SCIDIVE: A Stateful and Cross Protocol Intrusion Detection Architecture for Voice-over-IP Environments

Yu-Sung Wu, Saurabh Bagchi
Dependable Computing Systems Lab
School of Electrical and Computer Engineering
Purdue University

Sachin Garg, Navjot Singh
Avaya Labs

http://shay.ecn.purdue.edu/~dcsl

Sachin Garg, Navjot Singh
Avaya Labs

Timothy Tsai
Sun Microsystems

Outline

• Motivation: VoIP System & Threats
• Applicability of current IDS to VoIP systems
• Design of SCIDIVE
 – Cross-protocol methodology for detection
 – Stateful methodology for detection
• Implementation
• Attack scenarios
• Future work
Motivation: Threats against VoIP System

• Voice-Over-IP (VoIP) systems are gaining in popularity for carrying voice traffic over IP infrastructure
 – Economical due to convergence of data and voice
 – Useful for internal corporate communication and external inter-domain communication
• VoIP systems are vulnerable to malicious attacks
 – Traditional ones and
 – Specialized ones targeted to VoIP systems
• Protecting VoIP systems is challenging
 – Open environment
 – Employ multiple protocols
 – Systems are distributed in nature
 – Different components are under different administrative domains

Some facts about VoIP

• Voice communication between end points/terminals/clients
 – Physical VoIP phones, or
 – Software programs executing on computers
• Other entities: Gateways, Proxy servers, Redirect servers
• VoIP systems provide facilities for setting up and managing voice communication sessions
 – Protocols used are H.323 or SIP
• Media (voice data) carried using protocols such as RTP
• Health of connection monitored using RTCP or ICMP
• VoIP system is session aware (stateful)
 – A media flow comes after a successful call setup
 – The sequence number of RTP packets is monotonic
 – A hang-up event happens only if there is an existing talk session
Vulnerabilities in VoIP Systems

- Voice traffic over data network
 - Vulnerable to traditional attacks, such as DoS and authentication
 - Additionally attacks related to toll fraud, privacy, and degrading voice quality
- A major source of vulnerabilities in the signaling protocol (SIP)
 - Headers and payload sent in clear text allowing attacks such as premature call termination, redirecting calls
- Vulnerabilities in the media protocol (RTP)
 - No authentication and encryption allowing attacks such as injection of spurious packets

Applicability of Existing IDSs

- Current IDS’s not well suited for VoIP Intrusion Detection
- They are restricted in their ability to match patterns across multiple packets
 - **Example:** Snort’s stream4 reassembly module can only reassemble multiple TCP packets that belong to the same session and then apply detection rule
- They are restricted in their ability to match patterns across multiple protocols
 - Required because several attacks are based on sequences that span multiple protocols
 - WebSTAT detects attacks against web servers by correlating events from vertically layered protocols: application level (web server logs) and OS level (OS logs)
 - In VoIP systems, correlation across horizontally layered protocols is also required
Design of SCIDIVE: Components

- **Footprint**
 - Protocol dependent information unit
 - For example, a Footprint can be composed of a SIP or an RTP message

- **Trail**
 - A set of Footprints belonging to the same session

Distiller
- Translates packets into Footprints
- Performs defragmentation, reassembly, decoding of packets

Event generator
- Maps footprints into events
- Example: Map two out of order RTP Footprints into an event called ‘RtpJitter’
- Layer of abstraction that enables efficient rule matching
Design of SCIDIVE: Components

- Rule Matching Engine
 - Triggered when events are generated
 - Works on rule set

- Rule set
 - Chiefly based on events
 - Example: Detect RTP flow (event 1) after a session is torn down (event 2)
 - Can also access information directly in trails at the cost of some efficiency
 - Example: Interested in knowing who prematurely tears down a session. Require a look at the corresponding SIP Footprint

Important Abstraction #1: Cross Protocol Detection

- SCIDIVE accesses packets from multiple protocols in a system to perform its detection
- Suitable for VoIP systems since it employs multiple protocols and attacks spanning multiple protocols are possible
- In SCIDIVE, cross protocol detection enabled through
 - Maintaining multiple trails for different sessions of different protocols
 - An event can be generated across multiple trails
 - A rule can be framed in terms of each of these events
Important Abstraction #2: Stateful Detection

- SCIDIVE can build *relevant* state in a session and across sessions and use the state in matching for possible attacks
- Suitable for VoIP systems since components maintain considerable amount of system state
 - Client side maintains state about active connections
 - Server side maintains state relevant to billing
- In SCIDIVE stateful detection is enabled through
 - Structuring and maintaining Footprints belonging to a session in a single trail
 - Thus, state transitions of each session can be tracked

End-point based Implementation

- SCIDIVE-enabled-IDS engine sits on/close to the end-point in our implementation
- IDS engines can be deployed at multiple points — e.g., at both clients and the SIP Proxy and alert correlation done [Wu-ACSAC03]
Testbed - Details

- **Protocol**: Based on the trend of VoIP system development, we focus on SIP and RTP
- **Proxy**: Sip Express Router from www.iptel.org
- **Clients**:
 - Kphone from www.kde.org
 - Windows Messenger from Microsoft
 - X-Lite from www.xlite.com
- **Attacks created**
 - BYE attack: a signaling based DoS attack
 - RE-INVITE attack: a signaling based Call Hijacking attack
 - RTP attack: a media stream based DoS attack
 - Fake Instant Messaging: a signaling based identity attack
Attack Scenario #1: BYE Attack

- Goal of attack: Attacker prematurely tears down B’s session with A by sending A a BYE message masquerading as B
- Detection method: RTP flow from B should stop before A sees the BYE message
- Cross protocol since RTP and SIP trails are used
- Stateful since monitoring of SIP session to determine when torn down

Attack Scenario #2: RTP Attack

- Goal of attack: Garbage header and payload injected into RTP packets
- Depending on implementation of the client, it may crash or experience degraded voice quality
- Detection method: Sanity check the IP address and sequence number of successive RTP packets
- Cross protocol since IP and RTP Footprints are used
- Stateful since sequence of RTP Footprints is monitored
Summary

• Voice over IP systems are going to be a part of our lives
• Malicious attacks of different kinds, some traditional but many new kinds, will come with the territory
• Current IDSs do not satisfactorily fit VoIP systems
• We proposed an architecture called SCIDIVE for intrusion detection in VoIP systems
• The architecture introduced two abstractions
 – Cross protocol detection
 – Stateful detection
• The architecture was instantiated in an implementation with real-world heterogeneous clients and servers
• Different kinds of attacks were injected and the detection methodology of SCIDIVE demonstrated

Future Work

• Distributed IDS: Collaborative IDS engines deployed at endpoints, gateways and network elements
 – Potential to detect a broader set of attacks
 – Potentially lower false positives
• Build taxonomy of VoIP attacks. Create SCIDIVE rules based on the taxonomy to enable detection of unknown attacks