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 A B S T R A C T

This paper presents the Dual Neural Network (DuNN) method, a physics-driven numerical 
method designed to solve elliptic partial differential equations and systems using deep neural 
network functions and a dual formulation. The underlying elliptic problem is formulated 
as an optimization of the complementary energy functional in terms of the dual variable, 
where the Dirichlet boundary condition is weakly enforced in the formulation. To accurately 
evaluate the complementary energy functional, we employ a novel discrete divergence operator. 
This discrete operator preserves the underlying physics and naturally enforces the Neumann 
boundary condition without penalization. For problems without reaction term, we propose 
an outer-inner iterative procedure that gradually enforces the equilibrium equation through 
a pseudo-time approach.

1. Introduction

Neural networks (NNs) have demonstrated remarkable performance in computer vision, natural language processing, and various 
other artificial intelligence tasks. Recently, their application to solving partial differential equations (PDEs) has gained significant 
traction [1–8]. As a new class of approximating functions, NNs exhibit exceptional approximation capabilities, surpassing those 
of continuous and discontinuous piecewise polynomials on fixed meshes (see, e.g., [9–11]). In particular, a NN function can 
automatically adapt to a target function through a ‘‘moving mesh’’ behavior, making it one of the most promising candidates among 
all known functional classes for addressing various challenging problems in scientific computing.

Since NN functions are nonlinear with respect to their parameters, the discretization of a PDE using NN can be formulated 
as an optimization problem through either natural minimization or manufactured least-squares (LS) principles. Consequently, 
existing NN-based numerical methods for solving PDEs fall into two main categories: (1) energy-based methods [1,8,12,13], which 
utilize the principle of natural energy minimization, and (2) deep LS methods employing various types of manufactured least 
squares [2,3,5,7,14]. Most elliptic problems adhere to the basic minimization principle in the form of an energy functional. Therefore, 
when using NN as approximating functions, it is natural to discretize the underlying problem based on the energy formulation.

For applications in continuum mechanics, the dual variable, such as stress in elasticity or flux in porous media flow, often 
stands as the primary physical quantity of interest. While it can be derived from methods based on the primal variable, such as 
displacement or pressure, through differentiation, this approach comes at the cost of degrading the order of the approximation for 
the dual variables. In this paper, we propose dual neural network (DuNN), a numerical method that solves elliptic partial differential 
equations and systems using NNs as the approximating functions for the dual variable, and the complementary energy functional 
as the loss function. Compared to existing physics-driven NN-based approaches, DuNN offers the following advantages:
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(1) In many continuum mechanics problems, accurately computing stress/flux is often more important than displacement/pressure. 
DuNN achieves this directly without differentiation, as stress/flux is the sole independent variable in the complementary energy 
functional.

(2) DuNN is applicable to a wider range of problems, including those with or without discontinuities or singularities. Additionally, 
DuNN is suitable for incompressible materials, which are not adequately addressed by standard energy-based methods.

(3) DuNN enforces both Dirichlet and Neumann boundary conditions naturally, eliminating the need for any penalty term in the 
loss functional. This results in fewer hyperparameters to adjust.

The remainder of the paper is structured as follows. Section 2 reformulates an elliptic PDE into a minimization problem using a 
dual formulation. Section 3 presents the DuNN method in detail, and we show our numerical studies in Section 4 and conclude the 
paper in Section 5.

2. Dual formulation of elliptic partial differential equations

Let 𝛺 be a bounded, open, connected subset of R𝑑 (𝑑 = 2 or 3) with a Lipschitz continuous boundary 𝜕𝛺. Let 𝒏 = (𝑛1,… , 𝑛𝑑 )
be the outward unit vector normal to the boundary. Partition the boundary 𝜕𝛺 of the domain 𝛺 into two open subsets 𝛤𝐷 and 𝛤𝑁
such that 𝜕𝛺 = 𝛤𝐷 ∪ 𝛤𝑁  and 𝛤𝐷 ∩ 𝛤𝑁 = ∅. For simplicity, we assume that 𝛤𝐷 is not empty (i.e., mes(𝛤𝐷) ≠ 0). Otherwise, solutions 
of partial differential equations considered in this paper are unique up to an additive constant or rigid motions.

We will use the standard notation and definitions for the Sobolev space 𝑯𝑠(𝛺)𝑑 and 𝑯𝑠(𝛤 ) for a subset 𝛤  of the boundary of 
the domain 𝛺 ∈ R𝑑 . The standard associated inner product and norms are denoted by (⋅, ⋅)𝑠,𝛺,𝑑 and (⋅, ⋅)𝑠,𝛤 ,𝑑 and by ‖ ⋅ ‖𝑠,𝛺,𝑑 and 
‖ ⋅ ‖𝑠,𝛤 ,𝑑 , respectively. When there is no ambiguity, the subscript 𝛺 and 𝑑 in the designation of norms will be suppressed. When 
𝑠 = 0, 𝑯0(𝛺)𝑑 coincides with 𝑳2(𝛺)𝑑 . In this case, the inner product and norm will be denoted by (⋅, ⋅) and ‖ ⋅ ‖, respectively.

2.1. Second-order elliptic problems

Consider the following self-adjoint second-order scalar elliptic partial differential equation: 
⎧

⎪

⎨

⎪

⎩

−div (𝐴∇ 𝑢) + 𝑐 𝑢 = 𝑓, in 𝛺,
𝑢 = 𝑔

𝐷
, on 𝛤𝐷,

𝐧 ⋅ 𝐴∇ 𝑢 = 𝑔
𝑁
, on 𝛤𝑁 ,

(1)

where div is the divergence operator; 𝑓 ∈ 𝐿2(𝛺), 𝑐 ∈ 𝐿∞(𝛺), 𝑔
𝐷
∈ 𝐻1∕2(𝛤𝐷), 𝑔𝑁 ∈ 𝐻−1∕2(𝛤𝑁 ); 𝐴(𝒙) is a 𝑑×𝑑 symmetric matrix-valued 

function in 𝐿2(𝛺)𝑑×𝑑 ; and 𝐧 is the outward unit vector normal to the boundary. We assume that 𝐴 is uniformly positive definite and 
that 𝑐(𝒙) ≥ 0 for almost all 𝒙 ∈ 𝛺.

Introducing the dual (flux) variable 𝝈 = −𝐴∇𝑢, then the dual problem is to maximize the complementary energy functional (see, 
e.g., [15,16]). Specifically, denote the collection of square-integrable vector fields whose divergence are also square-integrable by

𝐻(div;𝛺) = {𝝉 ∈ 𝐿2(𝛺)𝑑 ∶ div 𝝉 ∈ 𝐿2(𝛺)},

which is a Hilbert space equipped with norm

‖𝝉‖div,𝛺 =
(

‖𝝉‖20,𝛺 + ‖div 𝝉‖20,𝛺
)1∕2

.

Denote the subset of 𝐻(div;𝛺) satisfying the Neumann boundary condition by
𝐻𝑔,𝑁 (div;𝛺) = 𝐻(div;𝛺) ∩ {𝐧 ⋅ 𝝈|𝛤𝑁 = 𝑔

𝑁
}

and the negative complementary functional by 

𝐽1(𝝉; 𝛾) =
1
2

{

‖

‖

‖

𝐴−1∕2𝝉‖‖
‖

2

0,𝛺
+ ‖

‖

‖

𝛾1∕2 (div 𝝉 − 𝑓 )‖‖
‖

2

0,𝛺

}

+ (𝑔
𝐷
, 𝝉 ⋅𝐧)0,𝛤𝐷 , (2)

where 𝛾 is given by 

𝛾 =
{

𝑐−1(𝐱), if 𝑐 > 0,
0, if 𝑐 = 0.

(3)

Then the dual problem is to find 𝝈 ∈ Σ𝑔 such that 

𝐽1(𝝈; 𝛾) = min
𝝉∈Σ𝑔

𝐽1(𝝉; 𝛾), (4)

where Σ𝑔 is given by 

Σ𝑔 =
{

𝐻𝑔,𝑁 (div;𝛺), if 𝑐 > 0,
{𝝉 ∈ 𝐻𝑔,𝑁 (div;𝛺) ∶ div 𝝉 = 𝑓}, if 𝑐 = 0.

(5)

The following proposition is well-known (see, e.g., [17]).

Proposition 1.  Problem (4) has a unique solution 𝝈 ∈ Σ𝑔 . Moreover, the solution 𝝈 satisfies the following a priori estimate:

‖𝝈‖ ≤ 𝐶
(

‖𝑓‖ + ‖𝑔 ‖ + ‖𝑔 ‖

)

.
div,𝛺 0,𝛺 𝐷 1∕2,𝛤𝐷 𝑁 −1∕2,𝛤𝑁

2 
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2.2. Linear elasticity and Stokes equations

In linear elasticity problems, it is often more useful to compute accurately stress rather than displacement. This can be achieved 
by using the dual formulation that maximizes the complementary energy functional for the stress (dual) variable 𝝈. This section 
describes the dual formulation for both linear elasticity and Stokes equations.

To this end, denote by 𝒖 and 𝝈 the displacement/velocity field and the stress tensor, respectively. Then the stress–displacement/
velocity formulation (see, e.g., [17–19]) has the form 

{

−𝐝𝐢𝐯𝝈 + 𝑐 𝒖 = 𝒇 ,  in 𝛺,
𝜆 𝝈 − 𝝐(𝒖) = 𝟎,  in 𝛺 (6)

with boundary conditions
𝒖||
|𝛤𝐷

= 𝒈
𝐷

and (𝝈𝒏)||
|𝛤𝑁

= 𝒈
𝑁
,

where 𝐝𝐢𝐯 is the divergence operator; 𝑐 ∈ 𝐿∞(𝛺) is a given scalar-valued function; 𝒇 ∈ 𝑳2(𝛺)𝑑 , 𝒈
𝐷

∈ 𝑯1∕2(𝛤𝐷)𝑑 , and 𝒈𝑁
∈

𝑯−1∕2(𝛤𝑁 )𝑑 are given vector-valued functions defined on 𝛺, 𝛤𝐷, and 𝛤𝑁 , representing body force, boundary displacement/velocity, 
and boundary traction force, respectively; 𝝐(𝒖) = 1

2

(

∇𝒖 + (∇𝒖)𝑇
) is the strain tensor; and 𝜆 is the compliance tensor of fourth order

𝜆 𝝉 = 1
2𝜇

(

𝝉 − 𝜆
2𝜇 + 𝑑𝜆

(tr𝝉) 𝜹𝑑×𝑑
)

with tr𝝉 =
𝑑
∑

𝑖=1
𝜏𝑖𝑖.

Here, 𝜹𝑑×𝑑 is the 𝑑-dimensional identity tensor; 𝜇 and 𝜆 are the material Lamé constants. The material is said to be nearly 
incompressible if 𝜆 ≫ 1 or incompressible if 𝜆 = ∞. It is easy to see that

∞ 𝝉 = 1
2𝜇

(

𝝉 − 1
𝑑
(tr𝝉) 𝜹𝑑×𝑑

)

.

Hence the formulation in (6) is valid for both compressible and incompressible materials.
Denote the collection of all symmetric stress whose divergence is square integrable by

𝑯𝑠(div;𝛺) =
{

𝝉 ∈ 𝑳2(𝛺)𝑑×𝑑 ∶ 𝝉 𝑡 = 𝝉 , 𝐝𝐢𝐯 𝝉 ∈ 𝑳2(𝛺)𝑑
}

and its subset satisfying the Neumann boundary condition by

𝑯𝑠
𝑔,𝑁 (div;𝛺) =

{

𝝉 ∈ 𝑯𝑠(div;𝛺) ∶ 𝝉𝒏||
|𝛤𝑁

= 𝒈
𝑁

}

.

The negative complementary energy functional is given by 

𝐽2(𝝉; 𝛾) =
1
2

{

(

𝜆 𝝉 , 𝝉
)

0,𝛺 + ‖𝛾 (𝐝𝐢𝐯 𝝉 − 𝒇 )‖20,𝛺
}

− ∫𝛤𝐷
𝒈
𝐷
⋅ (𝝉𝐧) 𝑑𝑠, (7)

where the 𝛾 is given in (3) and
(

𝜆 𝝉 , 𝝉
)

0,𝛺 = 1
2𝜇 ∫𝛺

|

|

∞𝝉|
|

2 𝑑𝐱 + 1
𝑑(2𝜇 + 𝑑𝜆) ∫𝛺

|tr𝝉|2 𝑑𝐱.

Then the dual formulation of problem (6) is to seek 𝝈 ∈ Σ𝑔 such that 

𝐽2(𝝈; 𝛾) = min
𝝉∈Σ𝑔

𝐽2(𝝉; 𝛾), (8)

where Σ𝑔 is given by 

Σ𝑔 =

{

𝑯𝑠
𝑔,𝑁 (div;𝛺), if 𝑐 > 0,

{𝝉 ∈ 𝑯𝑠
𝑔,𝑁 (div;𝛺) ∶ 𝐝𝐢𝐯 𝝉 + 𝒇 = 𝟎}, if 𝑐 = 0.

(9)

The following existence, uniqueness, and stability are also well-known [17].

Proposition 2.  Problem (8) has a unique solution 𝝈 ∈ Σ𝑔 . Moreover, there exists a positive constant such that

‖𝝈‖div,𝛺 ≤ 𝐶
(

‖𝒇‖0,𝛺 + ‖𝒈
𝐷
‖1∕2,𝛤𝐷

+ ‖𝒈
𝑁
‖−1∕2,𝛤𝑁

)

.

2.3. Abstract setting

For convenience, this section uses an abstract setting to unify the dual formulations in (4) and (8). To this end, for any 𝝈, 𝝉 ∈ Σ𝑔 , 
introduce the following bilinear and linear forms

𝑎(𝝈, 𝝉; 𝛾) =
{

(𝐴−1𝝈, 𝝉)0,𝛺 + (𝛾 div𝝈,div 𝝉)0,𝛺 , problem (1),

(𝜆 𝝈, 𝝉)0,𝛺 + (𝛾 𝐝𝐢𝐯𝝈,𝐝𝐢𝐯 𝝉)0,𝛺 , problem (6)

3 
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Fig. 1. DuNN architecture. A fully connected 𝐿-layer network is employed to generate the map from an arbitrary spatial point 𝒙 in 𝛺 to its flux 𝝈(𝒙), quadrature 
based numerical integration and discrete divergence operator are used to approximate the discrete complementary energy functional 𝐽


(𝝈; 𝛾) as the DuNN loss.

and

𝑏(𝝉; 𝑓, 𝛾) =

{

(𝛾 𝑓 ,div 𝝉)0,𝛺 − ∫𝛤𝐷 𝑔
𝐷
𝝉 ⋅𝐧 𝑑𝑠, problem (1),

(𝛾 𝒇 ,𝐝𝐢𝐯 𝝉)0,𝛺 + ∫𝛤𝐷 𝒈
𝐷
⋅ (𝝉𝐧) 𝑑𝑠, problem (6)

respectively, where Σ𝑔 is a subset of 𝐻(div;𝛺)𝑑 satisfying constraints like essential boundary condition, symmetry, and/or the 
equilibrium equation (see (5) and (9)). Define the negative complementary functional by 

𝐽 (𝝉; 𝛾) = 1
2
𝑎(𝝉 , 𝝉; 𝛾) − 𝑏(𝝉; 𝑓, 𝛾) + 1

2
𝑐2(𝑓 ; 𝛾), (10)

where 𝑐(𝑓 ; 𝛾) = ‖𝛾1∕2𝑓‖0,𝛺 or 𝑐(𝑓 ; 𝛾) = ‖𝛾1∕2𝒇‖0,𝛺 for problems (1) or (6), respectively, is a constant. Then the dual formulation is 
to seek 𝝈 ∈ Σ𝑔 such that 

𝐽 (𝝈; 𝛾) = min
𝝉∈Σ𝑔

𝐽 (𝝉; 𝛾). (11)

Assume that there exists a positive 𝛾0 > 0 such that 𝛾(𝒙) ≥ 𝛾0. Then the solution 𝝈 ∈ Σ𝑔 of (11) satisfies 

𝑎(𝝈, 𝝉; 𝛾) = 𝑏(𝝉; 𝑓, 𝛾), ∀ 𝝉 ∈ Σ0. (12)

3. Dual neural network (DuNN) method

In this section, we describe the dual neural network (DuNN) method. Simply, the DuNN method is a discretization method for 
solving a partial differential equation or system based on the dual formulation of the underlying problem. DuNN includes a standard 
fully connected DNN as the class of approximating functions and the negative complementary energy functional 𝐽


(𝝈; 𝛾) as the loss 

functional estimated by numerical integration and differentiation (discrete divergence operator). The general structure of the DuNN 
is illustrated in Fig.  1.

3.1. Deep neural network

For 𝑗 = 1,… , 𝑙 − 1, let 𝑁 (𝑗) ∶ R𝑛𝑗−1 → R𝑛𝑗  be the vector-valued ridge function of the form 
𝑁 (𝑗)(𝐱(𝑗−1)) = 𝜁 (𝝎(𝑗)𝐱(𝑗−1) − 𝐛(𝑗)) for 𝐱(𝑗−1) ∈ R𝑛𝑗−1 , (13)

where 𝝎(𝑗) ∈ R𝑛𝑗×𝑛𝑗−1  and 𝐛(𝑗) ∈ R𝑛𝑗  are the respective weights and biases to be determined; 𝐱(0) = 𝐱; and 𝜁 (𝑡) is the activation 
function and its application to a vector is defined component-wise. There are many choices of activation functions such as ReLU, 
logistic, Gaussian, hyperbolic tangent, and sigmoids (see, e.g. [20]).

Let 𝝎(𝑙) ∈ R𝑑𝑜×𝑛𝑙−1  and 𝒃(𝑙) ∈ R𝑑𝑜  be the output weights and bias, respectively, where 𝑑𝑜 = 𝑑 for problem (1) and 𝑑𝑜 = 3(𝑑 −1) for 
problem (6). Then a 𝑙-layer neural network generates the following set of vector-valued functions in R𝑑𝑜

𝑀 = 𝑀 (𝜁 ) = 𝑀 (𝜁, 𝑙)

=
{

𝝎𝑙(𝑁 (𝑙−1)◦⋯◦𝑁 (1)(𝐱)
)

− 𝒃𝑙 ∶ 𝝎(𝑗)∈ R𝑛𝑗×𝑛𝑗−1 ,𝐛(𝑗) ∈ R𝑛𝑗  for all 𝑗} , (14)

where the symbol ◦ denotes the composition of functions.
This class of functions is rich enough to accurately approximate any continuous function defined on a compact set 𝛺 ∈ R𝑑

(see [21,22] for the universal approximation property). However, this is not the main reason why NNs are so effective in practice. 
One way to understand its approximation power is from the point view of polynomial spline functions with free knots [23]. The 
set 𝑀 (𝜁, 2) may be regarded as a beautiful extension of free knot splines from one dimensional scalar-valued function to multi-
dimensional vector-valued function. It has been shown that the approximation of functions by splines can generally be dramatically 
improved if the knots are free.
4 
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3.2. DuNN method

The DuNN method is a discretization method for approximating the solution of partial differential equations or systems based 
on the dual formulation and using neural networks as approximating functions. The resulting discrete, non-convex minimization 
problem of the DuNN method is sophisticated and computationally intensive and can be numerically solved using existing iterative 
methods such as ADAM, BFGS, etc.

Notice that 
𝑀
 is a subset of 𝑪0(𝛺)𝑑𝑜  due to the continuity of the activation function 𝜁 (𝑡). Hence, 

𝑀
(𝜁 ) ∩ Σ𝑔 is the set of 

admissible functions for the minimization problem in (11). The DuNN method is then to seek an approximation by minimizing the 
negative complimentary functional in the set of neural network functions 

𝑀
(𝜁 ) ∩Σ𝑔 . To design a viable DuNN method, we need 

to address the following three numerical issues: (1) numerical integration, (2) discrete divergence operator, and (3) the constraints 
(Neumann boundary conditions and symmetry of the stress for the PDE system) on Σ𝑔 .

First, unlike finite element methods, numerical integration for NN-based methods is a nontrivial matter. The difficulty stems from 
the fact that the NN approximation function is unknown, and hence so is its physical partition [14,24]. To overcome this obstacle, 
we recently introduced an adaptive quadrature method in [8] to achieve the prescribe accuracy with fewer integration points. In 
this paper, we consider only the composite midpoint quadrature rule on a fixed partition for simplicity of presentation and refer 
readers to [8] for accurate and efficient numerical integration. To this end, partition the domain 𝛺 by a collection of subdomains

 = {𝐾 ∶ 𝐾 is an open subdomain of 𝛺}

such that
𝛺̄ = ∪𝐾∈ 𝐾̄ and 𝐾 ∩ 𝑇 = ∅, ∀ 𝐾, 𝑇 ∈  .

That is, the union of all subdomains of   equals to the whole domain 𝛺, and any two distinct subdomains of   have no intersection. 
The resulting partitions of the boundary 𝛤

𝐷
 and 𝛤

𝑁
 are


𝐷
= {𝐸 = 𝜕𝐾 ∩ 𝛤

𝐷
∶ 𝐾 ∈  } and 

𝑁
= {𝐸 = 𝜕𝐾 ∩ 𝛤

𝑁
∶ 𝐾 ∈  },

respectively. Denote by 𝒙
𝐾
 and |𝐾| the respective centroid and volume of element 𝐾 ∈  , and by 𝐱

𝐸
 and |𝐸| the respective centroid 

and area of boundary element 𝐸 ∈ 
𝑆
 for 𝑆 = 𝐷 and 𝑁 . Then 

∫𝛺
𝑣(𝒙) 𝑑𝒙 ≈

∑

𝐾∈
𝑣(𝒙𝐾 )|𝐾| and ∫𝛤𝑆

𝑣(𝒙) 𝑑𝑠 ≈
∑

𝐸∈𝑆

𝑣(𝒙𝐸 )|𝐸|. (15)

Second, numerical differentiation becomes a critical component for a viable DuNN method. This difficulty stems from the fact 
that the admissible solution set Σ𝑔 whose functions may not be continuous in tangential directions across some interfaces. Hence, 
the divergence differential operator cannot be approximated by standard finite difference scheme along coordinate directions 
or auto-differentiation. To circumvent this obstacle, we use a newly developed discrete divergence operator introduced in [25] 
to approximate the divergence operator. Below let us briefly define the discrete divergence operator denoted by 𝐝𝐢𝐯


𝝉 for any 

𝝉 ∈ Σ𝑔 = 𝑯𝑠
𝑔,𝑁 (div;𝛺), that may be defined for any 𝝉 ∈ Σ𝑔 = 𝐻𝑔,𝑁 (div;𝛺) in a similar fashion. The 𝐝𝐢𝐯


𝝉 is a piece-wise constant 

vector field and its restriction on each 𝐾 ∈   is an approximation to the average of 𝐝𝐢𝐯 𝝉, i.e., 

𝐝𝐢𝐯

𝝉||
|𝐾

≈ avg𝐾𝐝𝐢𝐯 𝝉 = 1
|𝐾|

(

∫𝜕𝐾⧵𝛤𝑁

𝝉𝐧 𝑑𝑆 + ∫𝜕𝐾∩𝛤𝑁

𝒈
𝑁
𝑑𝑆

)

, (16)

where 𝐧 is the outward unit vector normal to 𝜕𝐾, the boundary of 𝐾. Surface integrals in (16) may be approximated by either 
proper standard or adaptive numerical integration.

Third, the symmetry of Σ𝑔 = 𝑯𝑠
𝑔,𝑁 (div;𝛺) for problem (6) can be easily enforced strongly by setting 𝜎𝑖𝑗 = 𝜎𝑗𝑖 so that the stress 

has only 𝑑𝑜 = 3(𝑑−1) variables. The Neumann boundary condition in Σ𝑔 for both problems becomes an essential boundary condition 
in the dual formulation (11). One may penalize the complementary functional in (10) by adding either the 𝐻−1∕2 or a weighted 
𝐿2 norm of the residual of the Neumann boundary condition. This type of treatments has been discussed for the deep Ritz method 
(see, e.g., [8]). An attractive feature of the discrete divergence operator defined in (16) is that the Neumann boundary condition 
is already weakly enforced. Therefore, it is not necessary to enforce it by adding penalization terms. Adjusting the penalization 
coefficient is, in general, nontrieval, and therefore, using the discrete divergence operator simplifies the training process.

Now, for the simple composite midpoint quadrature rule, we are ready to define the discrete negative complementary functional 
as 

𝐽

(𝝉; 𝛾) = 1

2
𝑎

(𝝉 , 𝝉; 𝛾) − 𝑏


(𝝉; 𝑓, 𝛾) + 1

2
𝑐2

(𝑓 ; 𝛾), (17)

where 𝑐

(𝑓 ; 𝛾) =

∑

𝐾∈ |𝐾|

(

𝛾 𝑓 2)(𝐱
𝐾
) for problem (1) and 𝑐


(𝑓 ; 𝛾) =

∑

𝐾∈ |𝐾|

(

𝛾 |𝒇 |2
)

(𝐱
𝐾
) for problem (6), and the discrete quadratic 

and linear forms are given by

𝑎

(𝝉 , 𝝉; 𝛾) =

⎧

⎪

⎪

⎨

⎪

⎪

∑

𝐾∈
|𝐾|

{

𝝉𝑇𝐴−1𝝉 + 𝛾
(

div

𝝉
)2
}

(𝐱
𝐾
), problem (1),

∑

𝐾∈
|𝐾|

{

1
2𝜇

|

|

|

𝝉𝐷||
|

2
+ 1

𝑑(2𝜇 + 𝑑𝜆)
|tr𝝉|2 + 𝛾 ||

|

𝐝𝐢𝐯

𝝉||
|

2
}

(𝐱
𝐾
), problem (6),
⎩

5 
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and

𝑏

(𝝉; 𝑓, 𝛾) =

⎧

⎪

⎨

⎪

⎩

∑

𝐾∈
|𝐾|

(

𝛾 𝑓 div𝝉
)

(𝐱
𝐾
) −

∑

𝐸∈𝐷

|𝐸|

(

𝑔
𝐷
𝝉 ⋅ 𝐧

)

(𝐱
𝐸
), problem (1),

∑

𝐾∈
|𝐾|

(

𝛾 𝒇 ⋅ 𝐝𝐢𝐯 𝝉
)

(𝐱
𝐾
) +

∑

𝐸∈𝐷

|𝐸|

(

𝒈
𝐷
⋅ (𝝉𝐧)

)

(𝐱
𝐸
), problem (6),

respectively. Then, the dual neural network (DuNN) method is to find 𝝈

∈ 

𝑀
∩Σ such that 

𝐽

(𝝈


; 𝛾) = min

𝝉∈𝑀 ∩Σ
𝐽

(𝝉; 𝛾), (18)

where Σ = 𝐻(div;𝛺) for problem (1) and Σ = 𝑯𝑠(div;𝛺) for problem (6).
To understand the effect of numerical integration and differentiation, we extend the first Strang lemma for the Galerkin 

approximation over a subspace (see, e.g, [26]) to the DuNN approximation over a subset.

Theorem 1.  Assume that there exists a positive constant 𝛼 independent of 2𝑀 ∩Σ such that 
𝛼 ‖𝝉‖2𝑎 ≤ 𝑎


(𝝉 , 𝝉), ∀ 𝝉 ∈ 2𝑀 ∩Σ. (19)

Let 𝝈 and 𝝈

∈ 

𝑀
 be the solutions of (11) and (18), respectively. Then there exists a positive constant 𝐶 such that 

‖𝝈 − 𝝈

‖𝑎 ≤ 𝐶

(

inf
𝝉∈2𝑀 ∩Σ

𝑬(𝝉) + sup
𝝉∈2𝑀 ∩Σ

|𝑓 (𝝉) − 𝑓

(𝝉)|∕‖𝝉‖𝑎

)

, (20)

where 𝑬(𝝉) = ‖𝝈 − 𝝉‖𝑎 + sup𝒗∈2𝑀 ∩Σ |𝑎(𝝉 , 𝒗) − 𝑎

(𝝉 , 𝒗)|∕‖𝒗‖𝑎.

Proof.  For any 𝝉 ∈ 
𝑀

∩Σ, let 𝒆

(𝝉) = 𝝈𝜖


− 𝝉. It is easy to see that

𝐽

(𝝈𝜖


; 𝛾𝜖) ≤ 𝐽


(𝝉; 𝛾𝜖) and 𝑎(𝝈𝜖 , 𝒆


(𝝉)) = 𝑓 (𝒆


(𝝉)) + 𝑔(𝒆


(𝝉)),

where 𝑔(𝒆

(𝝉)) =. This, together with the assumption in (19), implies

𝛼
2
‖

‖

‖

𝒆

(𝝉)‖‖

‖

2

𝑎
≤ 1

2
𝑎


(

𝒆

(𝝉), 𝒆


(𝝉)

)

≤ 𝑓


(

𝒆

(𝝉)

)

− 𝑎


(

𝝉 , 𝒆

(𝝉)

)

=
(

𝑓


(

𝒆

(𝝉)

)

− 𝑓
(

𝒆

(𝝉)

)

)

+
(

𝑎
(

𝝉 , 𝒆

(𝝉)

)

− 𝑎


(

𝝉 , 𝒆

(𝝉)

)

)

+ 𝑎
(

𝝈 − 𝝉 , 𝒆

(𝝉)

)

.

Since ||
|

𝑓 (𝝉) − 𝑓

(𝝉)||

|

≤ ‖𝝉‖𝑎 sup𝒘∈2𝑀
|𝑓 (𝒘) − 𝑓


(𝒘)|∕‖𝒘‖𝑎, by the Cauchy–Schwarz inequality and the fact that 𝒆 (𝝉) ∈ 

2𝑀
, we 

have

‖

‖

‖

𝒆

(𝝉)‖‖

‖

2

𝑎
≤ 𝐶

(

𝑬(𝝉) + sup
𝝉∈2𝑀

|𝑓 (𝝉) − 𝑓

(𝝉)|∕‖𝝉‖𝑎

)

.

Now, the validity of (20) follows from using the triangle inequality and taking infimum over all 𝝉 ∈ 
2𝑀

∩Σ. This completes the 
proof of the theorem. □

Theorem  1 indicates that the total error in the energy norm is bounded by the approximation error of the set of neural network 
functions plus the numerical integration and differentiation error.

3.3. Constrained minimization

In the case that 𝛾 = 0, i.e., 𝑐 = 0 in (1) or (6), (11) is a constrained minimization problem. One may use the method of Lagrange 
multiplier or penalty. The former leads to a saddle point problem and the latter has difficulty to choose a proper penalization 
parameter that is good in both accuracy and efficiency. On one hand, a standard perturbation theory [17] suggests that the 
penalization parameter (still denoted by 𝛾) should be 𝛾 = 𝜖−1 with 0 < 𝜖 ≪ 1 for accuracy. On the other hand, this choice leads to 
an ill-conditioned algebraic problem.

This section introduces an iterative procedure to gradually enforce the equilibrium equation. For simplicity of presentation, we 
describe the procedure at the continuous level. Let 𝛿𝑘−1 be the previous time step size and 𝑢(𝑘) and 𝒖(𝑘) are the previous approximation 
to the solution of problem (1) and problem (6), respectively. Set

𝑓 (𝑘) =
{

𝑓 + 𝛿−1𝑘 𝑢(𝑘), problem (1),
𝒇 + 𝛿−1𝑘 𝒖(𝑘), problem (6).

Given the previous approximation 𝝈(𝑘) to the solution of (11), define the following negative complementary functional at the 𝑘th 
step by 

𝐽 (𝑘)(𝝉) = 1
2
𝑎(𝝉 , 𝝉; 𝛿𝑘) − 𝑏(𝝉; 𝑓 (𝑘), 𝛿𝑘) +

1
2
𝑐2(𝑓 (𝑘); 𝛿𝑘). (21)

Then the iterative procedure is to find 𝝈(𝑘+1) ∈ Σ𝑔 such that 

𝐽 (𝑘) (𝝈(𝑘+1)) = min 𝐽 (𝑘)(𝝉) (22)

𝝉∈Σ𝑔

6 
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Table 1
Relative 𝐿2 errors for test example I using three DNN structures ( 2-128-128-𝑑𝑜| 2-64-64-64-𝑑𝑜| 2-96-96-96- 𝑑𝑜, where 𝑑𝑜 = 2 for DuNN, and 𝑑𝑜 = 1 for PINN and 
Deep Ritz).
 Method ‖𝒖 − 𝒖𝑁

‖

‖𝒖‖
‖𝝈 − 𝝈𝑁

‖

‖𝝈‖
 

 
𝜀 = 0.05

PINN 13.19% | 12.63% | 12.38% 48.04% | 42.63% | 37.97%  
 Deep Ritz 0.984% | 0.910% | 0.904% 16.73% | 12.00% | 12.07%  
 DuNN 4.248% | 2.682% | 2.227% 4.957% | 2.826% | 2.190% 
 
𝜀 = 0.005

PINN 8.522% | 5.814% | 2.727% 73.01% | 57.81% | 34.33%  
 Deep Ritz 2.382% | 1.056% | 0.997% 32.18% | 28.67% | 28.49%  
 DuNN 3.019% | 1.751% | 1.524% 24.04% | 12.57% | 9.385% 
*training details:
1. Activation function: ReLU;
2. numerical integration: 400 × 360 uniformly distributed quadrature points;
3. Adam optimization: 80,000 iterations; learning rate starts with 0.004 and decays 50% per 10,000 iterations;
4. penalization coefficient in loss function: for PINN, 𝛾𝐷 = 100, and for Deep Ritz, 𝛾𝐷 = 1.

and set
{

𝑢(𝑘+1) = 𝛿𝑘
(

𝑓 − div𝝈(𝑘+1)) + 𝑢(𝑘), problem (1),
𝒖(𝑘+1) = 𝛿𝑘

(

𝒇 − 𝐝𝐢𝐯𝝈(𝑘+1)) + 𝒖(𝑘), problem (6)  and 𝑓 (𝑘+1) =
{

𝑓 + 𝛿−1𝑘 𝑢(𝑘+1), problem (1),
𝒇 + 𝛿−1𝑘 𝒖(𝑘+1), problem (6).

4. Numerical studies

In this section, we present our numerical studies on several second-order elliptic PDEs. Existing NN-based methods include the 
deep Ritz [1] and PINN [5], which are based on primal and primitive LS formulations, respectively. Essential boundary condition(s) 
(Dirichlet for the primal and both Dirichlet and Neumann for the primitive LS) are enforced by penalizing them in the loss functional. 
The deep Ritz has recently been extended to linear elasticity in [8,27]. We will compare the proposed DuNN with the aforementioned 
NN-based methods.

In all experiments, the structure of the DNN used is expressed as 𝑑-𝑛1-𝑛2 ⋯ 𝑛𝑙−1-𝑑𝑜 for a 𝑙-layer network with 𝑛1, 𝑛2 and 𝑛𝑙−1
neurons in the respective first, second, and (𝑙−1)th layers. The 𝑑 and 𝑑𝑜 represent the input and output dimensions of the network. 
For DuNN, 𝑑𝑜 = 3(𝑑 − 1), and for deep Ritz and PINN, 𝑑𝑜 = 𝑑. The minimization of the loss functionals in all experiments is solved 
using the Adam optimization algorithm [28].

4.1. Test example I: a two-dimensional singularly perturbed reaction–diffusion problem

Consider the following 2D scalar reaction–diffusion problem:

−𝜀2𝛥𝑢 + 𝑢 = 𝑓 in 𝛺, 𝑢 = 0 on 𝜕𝛺,

with the true solution 𝑢 = 𝑡𝑎𝑛ℎ( 1𝜀 (𝑥
2 + 𝑦2 − 1

4 )) − 𝑡𝑎𝑛ℎ( 3
4𝜀 ) defined in the unit disk 𝛺 = {(𝑥, 𝑦) ∈ R2 ∶ 𝑥2 + 𝑦2 < 1}. Consider the 

problem in two cases: 𝜀 = 0.05 and 𝜀 = 0.005, and note that there is a sharp interior transition layer at 𝑟 =
√

𝑥2 + 𝑦2 = 1∕2 with a 
width of order 𝜀 in the solution. When 𝜀 is small, there is a numerical difficulty in solving these types of problem.

Set the flux 𝝈 = −𝜀2∇𝑢, and with the vanish boundary condition, the corresponding DuNN loss functional using the 
complementary energy (2) is reduced to 

𝐽 ∗(𝝉) = 1
2

{

‖

‖

‖

𝜀−1𝝉‖‖
‖

2

0,𝛺
+ ‖ (div𝝉 − 𝑓 )‖20,𝛺

}

. (23)

To compare, we tested the deep Ritz and PINN methods as well. Both deep Ritz and PINN use DNNs to approximate the primary 
variable 𝑢. Deep Ritz employs the following energy-based loss functional, 

𝐽 (𝑣) = 1
2

{

‖𝜀∇𝑣‖20,𝛺 + ‖𝑣‖20,𝛺 + 𝛾𝐷‖𝑣‖
2
1∕2,𝜕𝛺

}

− (𝑣, 𝑓 ), (24)

while PINN uses a direct least square loss functional, 

𝐿(𝑣) = ‖ − 𝜀2𝛥𝑣 + 𝑣 − 𝑓‖20,𝛺 + 𝛾𝐷‖𝑣‖
2
0,𝜕𝛺 , (25)

where 𝛾𝐷 is the penalization coefficient.
Table  1 reports the results of the three methods. As shown in the table, for both material cases and the three different DNN 

structures(a three-layer DNN with 128 neurons in the hidden layer, and two four-layer DNNs with 64 and 96 neurons in the hidden 
layer, respectively), DuNN achieves better accuracy in approximating the flux 𝝈, and Deep Ritz performs better in approximating 
the primary variable 𝑢. As illustrated in Fig.  2, the DuNN method yields a direct approximation of the flux 𝝈, which results in 
fewer numerical oscillations; see Figs.  2(a) and 2(b). The other two methods calculate the flux 𝝈 indirectly using 𝝈 = −𝜀2∇𝑢, which 
7 
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Fig. 2. Numerical Results of test example I (𝜀 = 0.005) using three NN-based methods.

involves a differential operation1 on the DNN output function 𝑢. As shown in Figs.  2(d) 2(e) and 2(g) 2(h)), this leads to some 
numerical oscillations in flux simulation.

4.2. Test example II: two-dimensional Poisson equation

The second test problem is a two-dimensional Poisson equation defined on a square unit 𝛺 = (0, 1)× (0, 1). The exact solution for 
the primary variable 𝑢 = 𝑠𝑖𝑛( 𝜋2 𝑥)𝑠𝑖𝑛(𝜋𝑦) + 𝑥2𝑦2. And the dual variable 𝝈 has the analytic form,

𝝈 = −∇𝑢 =

(

− 𝜋
2 𝑐𝑜𝑠(

𝜋
2 𝑥)𝑠𝑖𝑛(𝜋𝑦) − 2𝑥𝑦2

−𝜋𝑠𝑖𝑛( 𝜋2 𝑥)𝑐𝑜𝑠(𝜋𝑦) − 2𝑥2𝑦

)

.

With the right-hand side 𝑓 = div𝝈 = 5𝜋2
4 𝑠𝑖𝑛( 𝜋2 𝑥)𝑠𝑖𝑛(𝜋𝑦) − 2(𝑥2 + 𝑦2), and the Dirichlet boundary condition defined in 𝑥 = 0 and 𝑦 = 0, 

the Neumann boundary prescribed in 𝑥 = 1 and 𝑦 = 1, we tested the performance of DuNN and compared it with the deep Ritz and 
PINN. Specifically, for DuNN, since the primary variable term vanishes in the Poisson equation (𝑐 = 0), we tested two approaches to 

1 In our experiments, numerical differentiation was used to obtain the results.
8 
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Table 2
Relative 𝐿2 errors for test example II using penalization method (DNN structure: 2-50-50-𝑑𝑜).
 DuNN Deep Ritz PINN

 𝛾 = 20 𝛾𝐷 = 1000 𝛾𝐷 = 10000, 𝛾𝑁 = 10000

 ‖𝒖 − 𝒖𝑁
‖

‖𝒖‖
‖𝝈 − 𝝈𝑁

‖

‖𝝈‖
‖𝒖 − 𝒖𝑁

‖

‖𝒖‖
‖𝝈 − 𝝈𝑁

‖

‖𝝈‖
‖𝒖 − 𝒖𝑁

‖

‖𝒖‖
‖𝝈 − 𝝈𝑁

‖

‖𝝈‖
 

 0.740% 1.307% 0.949% 3.730% 0.594% 1.3224%  
*training details: 
1. activation function: Sigmoid;
2. numerical integration: 100 × 100 uniform distributed quadrature points (h = 0.02).
3. Adam optimization: 200,000 iterations;
learning rate starts with 0.01 and decays 90% per 20,000 iterations until reaches 1e-5.

Table 3
Relative 𝐿2 errors for test example II using pseudo-time method (DNN structure: 2-50-50-2).
 Time step size 𝛿 0.1 0.05 0.01 0.005 0.001  
 Inner iteration per time step 5,000 2,500 500 250 50  
 Outer iteration number 20 40 200 400 2000  
 ‖𝝈 − 𝝈𝑁

‖

‖𝝈‖
0.273% 0.221% 0.182% 0.134% 0.173% 

*training details: 
1. Total number of iterations: 100,000;
2. learning rate is 1𝑒 − 3 for the first 50,000 iterations and 1𝑒 − 4 for the rest.

solve the corresponding constrained minimization problem. The first is the penalization method that uses the added penalty term 
𝛾 ‖( div 𝜏 − 𝑓 )‖20,𝛺, where 𝛾 is a penalization coefficient that needs to be adjusted. And the second method is the outer-inner iterative 
procedure using pseudo-time described in Section 3.3.

Using the penalization method, DuNN needs to tune one parameter 𝛾 for the force balance term, deep Ritz needs one parameter 𝛾𝐷
for the Dirichlet boundary condition term, and PINN needs two parameters, 𝛾𝐷 and 𝛾𝑁  for both the Dirichlet and Neumann boundary 
condition terms. Table  2 reports the results of the comparison. In all three methods, we adjusted the penalization coefficients in their 
respective loss functions and reported the best results. Note that in the DuNN method, the primary variable 𝑢 is reconstructed using 
another DNN of the same structure (2-50-50-1), and the loss function for reconstructing 𝑢 is 𝐿(𝑣) = ‖∇𝑣 + 𝝈𝑁‖

2
0,𝛺 + 𝛾𝐷‖𝑣 − 𝑔𝐷‖20,𝜕𝛺, 

where 𝝈𝑁  is the obtained numerical flux from DuNN. The tuned penalization parameters are shown in the second row of the Table 
2. From the error measures shown in the last row of the table, we can see that for smooth problems like the one in this test, all 
three methods perform well if the hyper parameters are tuned into the appropriate scales.

We then tested the outer-inner pseudo-time method for the constrained minimization problem. The same DNN structure (2-50-
50-2) and activation function (Sigmoid) were used as in the penalization method previously. In the experiment, the pseudo-time 
step size remained constant throughout the outer-inner iterations. Table  3 records the numerical results of using different pseudo-
time step sizes 𝛿. It is found that the pseudo-time iterative method, compared to the penalization method, is less sensitive to the 
parameter (time-step size) and converges to a better solution in fewer iterations (a total of 100,000 iterations). We also observed 
that, in general, a larger step size requires more inner iterative steps, as reported in the second row of the table. Figs.  3(a) and 3(b) 
plot the numerical results for the approximate flux 𝝈 using the time step size 𝛿 = 0.005.

Another benefit of the pseudo-time method is that the added term 𝑢𝑡 converges to 𝑢𝑁 , becoming a byproduct of the iterative 
process. Fig.  3(c) illustrates the resulting 𝑢𝑁 . Alternatively, one may also reconstruct 𝑢𝑁  using another DNN, as previously used. 
Recovering 𝑢𝑁  using another DNN requires additional time and resources to form the approximated primary variable 𝑢, but produces 
a smoother result in this case, as shown in Fig.  3(d). The effectiveness of the pseudo-time method is further demonstrated in Fig.  3(e). 
For each time step, the force balance term ‖( div 𝜏 − 𝑓 )‖20,𝛺 continuously decays to nearly zero, and the negative complementary 
energy converges to the true value of this problem, which is 1.571.

4.3. Test example III: L-shaped linear elastic plate under stress

The last test example is a common benchmark problem for linear elasticity Eq. (6) featuring a re-entrant corner and a resulting 
point singularity [29]. This problem is posed on a 𝐿−shaped domain 𝛺 = (−1, 1)2 ⧵ ([0, 1] × [−1, 0]) with a body force 𝒇 = 𝟎. The 
analytical solution for displacement 𝒖 is,

𝒖 = [𝐴 cos 𝜃 − 𝐵 sin 𝜃, 𝐴 sin 𝜃 − 𝐵 cos 𝜃]𝑇 ,

where A and B are defined in polar coordinates:
⎧

⎪

⎨

⎪

𝐴 = 𝑟𝛼

2𝜇

(

−(1 + 𝛼) cos
(

(1 + 𝛼)𝜃
)

+ 𝐶1(𝐶2 − 1 − 𝛼) cos
(

(1 − 𝛼)𝜃
)

)

,

𝐵 = 𝑟𝛼

2𝜇

(

(1 + 𝛼) sin
(

(1 + 𝛼)𝜃
)

− 𝐶1(𝐶2 − 1 + 𝛼) sin
(

(1 − 𝛼)𝜃
)

)

.

⎩

9 



M. Liu et al. Journal of Computational and Applied Mathematics 467 (2025) 116596 
Fig. 3. Numerical Results of Poisson equation using pseudo-time outer-inner iterative method (𝛿 = 0.005).

Here 𝛼 ≈ 0.544483737 is the critical exponent and the definition of 𝐶1, 𝐶2 together with the exact form of stress 𝝈 are referenced 
in [29]. We tested two materials with Young’s modulus 𝐸 = 100000 and Poisson’s ratio 𝜈 = 0.3 for a compressible material and 
𝜈 = 0.49999 for a nearly incompressible material. The Lamé constants are given by 𝜇 = 𝐸

2(1+𝜈)  and 𝜆 = 𝐸𝜈
(1+𝜈)(1−2𝜈) .

The method of PINN does not apply here due to the existence of a stress singularity at the origin point (0, 0). Therefore, we 
compare only the numerical results of the two energy-based methods: Deep Ritz [8] and DuNN.

Material case I (𝜈 = 0.3): we used only the penalization method in this case. For penalization coefficients, we tested various 
values and finally adjusted them to 𝛾 = 1𝑒− 4 for DuNN and 𝛾𝐷 = 10 for deep Ritz. Uniform quadrature methods with the midpoint 
quadrature rule and two set of the integration mesh sizes were tested and the corresponding results are reported in Table  4. The 
numerical experiments show that both energy-based methods (deep Ritz and DuNN) have the capability of handling reentrant corner 
singularity, while DuNN performs better in terms of relative 𝐿2 approximation error for the numerical stress, using both integration 
mesh sizes.

Material case II (𝜈 = 0.49999): since the deep Ritz method does not accurately characterize the stress under the near-
incompressible condition (locking phenomenon), we tested DuNN alone and compared the penalization method with the pseudo-time 
method for the constrained minimization problem. Both the uniform and non-uniform quadrature methods were tested in this 
material case. For the non-uniform quadrature method, a manual integration mesh was constructed using progressive refinement 
near the singular point (see the corresponding non-uniform quadrature points in Fig.  3(d)). Note that this non-uniform integration 
mesh can be constructed adaptively using the adaptive quadrature refinement (AQR) method proposed in [8]. Since numerical 
integration is not a main focus of this work, we used this manually generated set of quadrature points to investigate the effect of 
numerical integration.

From the result shown in Table  4, we can see that both the penalization method and the pseudo-time method can handle 
incompressibility and simulate the stress distribution with point singularity reasonably well. The non-uniform quadrature method 
produced slightly better result with fewer number of quadrature points. During the training process, we also observed that the 
pseudo-time-based minimization, although also having a time step 𝛿𝑡 parameter to be determined, converges faster due to the gradual 
enforcement of the equilibrium equation. In this test, the penalization method required 200,000 iterations, while the pseudo-time 
method required less than 100,000 iterations to converge. The corresponding numerical results are plotted in Fig.  4, where subfigures 
10 
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Table 4
Relative 𝐿2 errors of numerical stress for the 𝐿-shaped problem(Network: 2-48-48-48-𝑑𝑜, Activation: sigmoid).
 Method Quadrature

‖𝜎 − 𝜎
𝑁
‖

‖𝜎‖
 

 
𝜈 = 0.3

Deep Ritz (penalization) uniform ℎ = 0.02 38.59%  
 uniform ℎ = 0.01 31.62%  
 DuNN (penalization) uniform ℎ = 0.02 10.81%  
 uniform ℎ = 0.01 10.08%  
 
𝜈 = 0.49999

DuNN (penalization) uniform: ℎ = 0.01 12.44%  
 Non-uniform 12.39%  
 DuNN (pseudo-time) uniform ℎ = 0.01 10.96%  
 Non-uniform 10.30%  
*training details: 
1. penalization Method: DuNN: 𝛾 = 1𝑒 − 4, Deep Ritz: 𝛾𝐷 = 10
200,000 iterations and learning rate starts from 0.01 and decays 50% every 50,000 iterations.
2. pseudo-time method: 𝛿 = 1𝑒 − 6
inner iteration: 10,000; number of time-step:10; total iteration: 100,000.

Fig. 4. Numerical results using DuNN for the 𝐿-shaped elastic plate problem, case II (𝜈 = 0.49999) (structure: 2-48-48-48-3, activate function: sigmoid, non-uniform 
quadrature and pseudo-time outer-inner iterative method).

(a)–(c) represent the numerical stress distributions of DuNN. The results show that both the point singularity and incompressibility of 
the material are well handled using DuNN. Fig.  4(e) illustrates the pseudo-time-based negative complementary function minimization 
process. During the iterative process, the force balance term quickly decreases to near zero, while the negative complementary energy 
converges to its theoretic value.

5. Conclusion

In this paper, we established a physics-driven deep neural network-based computational framework to solve elliptic partial 
differential equations and systems. The problem is formulated as an optimization of the complementary energy functional with 
the benefit of using the sole dual variable. Combined with the physics-preserved discrete divergence operator, all boundary 
conditions can be enforced naturally without using any penalization term. For problems without the primary variable term, a pseudo- 
time-based iterative method was developed to gradually enforce the equilibrium equation.

Numerical studies demonstrate that DuNN accurately approximates dual variables for elliptic problems. Compared to existing 
neural network-based methods, DuNN offers superior flux prediction accuracy and is applicable to a broader range of problems, 
11 
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including those with discontinuities or singularities. It is also effective for problems involving both compressible and incompressible 
materials.

Acknowledgments

This work was supported in part by the National Science Foundation, United States under grant DMS-2110571 and we thank 
the support of DARPA project on symbiotic design and Stanford Research International (SRI) for partial support of the project.

Data availability

Data will be made available on request.

References

[1] W. E., B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018) 1–12.
[2] J. Berg, K. Nystrom, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 (2018) 

28–41.
[3] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1139–1364.
[4] M. Raissi, G.E. Karniadakis, Deep hidden physics models: Deep learning of nonlinear partial differential equations, J. Mach. Learn. Res. 19 (1) (2018) 

932–955.
[5] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving 

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[6] Y. Bar-Sinai, S. Hoyer, J. Hickey, M.P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA 116 (31) 

(2019) 15344–15349.
[7] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys. 

420 (2020) 109707.
[8] M. Liu, Z. Cai, K. Ramani, Deep Ritz method with adaptive quadrature for linear elasticity, Comput. Methods Appl. Mech. Engrg. 415 (2023) 116229.
[9] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova, Nonlinear approximation and (Deep) ReLU networks, 2019, ArXiv Preprint ArXiv:.
[10] R. DeVore, B. Hanin, G. Petrova, Neural network approximation, Acta Numer. 30 (2021) 327–444, http://dx.doi.org/10.1017/S0962492921000052.
[11] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103–114.
[12] J. Xu, The finite neuron method and convergence analysis, Commun. Comput. Phys. 28 (2020) 1707–1745.
[13] M. Liu, Z. Cai, Adaptive two-layer ReLU neural network: II. Ritz approximation to elliptic PDEs, Comput. Math. Appl. 113 (2022) 103–116.
[14] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation, J. Comput. Phys. 443 (2021) 110514.
[15] I. Ekeland, R. Témam, Convex Analysis and Variational Problems, Society for Industrial and Mathematics, Philadelphia, 1999.
[16] S. Zhang, Primal-dual reduced basis methods for convex minimization variational problems: robust true solution a posteriori error certification and adaptive 

greedy algorithms, SIAM J. Sci. Comput. 42 (1) (2020) A3638–A3676.
[17] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[18] Z. Cai, G. Starke, Least-squares methods for linear elasticity, SIAM J. Numer. Anal. 42 (2) (2004) 826–842.
[19] Z. Cai, B. Lee, P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal. 42 (2) (2004) 

843–859.
[20] A. Pinkus, Approximation theory of the MLP model in nueral networks, Acta Numer. 15 (1999) 143–195.
[21] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (1989) 303–314.
[22] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[23] L. Schumaker, Spline Functions: Basic Theory, John Wiley, New York, 1981.
[24] M. Liu, Z. Cai, J. Chen, Adaptive two-layer ReLU neural network: I. best least-squares approximation, Comput. Math. Appl. 113 (2022) 34–44.
[25] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation laws: discrete divergence operator, 

J. Comput. Appl. Math. 433 (2023) 115298.
[26] P.G. Ciarlet, The finite element method for elliptic problems, Society for Industrial and Applied Mathematics, 1978.
[27] W. Li, M.Z. Bazant, J. Zhu, A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based 

approaches, Comput. Methods Appl. Mech. Engrg. 383 (2021) 113933.
[28] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Representation Learning, San Diego, 2015.
[29] G. Harper, J. Liu, S. Tavener, B. Zheng, Lowest-order weak Galerkin finite element methods for linear elasticity on rectangular and brick meshes, J. Sci. 

Comput. 78 (3) (2019) 1917–1941.
12 

http://refhub.elsevier.com/S0377-0427(25)00111-6/sb1
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb2
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb2
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb2
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb3
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb4
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb4
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb4
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb5
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb5
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb5
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb6
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb6
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb6
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb7
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb7
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb7
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb8
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb9
http://dx.doi.org/10.1017/S0962492921000052
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb11
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb12
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb13
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb14
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb15
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb16
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb16
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb16
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb17
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb18
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb19
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb19
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb19
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb20
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb21
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb22
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb23
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb24
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb25
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb25
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb25
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb26
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb27
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb27
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb27
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb28
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb29
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb29
http://refhub.elsevier.com/S0377-0427(25)00111-6/sb29

	Dual Neural Network (DuNN) method for elliptic partial differential equations and systems
	Introduction
	Dual Formulation of Elliptic Partial Differential Equations
	Second-order Elliptic Problems
	Linear Elasticity and Stokes Equations
	Abstract Setting

	Dual neural network (DuNN) method
	Deep Neural Network
	DuNN method
	Constrained minimization 

	Numerical Studies
	Test Example I: a two-dimensional singularly perturbed reaction–diffusion problem
	Test Example II: two-dimensional Poisson Equation
	Test Example III: L-shaped linear elastic plate under stress

	Conclusion
	Acknowledgments
	Data availability
	References


