
Slide 1/39DCSL: Dependable Computing Systems Lab

Collaborative Intrusion Detection System &
Application to VoIP

Saurabh Bagchi
Dependable Computing Systems Lab

School of Electrical and Computer Engineering
Purdue University

Joint work with: Vinita Apte, Bingrui Foo, Yu-Sung Wu, Eugene H.
Spafford

http://shay.ecn.purdue.edu/~dcsl

Slide 2/39DCSL: Dependable Computing Systems Lab

Intrusion Detection: What?

• Intrusion Detection System (IDS) detects deviation of
allowable system behaviors or subversion of security policy

• IDS market is divided into two groups
– Host-based
– Network-based

Slide 3/39DCSL: Dependable Computing Systems Lab

Intrusion Detection: A little bit of past and present

• Past:
– IDSs came about in 1970s and looked very different
– Mainframe computers were pricey beasts and people had to pay good

money for cycles on them
– IDS were for checking if anyone was stealing cycles

• Present:
– The US Treasury Department estimates cybercrime proceeds in 2004 were

$105 billion, greater than those of illegal drug sales.
– 2005 FBI/CSI Computer Crime and Security Survey found nearly nine out of

10 U.S. businesses suffered from a computer virus, spyware or other online
attack in 2004 or 2005

– The process of downloading and installing the latest Microsoft patches which
may be as small as 70 megabytes (MB) or as large as 260 MB, takes longer
then the time it takes for an unpatched computer to be compromised

– IDS and Firewalls are the first line of defense

Slide 4/39DCSL: Dependable Computing Systems Lab

Intrusion Detection: Types

• IDSs are based on two alternative choices
– Anomaly based: Specify the normal behavior of users or machines

• Example: System CPU utilization between midnight and 5 am is no more
than 50%

– Misuse based: Specify the signatures of attacks
• Example: Detect a string like ‘rm –rf /’

• Metrics for evaluating IDSs
– False positives, or False alarms
– False negatives, or Missed alarms

False alarms are often seen in anomaly based IDS
Missed alarms are often seen in misuse based IDS

Slide 5/39DCSL: Dependable Computing Systems Lab

Challenges of current IDS

• Traditional IDS only probes at a point of a system
– Limited view of the whole system
– The coverage and accuracy of your detection depends solely on the

ingenious pattern description or signature definition corresponding to
that specific point

– Loose rules => Better coverage but more false alarms (ex:
“/usr/bin/gcc”)

– Strict rules => Better accuracy but more missing alarms (ex:
“/usr/bin/gcc wormX.c”)

• Our approach: Collaborative Intrusion Detection Systems
(CIDS)
– Multiple detectors specialized for different parts of system
– Manager infrastructure for combining alarms from multiple detectors

Slide 6/39DCSL: Dependable Computing Systems Lab

CIDS Approach - Motivation

• Single IDS (detector) can have false positives (false alarms) or false
negatives (missed alarms)
– It only tells you YES or NO.
– Usually can’t tell you how much the alarm can be trusted.

• Single IDS (detector) is specialized for certain kinds of attacks
– Limited view of the whole attack => less accuracy
– An single attack could have multiple symptoms (cascaded attack)

• Combining information from multiple detectors might help detection
accuracy

• Future automatic responses mechanism will heavily rely on the quality of
the alarms from IDS

• Timing and correlation information might be useful for estimating speed
of propagation of attack

Slide 7/39DCSL: Dependable Computing Systems Lab

CIDS Architecture

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

Slide 8/39DCSL: Dependable Computing Systems Lab

CIDS Components
• Elementary Detectors (EDs): Specialized detectors

distributed through the system
– The EDs may be off-the-shelf and minimal change is required for

integration into CIDS (e.g. Snort, Libsafe)
– Different hosts may have different configurations of EDs

• Message Queue (MQ): Communication layer for multiple
CIDS components
– Secure through a shared secret key and hash digest

• Connection Tracker (CT): Kernel level entity to track which
process has active connection on which port (bridge
between NIDS and HIDS)

• Manager: Responsible for collating alerts from EDs and
generating a combined alert expected to be more accurate

Slide 9/39DCSL: Dependable Computing Systems Lab

Manager Architecture

Manager

Host 1

Rules

Inference
Engines

Host 2 Host N

………….

Event Dispatcher

Translation Engine

Combining Engine

Rules

Inference
Engines

Combining Engine

Rules

Inference
Engines

Combining Engine

Rules

Inference
Engines

Combining Engine

Elementary DetectorsElementary Detectors

Global (system wide)

Events

Translates native alert
formats into the
standard format :
Events

Dispatches the event to the
appropriate host’s Inference
Module

Matches the received events
against the Rule Objects to
come up with a determination
of disruption.

Combine decisions
from multiple
Inference Engines

Global Inference Module
correlates events across the
whole system (across hosts)

Slide 10/39DCSL: Dependable Computing Systems Lab

Graph-Based Inference Engine

A

B

C

D

E

2

1

2

4

1

Rule Object #1

S
3 A

B

C

D

E

2

1

2

4

1

Rule Object #1

S
3

•Rules are represented as
graphs
•Nodes are events and Edges
represent sequencing of
events
•Edge weights represent
assurance values indicating
likelihood of sequence

• Assurance Value (AV) for an attack given by sum of edge weights
• An event is matched with a rule object if it is fusionable, i.e., belongs to

the same disruption instance
• Discounted Assurance Value (DAV) for partial matches

DAV = AV × (Partial path length/Complete path length)
Alert Probability = DAV/(maximum AV)

Slide 11/39DCSL: Dependable Computing Systems Lab

• AC,Snort => 2/7=0.286
• AC,Libsafe =>[(2+2)*2/3]/7=0.38
• AC,Snort,Libsafe=>(2+2)/7=0.57

Graph-Based Inference Engine (cont’d)

Apache
Chunk
Attack

1000

Snort

1001
LibSafe

1002

SIGSEG
V

1004

2 2

2 1
File

Access

1002

2

2

Slide 12/39DCSL: Dependable Computing Systems Lab

Bayesian Network Based Inference Engine
• In a Bayesian Network, the nodes represent random variables modeling

the events and edges the direct influence of one variable on another
• Three step process for creating rule object

– Nodes to represent events
– Edges to represent conditional probability relations among the events
– Creation of table with conditional probability values

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack • Bayesian Network toolbox
used for solving
• Input is fusionable event
stream
• Output is conditional
probability of root (the start
node – OpenSSL Attack
here)

Slide 13/39DCSL: Dependable Computing Systems Lab

CIDS System: Current Implementation

Web Client
Web

Server
Appl.
Server

Database

1. Create profile
2. Browse catalog
3. Create shopping cart
4. Check out shopping cart

Slide 14/39DCSL: Dependable Computing Systems Lab

CIDS Elementary Detectors

• Application level: Libsafe. Middleware to intercept “unsafe” C
function calls and prevent stack overflow attacks.

• Network level: Snort. Sniffs on incoming network packets
and matches against rulebase to perform misuse based
detection.

• Kernel level: Sysmon. Home-grown new detector.
– Intercepts system calls for file accesses and executions.
– Takes a set of rules for disallowed accesses or executions

• Can be specified using wildcards or directory tree
– Intercepts signals of interest that can flag illegal operations.

• SIG_SEGV to indicate segmentation violation that may be caused by
buffer overflow

Slide 15/39DCSL: Dependable Computing Systems Lab

Simulated Attacks
• Three classes of attacks, multiple types within each class,

and multiple variants within each type
– Buffer overflow: Can be used to overwrite parts of stack and write

and execute malicious code
• Apache chunk attack
• Open SSL attack

– Flooding: Overwhelm the network with redundant or malicious
packets causing a denial of service

• Ping flood
• Smurf

– Script based: Exploit poorly written scripts which do not do input
validation to execute arbitrary commands

• Used unchecked Perl open() and system() calls

Slide 16/39DCSL: Dependable Computing Systems Lab

Results: Performance – Without Attacks
• Measured without and with attacks
• 30 web clients running concurrently
• (Transactions/second) of workload transaction measured
• When multiple EDs present, manager with both Inference Engines is deployed

13.21

12.88
12.76

12.66 12.72
12.52

12.61
12.47

12.88 12.82
12.73 12.69

12.00

12.40

12.80

13.20

13.60

No detector Libsafe Sysmon Snort Libsafe +
Sysmon

Sysmon +
Snort

Snort +
LibSafe

LibSafe +
Snort +
Sysmon

(NF) Snort (NF) Snort
+ Libsafe

(NF) Snort
+ Sysmon

(NF)
Libsafe +
Snort +
Sysmon

Tr
an
s/s
ec

No Intrusion

• Degradation overall: 3.95% with Snort rules modified, 5.60% without

Slide 17/39DCSL: Dependable Computing Systems Lab

Results: Performance – With Attacks

• OpenSSL Attack performance degradation is 6.33%
• Chunk Attack performance improves!!!

– Having Libsafe prevents core dumping

• Highest performance degradation due to Matlab Bayesian
Network toolbox

11.19

12.30

13.13

12.30

10.00

11.00

12.00

13.00

14.00

No ED All EDs No ED All EDs

Chunk Attack Chunk Attack Open SSL Attack Open SSL Attack

Tr
an

s/
se

c

Slide 18/39DCSL: Dependable Computing Systems Lab

Results: Accuracy of Detection
Snort Libsafe Sysmon (Signal) Sysmon

(File)
CIDS
(Alert Prob.
> 0.5 ?)

No attacks Yes (1807,1933) No No No No attack

Open SSL Yes (1881,1887) No Yes R1 Yes

Open SSL variant No No Yes R1 Yes

Apache Chunk Yes (1807, 1808,
1809)

Yes Yes R1 Yes

Smurf 1000 Yes (499) No No No Yes

Smurf 500 No No No No No

Ping Flooding Yes (523, 1322) No No No Yes

Script No No No Yes Yes

• Yes: Detected. Figures in parentheses are the rule numbers within Snort.
Sysmon(File) is the file access detection part, Sysmon(Signal) is the
illegal signal detection part; R1: The attack was not successful in
creating a file.

Slide 19/39DCSL: Dependable Computing Systems Lab

CIDS Summary

• CIDS can accommodate best-of-breed detection techniques
(existing off-the-shelf detectors can be easily integrated) and
provides management and correlation facility

• Two algorithms for correlating alerts
– Graph-based
– Bayesian network based

• Both false alarms and missing alarms are reduced
• Output of the two correlation algorithms are probability

values telling you how possible that attack has happened.
• Performance degradation after using CIDS is around 3.95%

under normal operations (without attacks) and 6.33% when
being operated under OpenSSL attacks

Slide 20/39DCSL: Dependable Computing Systems Lab

Application of CIDS to a Voice over IP (VoIP)
Application

Slide 21/39DCSL: Dependable Computing Systems Lab

VoIP Basics
• First launched in Feb 1995 – Vocaltec Inc.
• Allows transport of voice traffic over IP networks

– Cost savings due to convergence of networks
– Do away with internal EPABX systems

• Protocols
– RTP: Data transport
– SIP, H.323: Signaling

• Some VoIP predictions:
– 12 million VoIP users by end of 2007 [Forrester Research]
– 100 million VoIP users by the end of 2011 [ON World Research]

"By 1985, machines [computers] will be capable of doing any work Man can
do." – Herbert A. Simon, of Carnegie Mellon University, one of the founders
of the field of artificial intelligence (1965)

Slide 22/39DCSL: Dependable Computing Systems Lab

VoIP Call Mechanism

sip:alice@purdue.edu sip:bob@mit.edu

INVITE

Client A

INVITE

INVITE

Client B

Proxy Server Proxy Server

OK

OK

OK

RTP Data

SIP Request

SIP Response

Slide 23/39DCSL: Dependable Computing Systems Lab

Distributed IDS for VoIP Application

• Distributed Intrusion Detection System for VoIP networks -
SPACEDIVE

• Why build an IDS just for VoIP?
– Soft real-time requirements
– Attack can take place across a session
– Attack across protocols

• Why correlation based detection?
– Multiple components in a VoIP system
– One attack may span many components
– One detector cannot have a complete view of the different stages of attack

• Approach:
– Local detector using fast network pattern matching
– Remote detector to correlate alerts
– Stateful and cross-protocol detection

Slide 24/39DCSL: Dependable Computing Systems Lab

Rule Matching Engine (RMEL)

Protocol
Stacks Snort Rules

Sniffing
Module

Local Event
Trail

Event Parser

Network Event Trail

Sniffing
Module

Protocol
Stacks Snort Rules

State Repository

Local Event Trail

Event Parser

Rule Matching Engine - (RMER)

Rule Matching Engine (RMEL)

SPACEDIVE Design – Local Level

Slide 25/39DCSL: Dependable Computing Systems Lab

LAN1

LAN1

RMER

LAN2LAN2

RMEH

RMEL RMEL

RMEL RMEL

RMER

SPACEDIVE Design – Remote Level

Slide 26/39DCSL: Dependable Computing Systems Lab

Low Level Rule Language

• Snort rules
– Limited capability for remembering state
– Events span multiple packets
– Events span multiple protocols

• New constructs
– var – set the value of a state variable
– event – trigger a local event
– net_event – trigger a network-level event
– seqwin (protocol specific - RTP) – specify maximum tolerance for out-

of-order packets
– Connectors: AND/OR/NOT/BEFORE/AFTER

Slide 27/39DCSL: Dependable Computing Systems Lab

Sample Rules

1. alert udp Client_IP any -> Server_IP 5060
(content:”INVITE”; var invite;)

2. alert udp Server_IP any -> Client_IP any
(content:”sip:OK”; var ok;)

3. event(ok AFTER invite;) # trigger local event

4. alert rtp my_IP 6000 (seqwin:50; var:dos);

5. event(dos;)
6. net_event(dos;) # network event –

notification
sent to RMER

Slide 28/39DCSL: Dependable Computing Systems Lab

High Level Rule Language
• Specified at the RMERs
• General format

R =((wherei:whati)conni)response (i= 1,…,N)

• Sample Rule

(C1:RTP_DATA) AFTER (C2:SESSION_TERM) alert

Slide 29/39DCSL: Dependable Computing Systems Lab

Efficient Matching
• event ((rv3 OR (rv1 AND rv2)) AND rv4)

AND

OR rv4

AND

rv1 rv2

rv3

TRUE

AND

rv4TRUE

“tree roll-up”

Slide 30/39DCSL: Dependable Computing Systems Lab

Experimental Testbed

Internet

SIP Proxy and
Registrar
mmpc1.ecn

SIP Proxy and
Registrar

msee233dlnx1.ecn

RMER RMER

RMEH

Domain 1 Domain 2

Client A
Client B

Client C

S1 S2

Software

Servers: openser

Clients: Xlite

Slide 31/39DCSL: Dependable Computing Systems Lab

Attack Scenarios
• Call Hijacking
• Man in the Middle Attack
• BYE Attack
• Compromised SIP Proxy
• Billing Fraud
• Denial of Service (DoS) Attack

Slide 32/39DCSL: Dependable Computing Systems Lab

Man in the Middle Attack

S2 HS1A B

Invite

Challenge

Invite
Invite

Invite with Response to
challenge

Challenge

Invite with
Response to

challenge

Invite
404 Not Found

OK

OK
OK

S2 HS1A B

Invite

Challenge

Invite
Invite

Invite with Response to
challenge

Challenge

Invite with
Response to

challenge

Invite
404 Not Found

OK

OK
OK

Slide 33/39DCSL: Dependable Computing Systems Lab

Rules for Detection

(S1:SIP_OK) AND (S2:SIP_OK) AND
(NOT(B:SIP_OK)) alert

RMEH

alert udp S2_IP any -> B_IP any (var:rv3;
content:OK;)
net_event (rv3;)

B

alert udp S1_IP any -> S2_IP any (var:rv2;
content:OK;)
net_event (rv2;)

S2

alert udp A_IP any -> S1_IP any (var:rv1;
content:OK;)
net_event (rv1;)

S1

RuleComponent

Slide 34/39DCSL: Dependable Computing Systems Lab

Timeline for correlated detection
Local event

detection at S1
Local event

detection at S2 Attack detected
at RMER

Time (ms)

t = 0 t=3.6 t=5.2

• Detection latency depends upon timeout interval
• Timeout interval is a configurable parameter dependent on

– Network delay
– Processing capacity

Slide 35/39DCSL: Dependable Computing Systems Lab

Resilience to DoS

• Case 1: Client A without SPACEDIVE

• Case 2: Client A with SPACEDIVE
drop rtp A_IP 6000 (seqwin:50; var:dos);

Client A

M

B64 kbps

Slide 36/39DCSL: Dependable Computing Systems Lab

Resilience to DoS: Results

0

0.25

0.5

0.75

1

0 100 200 300 400 500 600

Data rate of malicious node (kbps)

Q
ua

lit
y

(N
or

m
al

iz
ed

)

Quality (without SpaceDive)

Quality (with SpaceDive)

Slide 37/39DCSL: Dependable Computing Systems Lab

SPACEDIVE Summary
• We designed and built an IDS for VoIP systems
• We showed that it could correlate across protocols and

components
• It was scalable and could perform fast matching of network

packets

I. Vinita Apte, Yu-Sung Wu, Saurabh Bagchi, Sachin Garg, and Navjot Singh,
“SPACEDIVE: A Distributed Intrusion Detection System for Voice-over-IP
Environments,” Appeared at the IEEE International Conference on Dependable
Systems and Networks (DSN), June 25-28, 2006, Philadelphia, USA.

II. Saurabh Bagchi, Yu-Sung Wu, Sachin Garg, Navjot Singh, and Tim Tsai, “SCIDIVE:
A Stateful and Cross Protocol Intrusion Detection Architecture for Voice-over-IP
Environments,” In Proceedings of the IEEE Dependable Systems and Networks
Conference (DSN), pp. 401-410, June 28-July 1, 2004, Florence, Italy.

III. Yu-Sung Wu, Bingrui Foo, Yongguo Mei, and Saurabh Bagchi, "Collaborative
Intrusion Detection System (CIDS): A Framework for Accurate and Efficient IDS," In
Proceedings of the 19th Annual Computer Security Applications Conference
(ACSAC), pp. 234-244, December 2003.

Slide 38/39DCSL: Dependable Computing Systems Lab

What’s Next?
• What do we do once we know with reasonable certainty that an

intrusion is in progress
– Send alert to the poor system admin at midnight asking her to hurry into the

lab and do something
– Place the order for a new cluster of machines and tell my lab mates that their

data and code is gone – heck! I detected it
– Provide automatic containment of the current attack and response to make

the system less vulnerable to future attacks

• We did it for client-server VoIP applications. What about peer-to-
peer VoIP applications? Think Skype.
– Looser trust relations
– Arbitrary joins and leaves of entities

Slide 39/39DCSL: Dependable Computing Systems Lab

Come Join Us at DCSL
• We are looking for 2 PhD students who can make it happen
• Desirables

– Good programming skills in C and C++
– Good network programming skills
– Not afraid to do experiments with real systems, real code, and real attacks

• If interested, send mail to: dcsl@ecn.purdue.edu explaining why
you think there is a fit and attaching a plain text resume

Slide 40/39DCSL: Dependable Computing Systems Lab

Backup Slides

Slide 41/39DCSL: Dependable Computing Systems Lab

Manager Architecture
• Manager communicates with other entities through MQ and

has shared secret key with each ED
• Manager components are

– Translation engine: Translates native alert formats into CIDS format
– Event dispatcher: Dispatches the event to the appropriate host’s

Inference Engine instance
– Inference Module: An Inference Module contains multiple Inference

Engines and a Combining Engine. We have an Inference Module for
each host and we also have a global Inference Module.

– Inference Engine: Matches the received events against the Rule
Objects to come up with a determination of disruption.

• A separate instance of the Local Inference Engine for each host
• A Global Inference Engine for correlating the results from the local

engines
• Rule Objects store the rules, one for each class of disruption

– Combining Engine: If multiple types of inference engine, this
combines the detection decisions from inference engines.

Slide 42/39DCSL: Dependable Computing Systems Lab

Performance of Rule Matching
• Rule matching overhead

• Defined 4 categories of rules:
– Type 0: Snort rule matched in Snort

– Type 1: Snort rule matched in SPACEDIVE

– Type 2: Use var construct to set the value of a variable.
– Type 3: Create local event in the event trail

Slide 43/39DCSL: Dependable Computing Systems Lab

Performance of Rule-Matching: Results

0

10

20

30

40

50

60

Typ
e 0

Typ
e 1

Typ
e 2

Typ
e 3

 - 1
 va

ria
ble

Typ
e 3

 - 2
 va

ria
ble

s

Typ
e 3

 - 4
 va

ria
ble

s

Typ
e 3

 - 8
 va

ria
ble

s

Rule Type

Ti
m

e
(µ

s)

