Inference Engine for correlating the results from the local 

engines
• Rule Objects store the rules, one for each class of disruption

– Combining Engine: If multiple types of inference engine, this 
combines the detection decisions from inference engines.
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Performance of Rule Matching
• Rule matching overhead

• Defined 4 categories of rules:
– Type 0: Snort rule matched in Snort

– Type 1: Snort rule matched in SPACEDIVE

– Type 2: Use var construct to set the value of a variable. 
– Type 3: Create local event in the event trail
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Performance of Rule-Matching: Results
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