MOBiWORP: Mitigation of the Wormhole Attacks in Mobile Multi-hop Wireless Networks (MANET)

Issa Khalil, Saurabh Bagchi, and Ness B. Shroff

Dependable Computing Systems Lab (DCSL) & Center for Wireless Systems and Applications (CWSA)
School of Electrical and Computer Engineering
Purdue University

Outline

• Introduction
 – What is a MANET network?
 – Attacks against MANET networks
 – The wormhole attack
 – The goals of the paper

• Primitive Building Blocks
• Mitigating Wormhole Attack in Mobile Networks
• Conclusion
MANET networks

- Mobile Ad Hoc NETworks (MANET)
- Autonomous system of nodes with no static infrastructure
- All or subset of nodes may move
- Nodes communicate wirelessly in multi-hop fashion
- Often subject to rapid deployment in environments where natural or malicious errors are likely

Security Attacks

Two classes of attacks

1. Attacks that can be defeated by crypto mechanisms
 - Eavesdropping: Solved by encryption
 - Message tampering: Solved by authentication

2. Attacks that subvert the functionality of the network
 - Control attacks: Manipulating control traffic (e.g., routing traffic) to disrupt data traffic
 - Examples: ID spoofing and Sybil, sinkhole, rushing, wormhole
 - Data Attacks: Directly manipulate data traffic
 - Examples: Blackhole, grayhole
 - This class cannot be prevented by cryptographic mechanisms alone
What is the Wormhole Attack?

- A control traffic attack that enables an attacker node to draw many routes through it
- Attacker tunnels packets received in one part of the network and replays in another part giving the illusion that optimal routes pass through it
- Tunneled packets look legitimate thus crypto mechanisms cannot detect them
- Puts the attacker in a powerful position to disrupt network functionality
 - Insinuate attacker in a route and then manipulate data traffic
 - Example: Selectively drop data packets
 - Routing disruptions
 - Example: Prevent discovery of legitimate route
 - Traffic analysis
 - Example: Observe traffic patterns as a way of leaking information
- Particularly insidious because can be launched without possessing any cryptographic keys

How can a Wormhole Attack be Launched?

- A simple way to launch the wormhole attack is through an out-of-band channel [1]
- Collusion is required for the attack to succeed

- S-C-B-E-D is a 4-hop legitimate route
- S-X-Y-D is a 3-hop wormhole route

Goals

- Mitigate the wormhole attack in MANET networks with mobile attacker by
 - Detecting nodes involved in the attack
 - Diagnosing attacker nodes
 - Isolating attacker nodes from the network

- All previous approaches
 - Either, use expensive hardware, such as tight time synchronization among all nodes, directional antennas, etc.
 - Or, rely on all nodes being static and therefore their neighbors are unchanging

Outline

- Introduction
- The Wormhole Attack
- Primitive Building Blocks
 - Local Monitoring
 - Detection using local monitoring
 - Why detection is imperfect
- Mitigating Wormhole Attack in Mobile Networks
- Conclusion
Local Monitoring

- A collaborative detection strategy in which a node monitors the traffic going in and out of its neighbors.
- Assumptions
 - Each node knows its first-hop and second-hop neighbors
 - Requires each node to include the ID of the prev-hop in the forwarded packet
- A guard of a node A for the link from X to A is any node that lies within the transmission range of both X and A
 - Example: M, X, and N are the guards of node A for the link from X to A
- A guard saves information about incoming packets in a watch buffer
- Matches an output packet with information in buffer

Local monitoring: Details

- Local monitoring can be used to detect different kinds of control attacks by changing the information maintained in the buffer and the kind of checking that goes on
- The different kinds of malicious activity that can be done by a node
 - Fabrication
 - Modification
 - Delay
 - Drop
- Correspondingly the kind of checking that needs to be done are:
 - An outgoing packet that has no matching packet in watch buffer
 - Difference between incoming and outgoing packet fields
 - Forwards after a threshold time
 - Not forwarding within a maximum acceptable timeout threshold
Detection Using Local Monitoring

Attacker goal: including malicious nodes in the route

Choice#1
M1 claims that the RREP is from M2, from off R of its neighbors, say Z

Detection strategy
The guards of M1 over the link ZÆM1, (P,Z,Q) detect this malicious behavior, because they have nothing in their watch buffers about RREP coming from Z

Choice#2
M1 claims that the RREP comes from one of its neighbors, say Z

All the neighbors of M1 (S,R,P,Z,Q,B) detect this malicious activity, because they know that M2 is not a neighbor of M1

Why Detection is Imperfect

Due to collision the following may occur

• *Missed detection*: A malicious event goes undetected
 – Collision at the guard (G) when the node (D) forwards a packet
• *False detection*: A normal event is detected as a malicious event
 – Collision at the guard (G) when the sender (S) transmits a packet
 – Detection at the guard when the monitored node (D) forwards the packet
Outline

- Introduction
- Primitive Building Blocks
 - Mitigating Wormhole Attack in Mobile Networks
 - The mobility challenge
 - System assumptions and attack model
 - Data structures
 - The selfish move protocol (SMP)
 - The connectivity-aided protocol with constant velocity (CAP_CV)
 - Detection & isolation of malicious nodes
 - Results
- Conclusion

The Mobility Challenge

- No fixed neighborhood membership
- Need two-hop neighbor verification that is
 - Efficient in time and energy
 - Secure
 - Not relying on expensive hardware
- No existing solution satisfies these requirements
- In MOBIWORM, we provide
 - Two-hop neighbor verification whenever there is the possibility of launching a wormhole attack
 - Use this information to mitigate the wormhole attack with mobile attackers
Assumptions & Model

- **System assumptions**
 - Existing key distribution mechanism
 - Mix of mobile and static nodes
 - Bi-directional links
 - Network has unconstrained trusted central authority (CA)
 - Ability to verify CA signatures
 - The maximum number of nodes in the network that can be compromised is known a priori
 - Loose time synchronization

- **Attack model**
 - Links may be subjected to eavesdropping and message tampering
 - Attacker node may be external or internal (i.e., compromised node)
 - Attacker node may be more powerful than legitimate network nodes
 - Attacker can arbitrarily delay, drop, modify, or fabricate subset of packets
 - Attacker nodes can collude among one another
 - Brute force denial of service attacks are not considered

Data Structures

- A node B maintains
 - MalC(B,i) about each neighbor i
 - Neighbor list (N_{B_list})
 - Black List (B_{list}) of known revoked nodes

- The CA suspicion table (ST_{globe})
 - $N+1 \times N$ table, $N =$ number of nodes
 - $ST_{globe}[i,j].sf = 1$ if i revokes j, 0 otherwise
 - $ST_{globe}[i,j].ctr = MalC(i,j)$
 - $ST_{globe}[i,j].Time =$ the aggregated continuous time during which i & j are neighbors
 - $ST_{globe}[N+1,j].sf = 1$ if j has been globally revoked
 - $ST_{globe}[N+1,j].ctr =$ number of nodes locally revoke j
ANUM & Node States

- **Authentication Neighbor Update Message (ANUM)**
 - A certificate given by CA to a node (signed using CA’s private key)
 - Used to convince other nodes of location ANUM.Loc
 - Has an expiration time ANUM.T_expire
- **Grace Period (T_grace)**: the max time a node can send and recv after the expiration of its ANUM
- **Node States**: based on the functionality allowed to the node
 - **Valid (send, recv, relay)**
 - Claimed Loc = ANUM.Loc and
 - Cur_Time < ANUM.T_expire
 - **Incorrect (send, recv)**
 - Claimed Loc != ANUM.Loc or
 - ANUM.T_expire < Cur_Time < T_grace
 - **Invalid (only Handshake packets)**
 - Cur_Time > T_grace
 - **Revoked (no allowable functionality)**

Selfish Move Protocol (SMP): Getting ANUM

Used for scenarios in which a mobile node is not allowed to relay packets while moving

1. **ANUM_Req**
 - Encrypted using shared key
 - Includes new location and pause time at that location
 - Signed by CA
 - Each node that overhears ANUM_Reject, adds B to its BList
2. **ANUM_Reject**
 - If B has a valid ANUM, CA drops the ANUM_Req
 - If B is revoked, CA sends ANUM_Reject
 - If B has no valid ANUM and not revoked, CA sends ANUM_Rep
3. **ANUM_Rep**
 - Signed by the CA
 - Includes: B, new location, expiration time
SMP: Using the ANUM

Initiated by a node when it reaches its new location

1. If W in incorrect state, W marked in Nblist(B)
2. Add B to Nblist
3. ANUM(W), Blist(W)
4. Blist(W) is authenticated using the shared key
5. One-hop broadcast
 - Blist(B) authenticated using the shared key

• A malicious node directly detected in Blist(B) serves as a partial detection evidence to W and vice-versa
• At min(Texpire(W), Texpire(B)), B removes W from Nblist(B), so does W

Connectivity Aided protocol with Constant Velocity (CAP_CV)

- Problems with SMP
 - Network may get disconnected in high mobility scenario
 - A moving node can not communicate beyond T_{grace}

- Goals
 - Preserve the same network connectivity conditions as the insecure network
 - Allow moving nodes to travel any distance

- Assumptions
 - Each mobile node knows its location and trajectory of motion
 - Moving with fixed velocity (v)
CAP.CV: Getting and Using the ANUM

- Getting the ANUM (retry if fail)
 - Encrypted using shared key
 - Includes \((X_0, Y_0, X_1, Y_1, T_{start}, v)\)
 - Signed by CA
 - Each node that overhears ANUM_Reject, adds B to its BList

- If B has a valid ANUM, CA drops the ANUM_Req
- If B is revoked, CA sends ANUM_Reject
- If B has no valid ANUM and not revoked, CA sends ANUM_Rep

- Secure neighbor discovery: same as SMP except that B computes the difference between actual position and computed one and refrain from broadcast if greater than a threshold

Local Isolation

- Goals
 - Propagate detection knowledge among the first-hop neighbors of the attacker
 - Isolate the malicious node from its local neighborhood
- When a guard G detects a malicious event by node M
 - G increments \(\text{MalC}(M,G)\)
 - Different malicious activities can be considered at different levels of criticality
- When the \(\text{MalC}(M,G)\) crosses a threshold
 - G removes M from its neighbor list
 - G sends an authenticated alert to the neighbors of M
- When W receives an alert about a neighbor M
 - Collects alert information from multiple guards
 - When the number of alerts reaches detection threshold \(\gamma\), W removes M from its neighbor list
- Local isolation is not sufficient for mobile attacker nodes
 - A malicious node leaves the current neighborhood to a new one
Global Isolation

- Upon detection of a malicious node, M, a guard G sends an alert to the CA
 - I directly detect M behaving maliciously, or
 - This is the MalC(G,M) and the length of the monitoring round
- The CA updates its data structure (ST\textsubscript{globe}) accordingly
 - ST\textsubscript{globe}[G,M].s_{r} = 1, ST\textsubscript{globe}[N+1,M]++ or
 - Update ST\textsubscript{globe}[G,M].Ctr and ST\textsubscript{globe}[G,M].Time
- CA takes decision about M
 - If ST\textsubscript{globe}[N+1,M] = the bound on the number of compromised nodes + false alarm safety factor, mark M as malicious

Simulation Setup

- Use ns-2 network simulator
- Data communication model: any node to any node, uses AODV for routing
- Node distribution: Randomly on a fixed-size field
 - Increasing number of nodes increases the density
- Node movement: Random way-point model with velocity picked randomly from a uniform distribution (v_{min}, v_{max})
- Attacker nodes: Internal compromised nodes randomly selected from network
- Attack model for wormhole attack: Out-of-band channel emulated by allowing instantaneous packet forwarding among attacker nodes
 - Attacker nodes drop all data packets through them
 - Attacker nodes have perfect collusion
- We simulate two scenarios
 - Baseline: insecure network
 - MobiWorp
- The output parameters are measured at the end of simulation time (1500 s)
Results: Drop Ratio

The output here is Drop ratio = % (Packets dropped/Packets sent)

![Graph showing drop ratio over simulation time]

- Drop ratio in Baseline is higher and reaches a steady state with time
- In MobiWorp, drop ratio goes to zero with time due to isolation
- The higher the number of nodes, the smaller is the fraction of malicious nodes and therefore the lower the drop ratio

Input parameters
- $\gamma = 3$
- # mal. = 4
- #nodes= 80,90,100

Results: Local Isolation

- % Isolation = %(#mal. nodes isolated locally/total number of mal. nodes)
- % False isolation = %(#good nodes isolated locally/total number of nodes)

![Graph showing local isolation and false isolation]

- Both isolation and false isolation decrease with increasing γ since it becomes more difficult to get consensus among guards
- Why do we go for infinite γ if $\gamma = 4$ is good enough?

Input Parameters
- # mal. Nodes = 4
- # of nodes = 60
Results: Global Properties

- %Global Isolation = % (the # mal. nodes revoked by CA / total of mal. nodes)
- %Global False Isolation = % (the # nodes falsely revoked by CA / total # nodes)
- %Global Isolation time = average of global isolation time of each isolated malicious node
- Isolation time of a malicious node = the time from which the node starts attacking the network to the time when the node is revoked by the CA.

- Low γ requires contribution of many neighborhoods and thus low isolation and false isolation percentages
- Global latency decreases even though local latency increases with γ

Results: Effect of Motion

Duty cycle = motion time / simulation time

- Increasing frequency of motion causes malicious nodes to escape before the MalC reaches the threshold. CA does not aggregate across guards. This decreases both detection and false detection
- In Base case increasing motion frequency causes wormholes to break faster and thus the drop ratio decreases

Input parameters
- γ = 3
- #Max mal. = 3
- # mal. = 4
- #nodes= 60
Conclusion

• Proposed a generic strategy for cooperative distributed detection of the wormhole attack in mobile ad-hoc networks (MOBIWORP)
• Proposed a generic strategy for locally isolating the malicious nodes
• Proposed a global strategy for mitigating the wormhole in face of mobile malicious nodes through the CA
• Study the efficiency of MOBIWORP under different network conditions and mobility patterns
• Future Work:
 – Extension to aggregate across multiple guards
 – Scheduling of guards to reduce collision

Thanks

Questions?