ECE 295: Lecture 04 Regression

Spring 2018
Prof Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Data Fitting

- You give me data, I find the trend.

Data Fitting

Once I find the trend, I can

- Predict values where I previously did not measure
- Extrapolate outside the range

Problem Formulation

First, we need a mode!
Let's start with this:

$$
y_{n}=a x_{n}+b+e_{n}, \quad n=1, \ldots, N
$$

This is a linear equation.

What is the error?

- $y_{n}=$ true measured value
- $a x_{n}+b=$ estimated value
- e_{n} measures the difference $y_{n}-\left(a x_{n}+b\right)$

What is "best"?

We need solve this optimization problem:

$$
(\widehat{a}, \widehat{b})=\underset{(a, b)}{\arg \min } \sum_{n=1}^{N}\left(y_{n}-\left(a x_{n}+b\right)\right)^{2}
$$

- $\operatorname{argmin}=$ find the values of the variables that can minimize the function.
- $\sum_{n=1}^{N}\left(y_{n}-\left(a x_{n}+b\right)\right)^{2}$: sum of all the errors
- You don't have to choose $(\cdot)^{2}$. You can use $|\cdot|$, or $\max (\cdot)$ or whatever.
- $(\cdot)^{2}$ is just easier.
- How to solve this optimization?
- Take derivative, set it to zero.

Main Result

Theorem

The solution of the problem

$$
(\widehat{a}, \widehat{b})=\underset{(a, b)}{\arg \min } \sum_{n=1}^{N}\left(y_{n}-\left(a x_{n}+b\right)\right)^{2}
$$

is the solution to the following system of linear equations

$$
\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n}^{2} & \sum_{n=1}^{N} x_{n} \tag{1}\\
\sum_{n=1}^{N} x_{n} & n
\end{array}\right]\left[\begin{array}{l}
\hat{a} \\
\hat{b}
\end{array}\right]=\left[\begin{array}{c}
\sum_{n=1}^{N} x_{n} y_{n} \\
\sum_{n=1}^{N} y_{n}
\end{array}\right]
$$

Solution

First, let us define

$$
\varphi(a, b)=\sum_{n=1}^{N}\left(y_{n}-\left(a x_{n}+b\right)\right)^{2}
$$

Taking derivatives on both sides with respect to a and b yields

$$
\begin{aligned}
\frac{\partial}{\partial a} \varphi(a, b) & =2\left(\sum_{n=1}^{N} x_{n} y_{n}-a \sum_{n=1}^{N} x_{n}^{2}-b \sum_{n=1}^{N} x_{n}\right)=0 \\
\frac{\partial}{\partial b} \varphi(a, b) & =2\left(\sum_{n=1}^{N} y_{n}-a \sum_{n=1}^{N} x_{n}-n b\right)=0
\end{aligned}
$$

Rearranging the terms, this is equivalent to

$$
\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n}^{2} & \sum_{n=1}^{N} x_{n} \\
\sum_{n=1}^{N} x_{n} & n
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{n=1}^{N} x_{n} y_{n} \\
\sum_{n=1}^{N} y_{n}
\end{array}\right]
$$

Matrix-Vector Representation

This is a 2×2 system of linear equations

$$
\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n}^{2} & \sum_{n=1}^{N} x_{n} \\
\sum_{n=1}^{N} x_{n} & n
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{n=1}^{N} x_{n} y_{n} \\
\sum_{n=1}^{N} y_{n}
\end{array}\right]
$$

This is equivalent to

$$
\begin{equation*}
\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{T} \boldsymbol{y} \tag{2}
\end{equation*}
$$

where

$$
\boldsymbol{X}=\left[\begin{array}{cc}
x_{1} & 1 \tag{3}\\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Solution in Matrix-Vector Representation

- The equation

$$
\begin{equation*}
\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{T} \boldsymbol{y} \tag{4}
\end{equation*}
$$

is called the normal equation of a linear system $\boldsymbol{X} \boldsymbol{x}=\boldsymbol{\beta}$.

- To determine the vector $\boldsymbol{\beta}$, we take inverse (assuming $\boldsymbol{X}^{T} \boldsymbol{X}$ is invertible):

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \tag{5}
\end{equation*}
$$

- The matrix $\boldsymbol{X}^{T} \boldsymbol{X}$ is invertible when there is no dependent columns of $\boldsymbol{X}^{T} \boldsymbol{X}$, which in turn holds when there is no dependent columns of \boldsymbol{X}.
- If the matrix $\boldsymbol{X}^{T} \boldsymbol{X}$ is close to non-invertible (i.e., having a very large condition number), then we can perturb the solution as

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \tag{6}
\end{equation*}
$$

where $\lambda>0$ is a constant.

Example 1: Quadratic Fitting

Problem: Find the linear least squares solution for

$$
y_{n}=a x_{n}^{2}+b x_{n}+c
$$

Extension: This idea can be extended high order polynomials.
Solution:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
\vdots & \vdots & \vdots \\
x_{N}^{2} & x_{N} & 1
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

The solution is

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

Example 2: Auto-Regressive Model

Problem: Find the linear least squares solution for

$$
y_{n}=a y_{n-1}+b y_{n-2}
$$

Application: Stock-prediction: We have sample y_{n-1} and y_{n-2}, we want to predict y_{n}.

Solution:

$$
\boldsymbol{X}=\left[\begin{array}{cc}
y_{2} & y_{1} \\
y_{3} & y_{2} \\
\vdots & \vdots \\
y_{N-1} & y_{N-2}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{3} \\
y_{4} \\
\vdots \\
y_{N}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{l}
a \\
b
\end{array}\right],
$$

The solution is

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

Interpreting the Results

city	funding	hs	not-hs	college	college4	crime rate
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
\vdots	\vdots	\vdots	\vdots	\vdots		
50	66	67	26	18	16	940

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html

$$
\boldsymbol{X}=\left[\begin{array}{cccccc}
1 & 40 & 74 & 11 & 31 & 20 \\
1 & 32 & 72 & 11 & 43 & 18 \\
& & \vdots & & & \\
1 & 66 & 67 & 26 & 18 & 16
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
478 \\
494 \\
\vdots \\
940
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{5}
\end{array}\right]
$$

Interpreting the Results

Run regression analysis (with $\lambda=1000$). Here is the result:

- $\beta_{1}=10.9934$: police funding
- $\beta_{2}=1.1451$: high school
- $\beta_{3}=10.1812$: no high school
- $\beta_{4}=2.7386$: college
- $\beta_{5}=-0.7781$: college at least 4 years

That means:

- Crime rate is more influenced by police funding
- and number of residents without high school
- Other factors are not quite relevant

The term β_{0} is known as the bias, or the DC term in circuit terminology.

Solution Trajectory

Recall that $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$ is equivalent to

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min }\|\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{y}\|^{2} .
$$

We can show that $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ is equivalent to

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min }\|\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{y}\|^{2}+\lambda\|\boldsymbol{\beta}\|^{2} . \tag{8}
\end{equation*}
$$

Why?

$$
\begin{aligned}
\frac{d}{d \boldsymbol{\beta}}(\cdot)=0 & \Rightarrow \boldsymbol{X}^{T}(\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{y})+\lambda \boldsymbol{\beta}=0 \\
& \Rightarrow\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}\right) \boldsymbol{\beta}=\boldsymbol{X}^{T} \boldsymbol{y} .
\end{aligned}
$$

Now, consider $\widehat{\boldsymbol{\beta}}$ as a function of λ :

$$
\widehat{\boldsymbol{\beta}}_{\lambda}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

Solution Trajectory

Beyond Least Squares

It is possible to use other forms of optimization, e.g.,

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min }\|\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{y}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}, \tag{9}
\end{equation*}
$$

where $\|\cdot\|_{1}$ is called the ℓ_{1}-norm:

$$
\|\boldsymbol{u}\|_{1}=\sum_{i=1}^{n}\left|u_{i}\right| .
$$

This is called the Least Absolute Shrinkage and Selection Operation (LASSO).

- Solving the LASSO problem is beyond the scope of this course. (See ECE 695 Sparse Modeling and Algorithms)
- It requires convex optimization algorithms.
- LASSO makes $\widehat{\boldsymbol{\beta}}$ sparse.
- Essential if \boldsymbol{X} is short and fat. ($\boldsymbol{X}^{\top} \boldsymbol{X}$ is not invertible.)

