# ECE 295: Lecture 04 Regression

Spring 2018

Prof Stanley Chan

School of Electrical and Computer Engineering Purdue University



#### Data Fitting

You give me data, I find the trend.



#### Data Fitting

Once I find the trend, I can

- Predict values where I previously did not measure
- Extrapolate outside the range



#### **Problem Formulation**

First, we need a **model!** Let's start with this:

$$y_n = ax_n + b + e_n, \qquad n = 1, \dots, N$$

This is a linear equation.



#### What is the error?

- $y_n = \text{true measured value}$
- $\rightarrow$   $ax_n + b =$ estimated value
- $e_n$  measures the difference  $y_n (ax_n + b)$



#### What is "best"?

We need solve this **optimization** problem:

$$(\widehat{a},\widehat{b}) = \underset{(a,b)}{\operatorname{arg\,min}} \sum_{n=1}^{N} (y_n - (ax_n + b))^2.$$

- argmin = find the values of the variables that can minimize the function.
- $\sum_{n=1}^{N} (y_n (ax_n + b))^2$ : sum of all the errors
- ▶ You don't have to choose  $(\cdot)^2$ . You can use  $|\cdot|$ , or max $(\cdot)$  or whatever.
- $(\cdot)^2$  is just easier.
- How to solve this optimization?
- ► Take derivative, set it to zero.

#### Main Result

#### **Theorem**

The solution of the problem

$$(\widehat{a}, \widehat{b}) = \underset{(a,b)}{\operatorname{arg\,min}} \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

is the solution to the following system of linear equations

$$\begin{bmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & n \end{bmatrix} \begin{bmatrix} \widehat{a} \\ \widehat{b} \end{bmatrix} = \begin{bmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{bmatrix}$$
(1)

#### Solution

First, let us define

$$\varphi(a,b)=\sum_{n=1}^N(y_n-(ax_n+b))^2.$$

Taking derivatives on both sides with respect to a and b yields

$$\frac{\partial}{\partial a}\varphi(a,b) = 2\left(\sum_{n=1}^{N} x_n y_n - a \sum_{n=1}^{N} x_n^2 - b \sum_{n=1}^{N} x_n\right) = 0$$
$$\frac{\partial}{\partial b}\varphi(a,b) = 2\left(\sum_{n=1}^{N} y_n - a \sum_{n=1}^{N} x_n - nb\right) = 0$$

Rearranging the terms, this is equivalent to

$$\begin{bmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{bmatrix}$$

## Matrix-Vector Representation

This is a  $2 \times 2$  system of linear equations

$$\begin{bmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{bmatrix}$$

This is equivalent to

$$\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{X}^{T}\boldsymbol{y},\tag{2}$$

where

$$\mathbf{X} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} a \\ b \end{bmatrix},$$
 (3)

## Solution in Matrix-Vector Representation

▶ The equation

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y} \tag{4}$$

is called the **normal equation** of a linear system  $Xx = \beta$ .

▶ To determine the vector  $\beta$ , we take inverse (assuming  $X^TX$  is invertible):

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \tag{5}$$

- ► The matrix X<sup>T</sup>X is invertible when there is no dependent columns of X<sup>T</sup>X, which in turn holds when there is no dependent columns of X.
- ▶ If the matrix **X**<sup>T</sup>**X** is close to non-invertible (i.e., having a very large condition number), then we can perturb the solution as

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$
 (6)

where  $\lambda > 0$  is a constant.

# Example 1: Quadratic Fitting

Problem: Find the linear least squares solution for

$$y_n = ax_n^2 + bx_n + c$$

Extension: This idea can be extended high order polynomials.

Solution:

$$\mathbf{X} = \begin{bmatrix} x_1^2 & x_1 & 1 \\ \vdots & \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} a \\ b \\ c \end{bmatrix},$$

The solution is

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

# Example 2: Auto-Regressive Model

**Problem**: Find the linear least squares solution for

$$y_n = ay_{n-1} + by_{n-2}$$

**Application**: Stock-prediction: We have sample  $y_{n-1}$  and  $y_{n-2}$ , we want to predict  $y_n$ .

Solution:

$$\mathbf{X} = \begin{bmatrix} y_2 & y_1 \\ y_3 & y_2 \\ \vdots & \vdots \\ y_{N-1} & y_{N-2} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_3 \\ y_4 \\ \vdots \\ y_N \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{b} \end{bmatrix},$$

The solution is

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

#### Interpreting the Results

| city | funding | hs | not-hs | college | college4 | crime rate |
|------|---------|----|--------|---------|----------|------------|
| 1    | 40      | 74 | 11     | 31      | 20       | 478        |
| 2    | 32      | 72 | 11     | 43      | 18       | 494        |
| 3    | 57      | 70 | 18     | 16      | 16       | 643        |
| 4    | 31      | 71 | 11     | 25      | 19       | 341        |
| 5    | 67      | 72 | 9      | 29      | 24       | 773        |
| :    | :       | :  | :      | :       |          |            |
| 50   | 66      | 67 | 26     | 18      | 16       | 940        |

 $\verb|https://web.stanford.edu/~hastie/StatLearnSparsity/data.html|$ 

$$\boldsymbol{X} = \begin{bmatrix} 1 & 40 & 74 & 11 & 31 & 20 \\ 1 & 32 & 72 & 11 & 43 & 18 \\ & & \vdots & & & \\ 1 & 66 & 67 & 26 & 18 & 16 \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} 478 \\ 494 \\ \vdots \\ 940 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_5 \end{bmatrix},$$

#### Interpreting the Results

Run regression analysis (with  $\lambda = 1000$ ). Here is the result:

- $\beta_1 = 10.9934$ : police funding
- $\beta_2 = 1.1451$ : high school
- $\beta_3 = 10.1812$ : no high school
- $\beta_4 = 2.7386$ : college
- $\beta_5 = -0.7781$ : college at least 4 years

#### That means:

- Crime rate is more influenced by police funding
- and number of residents without high school
- Other factors are not quite relevant

The term  $\beta_0$  is known as the bias, or the DC term in circuit terminology.

## Solution Trajectory

Recall that  $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$  is equivalent to

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2.$$

We can show that  $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$  is equivalent to

$$\widehat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2. \tag{8}$$

Why?

$$\frac{d}{d\beta}(\cdot) = 0 \Rightarrow \mathbf{X}^{T}(\mathbf{X}\beta - \mathbf{y}) + \lambda\beta = 0$$
$$\Rightarrow (\mathbf{X}^{T}\mathbf{X} + \lambda\mathbf{I})\beta = \mathbf{X}^{T}\mathbf{y}.$$

Now, consider  $\widehat{\beta}$  as a function of  $\lambda$ :

$$\widehat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$$

# Solution Trajectory



## Beyond Least Squares

It is possible to use other forms of optimization, e.g.,

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|_1, \tag{9}$$

where  $\|\cdot\|_1$  is called the  $\ell_1$ -norm:

$$\|\boldsymbol{u}\|_1 = \sum_{i=1}^n |u_i|.$$

This is called the Least Absolute Shrinkage and Selection Operation (LASSO).

- Solving the LASSO problem is beyond the scope of this course. (See ECE 695 Sparse Modeling and Algorithms)
- It requires convex optimization algorithms.
- LASSO makes  $\widehat{\beta}$  sparse.
- **Essential** if X is short and fat.  $(X^TX)$  is not invertible.)