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AnnotateXR: An Extended Reality
Workflow for Automating Data
Annotation to Support Computer
Vision Applications
Computer vision (CV) algorithms require large annotated datasets that are often labor-
intensive and expensive to create. We propose AnnotateXR, an extended reality (XR) work-
flow to collect various high-fidelity data and auto-annotate it in a single demonstration.
AnnotateXR allows users to align virtual models over physical objects, tracked with six
degrees-of-freedom (6DOF) sensors. AnnotateXR utilizes a hand tracking capable XR
head-mounted display coupled with 6DOF information and collision detection to enable
algorithmic segmentation of different actions in videos through its digital twin. The
virtual–physical mapping provides a tight bounding volume to generate semantic segmen-
tation masks for the captured image data. Alongside supporting object and action segmen-
tation, we also support other dimensions of annotation required by modern CV, such as
human–object, object–object, and rich 3D recordings, all with a single demonstration.
Our user study shows AnnotateXR produced over 112,000 annotated data points in 67min.
[DOI: 10.1115/1.4066180]
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1 Introduction
The field of computer vision (CV) has made significant progress

in the last decade with the help of advances in machine learning
(ML) algorithms. CV has demonstrated a large variety of practical
applications in many fields such as autonomous driving [1,2],
biomedical imaging [3], robotics [4], and point cloud mapping
[5,6]. However, most current state-of-the-art ML algorithms rely
heavily on high-quality and high-quantity annotated data sets
[7–11] for training and test sampling. Hence, researchers in the
CV community are constantly producing annotated data sets tai-
lored to specific problems and applications.
These standardized data sets offered by the CV community have

facilitated the creation, validation, and improvement of algorithms.
Currently, these data sets are annotated post hoc by manual annota-
tors (e.g., Mturkers) with tools such as Mechanical Turk [12], Sage-
maker Ground Truth [13], Supervisely [14], and Anolytics [15].
Data set annotations are often time, money, and labor-intensive
endeavors [16]. This bottleneck inhibits users from quickly and effi-
ciently creating customized data sets for end-user applications [17].
Apart from labor intensity, modern CV algorithms target

applications requiring multiple types of annotations within the
same data. For example, works in action segmentation such as
Action Genome [18] and Home Action Genome [11] have shown
that additional annotation information regarding human–object
(H–O) interaction alongside action segmentation information has
improved performance. However, supporting the need for multiple
annotations currently compounds labor intensity limitations, pre-
vents scalability, and limits research.
To address the need for high-quality annotations while reducing

dependency on manual labor, works such as Playing for Data [19],
O2O [20], and Tremblay et al. [21] propose using synthetic environ-
ments to generate data sets. Synthetic data sets are becoming acces-
sible due to advances in rendering pipelines and generative
adversarial models [22]. While being more efficient for data set cre-
ation than manual annotation, purely synthetic data sets are limited
in their utility as the generated data has no grounding in the real
world, such as lack of RGB frames [23]. Synthetic data sets inspired
us to look at virtual environments for generating large quantities of
annotated data. The shortcomings of synthetic data sets motivated
us to ground the virtual environment to a real-physical environment.
Hence, we propose generating a virtual equivalent of the physical
world and updating the virtual based on the changes in the physical.
We present AnnotateXR, an extended reality (XR) application

capable of simultaneous collection and auto-annotation of data to
support several different applications with a single demonstration.
Applications such as object detection [24], semantic segmentation
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[25], video action segmentation [26], 6DOF predictions [27], H–O
interaction [28], object–object (O–O) interaction [20,29], and rich
3D scene recording [30] are supported by AnnotateXR.
AnnotateXR explores leveraging the strength of XR to record and

annotate data. We achieve this by capturing a digital twin of the
real-world action. A digital twin is defined as “an executable
virtual model of a physical thing or a system.” [31,32] An external
six degrees-of-freedom (6DOF) sensor (Antilatency [33]) is
attached to every physical object and tracked. At the same time,
the user interaction is captured via head-mounted display (HMD)
Oculus Quest 2 [34].
A virtual replica (widely available in the form of computer-aided

design (CAD) models and 3D assets [35–38]) of the tracked object
is aligned by the user over its physical equivalence to record the
digital twin. AnnotateXR empowers the users to perform this align-
ment without requiring sophisticated calibration techniques. This
virtual–physical alignment, in turn, also provides passive haptics
for the user while performing the task and working in XR.
Finally, we capture the RGB data with physical cameras. We also
track the position and orientation of these physical cameras
within a tracking volume. We then build a corresponding virtual
capture of the objects. So, for every RGB frame captured with a
physical camera, a virtual frame of the virtual world from the
exact location of the physical camera is captured and used to anno-
tate and label the data set by mapping the virtual over the physical
(refer Fig. 1). This approach avoids human intervention for annota-
tion and automates the process, thus ensuring quality while reduc-
ing cost and improving speed.
To test the strength of our system and the quality of annotation

generated by our workflow, we performed a preliminary user
study on 12 users and compared AnnotateXR’s annotations with
manually user-generated annotations. Our approach enabled even
novice users to generate a large quantity (over 112,000) of multiple
data annotations. Furthermore, in a post-study interview, all users
preferred using AnnotateXR for large-scale data collection. The fol-
lowing are our contributions to the current work:

• We propose an extended reality application capable of record-
ing physical activity and creating a virtual equivalent in paral-
lel for capturing and annotating data to support the growing
needs of modern computer vision algorithms.

– An auto-labeling protocol capable of handling dynamic
moving objects utilizes the 3D virtual model aligned
with the physical object to obtain object labels and seman-
tic segmentation masks for the corresponding RGB image
frames in a video.

– Utilizing H–O/O–O interaction information obtained via
mesh collision detection in the digital twin to produce
action segmentation data for action recognition.

• A user study to evaluate the difference in performance and
quality of annotation between current state-of-the-art
methods [14,39] and our approach. Our study shows that
AnnotateXR can produce a large quantity (112,737 annotated
data points in 66.55min; total for 12 users) with statistically
insignificant differences in annotation quality compared to
manual annotations.

2 Related Work
Computer vision algorithms require a sufficiently large amount of

data with variations to ensure coverage [40]. Furthermore, having
enough data is crucial for the generalization capabilities of
machine learning systems [41]. In the past decade, the variety of
problems that CV has tried to solve has grown tremendously. Prob-
lems ranging from object detection [24,42,43] to segmentation [25]
are being explored. In video analytics [15], action understanding
tasks [44], detecting human–object interaction [18], and object–
object interaction [20,29] are actively researched. To support such
a large variety of problems, an equally well-annotated data set is
required. Most current approaches try to provide specialized and
problem-specific solutions for creating data sets [7,8]. Since there
is a rising trend of multi-modal data sets with annotations for
various problems in computer vision [11,18], there is also a need
to support tools capable of creating such diverse annotations.
Researchers have begun expanding previously available large

data sets to support additional annotations. For example, MS
COCO [45] started off as a purely object label data set but has
now expanded to support semantic segmentation [46], scene seg-
mentation [47], human pose [48], image captions [49], and task
detection [50], enabling the data set to support a larger domain of
CV problems. Hence, problem-specific annotations are becoming
outdated. To support these current trends, we have pursued a

Fig. 1 Overview of the AnnotateXR data collection workflow: (a) a user performing a task with actively tracked objects within a
tracking area in front of an actively tracked RGB camera, (b) a virtual digital twin of the real-world interactions of the user and
objects, (c) a raw 2D image of the user performing the task, (d) a virtual 3D replica of the user’s action, and (e) a one-to-one
overlay of the virtual and real images utilized to generate segmentation masks

121001-2 / Vol. 24, DECEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/24/12/121001/7375799/jcise_24_12_121001.pdf by Purdue U
niversity at W

est Lafayette user on 04 N
ovem

ber 2024



more generalized strategy by allowing humans to collect data within
an XR environment and creating a virtual–physical equivalence of
human and object interactions to auto-generate multiple types of
annotations.

2.1 Image 2D Annotation

2.1.1 Manual Annotation. The demand for high-quality anno-
tated data sets in machine learning has enabled the development of
several commercial tools. Supervisely [14], AIMultiple [51],
Mechanical Turk [12], Sagemaker Ground Truth [13], and Anoly-
tics [15] are all web-based User Interface (UI) tools supporting
crowdsourced and manual annotation of data. However, this
approach is labor-intensive [52] and expensive [16] to support
modern CV’s need for data sets with multiple annotations. Thus,
with AnnotateXR, we provide a workflow to automate the
process while simultaneously supporting multiple annotation capa-
bilities (Table 1).

2.1.2 Semi-Automatic Annotation. Since manual annotation is
expensive and time-consuming, especially for semantic segmenta-
tion annotations [52], researchers have focused on developing
approaches to aid the human annotator. For example, works such
as Beat the MTurkers [58] and Xie et al. [59] use available 3D
models and human-generated 3D bounding boxes to align and
produce the segmentation masks. Other works, such as Castrejon
et al. [60] and Acuna et al. [61], model the boundary of an object
using recurrent neural networks to aid humans with annotating

the images with object boundaries. Unlike these past works, Anno-
tateXR does not rely on human input for every frame, instead
requiring virtual–physical alignment only at the beginning.

2.1.3 Mixed Reality Annotation. Works such as LabelAR [53]
and Objectron [62] propose using spatial tracking technology,
such as phone-based augemented reality (AR), to draw a bounding
area/volume through which objects are tracked and annotated.
Recent works such as ARnnotate [63] and Immersive-Labeler [64]
have explored data annotation with immersive reality. ARnnotate
uses an AR headset, such as Hololens 2, to annotate 3DHand-Object
Interaction Pose Estimation, and Immersive-Labeler uses a virtual
reality (VR) headset to annotate 3D point clouds. Another recent
work by Zhou and Yatani [65] explores the concept of real-time
annotation with deictic gestures to segment objects of interest.
While these works are interesting, they are domain-specific; for
example, LabelAR is for 2D object detection labeling, while Objec-
tron provides a data set for 3D object detection. These works
are also limited to static objects. However, AnnotateXR tries to
provide a generalized solution for a larger domain and can handle
dynamic objects moving through 3D space.

2.2 Video Annotation

2.2.1 Action Understanding. Well-known data sets such as
Epic Kitchens [66], Charades [67], and ActivityNet [68] provide
annotated data on action segmentation for household activities.
Works such as AVA [69], COIN [70], and Kinetics [71] provide

Table 1 Positioning AnnotateXR with respect to prior related work on data annotation supports different annotation modalities for
CV

Image Video 3D mesh Object detection Object segmentation H–O O–O 6DOF Hand pose Human pose

AnnotateXR (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LabelAR [53] ✓ ✓
LineMod [54] ✓ ✓ ✓ ✓
6DOF [55] ✓ ✓ ✓ ✓
O2O [20] ✓ ✓ ✓ ✓
Home Action Genome [11] ✓ ✓ ✓
Action Genome [18] ✓ ✓ ✓
H2O [28] ✓ ✓ ✓ ✓ ✓ ✓
GRAB [56] ✓ ✓ ✓ ✓
3DPW [57] ✓ ✓ ✓ ✓
Interacting Objects [29] ✓ ✓ ✓ ✓

Note: The categories can be grouped into the first three columns: “Image,” “Video,” and “3D Mesh,” representing input modalities, while all other categories
in the data set are various applications of the data.

Fig. 2 There are three levels of hierarchy in videos (action, step, and interaction) [18]: level 1 is the larger task action (e.g., assem-
bling tangrams), level 2 is coarse-grained (e.g., picking up and positioning the triangle), and level 3 is fine-grained, which involves
H–O and O–O interactions (e.g., hand approaching object). The coarse-grained layer involves multiple sequential fine-grained
interactions that constitute a step in level 2. Sequential combinations of level 2 steps constitute a level 1 action.
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annotated data from open sources such as movies and YouTube.
However, these past works rely on manual annotation to classify
each video frame into a specific action class category.
Unlike the coarse-grained annotations (refer Fig. 2) offered by

the works mentioned above, a recent trend in action segmentation
has been to explore the concept of segmenting fine-grained
actions. Works such as Something Else [72], FineGym [73], and
FineAction [44] differentiate phases of complex real-world
actions such as gymnastics and soccer video clips based on how
objects within each frame relate to each other (H–O and O–O rela-
tions). However, this strategy is far from satisfactory due to the need
for detailed annotations.
Recent work such as Action Genome [18] and Home Action

Genome [11] allows for grouping and annotating five frames
together instead of annotating each frame individually. This
reduces the workload on the annotator while trying to annotate fine-
grained interactions, such as between human and object or object
and object. However, complete reliance on manual annotations,
as pursued by these past studies, is not a viable solution for devel-
oping generic large-scale customized annotated data sets due to
resource intensity. Hence, in AnnotateXR, we have explored the
concept of recording a digital twin from observed human and
object physical actions. The digital twin provides necessary cues
of H–O and O–O interactions via collision detection, which are
used to automate both fine-grained and sparse action segmentation
for every frame with less effort, providing a scalable alternative to
existing approaches.

2.2.2 Semantic Segmentation in Videos. Works such as
DAVIS [74] and CamVID [75] provide segmentation mask annota-
tion of objects in a video. However, the masks were obtained by
manual annotation over every frame. Other works, such as Vijaya-
narasimhan and Grauman [76], allow the user to annotate the first
frame in a video and try to propagate the annotation over subse-
quent frames. However, due to a lack of confidence in tracking,
these methods are viable only for short video clips before the

tracking propagation loses accuracy. Recently, IKEA ASM [77]
has explored annotating segmentation masks, human pose, and
object pose only on keyframes within a video to reduce human
effort. However, this approach still required keyframes to be “iden-
tified” and annotated. AnnotateXR, however, relies on virtual–
physical model mapping and physical object tracking to generate
a dynamic segmentation mask capable of annotating every frame
in a video with minimal effort.

2.3 Data Collection Via Sensor Capture. Several past works
have explored the idea of gathering 3D object information with
sensors [56,55,54–56]. GRAB [56] provides rich 3D pose informa-
tion of the human body and object captured with a body-tracking
suit and several embedded markers. Work such as Garon et al.
[55] has explored the concept of using smaller markers and remov-
ing them post-collection by pixel masking. Work such as Ahmad
et al. [78] generates automatic datasets from CAD models. Other
well-known works such as Linemod [54] utilize depth cameras
such as Kinect [79] and available CAD models for mapping and
pose estimation dataset generation.
However, these past works only provide annotations relevant for

3D tasks and 3D pose estimation. These data sets are not well suited
for synergistic research, such as incorporating object pose informa-
tion for action recognition, due to the lack of corresponding RGB
frame information. This limitation of these data sets is partly due
to the past trend in computer vision to focus on solving sub-
problems. AnnotateXR overcomes this limitation by enabling
multi-modal annotations through generating a digital twin of the
real world, thus providing ground truth RGB information alongside
other 3D information such as 6DOF, hand pose, and head pose.

3 AnnotateXR Workflow
The main idea of AnnotateXR is to demonstrate a holistic design

of workflow to generate annotations for various computer vision

Fig. 3 System architecture: overview of the data flow from the different hardware used for
various sub-systems and data collection
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tasks. We create a 3D spatio-temporal digital twin of real-world
interaction with a single demonstration. We provide the user a
tool for generating detailed annotations containing object pose,
object segmentation mask, action segmentation, H–O, O–O, head/
hand pose, and the 3D digital twin with ease (refer Fig. 3).

3.1 Architecture and Hardware. AnnotateXR is an
XR-based environment that generates a virtual replica of the real
world by actively tracking objects of interest, head position, and
hand pose information. This environment was deployed on a PC
(AMD Ryzen 7 5800X eight-core processor 3.80GHz CPU, 32
GB RAM, NVIDIA RTX 2080TI GPU) using an Oculus Quest 2
VR head-mounted display connected via an Oculus Link cable
[34]. The application was developed in Unity 3D (2019.4.33f)
with the Oculus SDK (used to visualize avatar, hands, and AR pass-
through). For 6DOF tool and object tracking, we use Antilatency’s
development kit [33] (refer Fig. 4) that allows a 10 ft × 10 ft × 10 ft
(3.048m × 3.048m × 3.048m) tracking area. The tracking area is a
ceiling-based 7 ft × 7 ft × 7 ft (2.1334m × 2.1334m × 2.1334m)
aluminum structure constructed using 80/20 Quick Frame. The
tracking modules are comprised of Antilatency’s “Alt Tags” and
“Alt Trackers,” with a footprint of 18mm × 66mm. The sensor
wirelessly transmits to Unity3D via Antilatency’s “HMD Radio
Sockets’ (refer Fig. 4). The tracking area contains 12 tracking
markers (on ceiling) that are used as reference points by the tracking
modules to determine their spatial positions. At the same time, ori-
entation is obtained by an in-built inertial measurement unit. A
comparison was conducted between Optitrack V120 Duo [80]
and Antilatency to determine the best option for real-time object
tracking. Antilatency was particularly chosen for its ease of use
and reduced setup time. Antilatency requires just one sensor per
object for reliable tracking (error rate less than 2mm [33]),
whereas Optitrack requires at least three reflective markers (more
required for an increase in tracking quality) attached in a unique
pattern for each object. However, the system was designed to use
any adequate real-time tracking solution.
An external RGB camera is also utilized to capture a video rep-

resentation of the user performing the task. AnnotateXR uses a ZED
mini camera [81] as the RGB camera due to its integration with
Unity via the ZED-Unity plugin as well as the ease of access to
accurate camera intrinsic parameters. We do not use the depth infor-
mation offered by ZED for our capture. This camera is modified
with an Antilatency HMD radio socket to track its position and ori-
entation actively.

3.2 Virtual–Physical Alignment. Similar to works such as
Refs. [82–85,58], AnnotateXR assumes the availability of 3D

virtual models to align with the physical models. This is a reason-
able assumption due to the availability of large CAD repositories:
GrabCAD [37], TraceParts [38], McMasterCarr [36] and reliable
3D scanning tools such as: Qlone [86], Cognex [87], and display.-
land [88].
To begin, virtual replicas (CAD) of the objects are made available

in the virtual space with an XR-UI. Objects within the workspace
can be categorized into either static environmental objects (such
as workbenches, mounts, clamps, etc.) or dynamic objects (such
as hand tools). Initially, all dynamic objects need to be tagged
with an Antilatency tracking module and aligned with the virtual
models for the calibration. This allows initial alignment of the
virtual and physical objects (refer Fig. 5(a)). To achieve this, we
use passthrough functionality of VR headset that lets user see the
real environment as well as the virtual objects allowing them
align the physical and virtual objects. Then user pinch (gesture)
the calibrate button to confirm (shown in Fig. 5(a)), which allows
for the virtual models to be aligned with the real objects during
the data collection. This virtual–physical alignment was previously
proposed in the work EditAR [84] to create a digital twin of real-
world actions for extended reality content generation. The position
and orientation of the static objects can be fixed by only initially
tagging and aligning with the corresponding virtual models (i.e.,
the static objects need not be continuously tracked throughout the
process).

3.3 Data Collection. AnnotateXR enables users (even
novices) to capture and auto-annotate data with just a task demon-
stration. Moreover, it reduces the amount of training required for
users to simultaneously generate 6DOF object tracking, object rec-
ognition, human–object, and object–object interaction annotations.

3.3.1 6DOFData. The compiled data set contains 6DOF infor-
mation for all objects of interest, head position, and hand pose infor-
mation. Along with the 6DOF information, an RGB image frame of
the events is captured from an external camera and stored. The
6DOF information is comprised of position vectors, rotation quater-
nions represented in the global coordinate space. Hand pose infor-
mation, position, and rotation for each individual joints are stored.
AnnotateXR also provides 4 × 4 model to camera (m2c) matrices
that represent the position and orientation of each object trans-
formed into the camera coordinate space. At every frame, Annota-
teXR stores all the aforementioned information in a
comma-separated values (CSV) file along with associated time-
stamps, frame numbers, and image file paths.

3.3.2 Segmentation Mask Generation. In addition to capturing
the real task via an RGB camera, AnnotateXR simultaneously gen-
erates instance segmentation masks with unique colors for each
object of interest. This process is conducted within a virtual 3D
space, where images are captured from a virtual camera that
mirrors the real camera’s orientation and position, allowing for
one-to-one equivalence between the generated segmentation
masks and the real images. To assign unique colors to each
object, unique materials are attached to each object of interest
when importing the virtual model. In addition to storing the
images, our system also stores the RGB color values of the materi-
als, enabling automatic segmentation of objects without requiring
any additional human intervention. This allows for efficient annota-
tion and segmentation of thousands of image frames.

3.3.3 Human–Object and Object–Object Interactions.
Human–object and object–object interactions are important [18]
for the division of the task into relevant steps. In the case of
spatial and sequential tasks this can be classified by determining
objects that are interacting with each other and objects that the
hands of the user are interacting with. AnnotateXR generates a
virtual replica of the task and relies on unity’s physics engine to
keep track of interactions between objects and hands in a virtual
replica of a spatial and sequential task, generating collision [89]Fig. 4 Hardware setup for AnnotateXR implementation
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Fig. 5 An AnnotateXR workflow for data generation for assembling a four-piece tangrams puzzle. In (a) and
(b), the user utilizes an AR passthrough application to align the physical model with a virtual replica. The user
then assembles the puzzle to generate a detailed dataset. A set of raw 2D images (c) is taken every frame via an
RGB camera. A digital twin (d) of the performed action is generated during the task, which is utilized to gen-
erate a one-to-one virtual–physical mapping image (e). These overlay images are then used to create semantic
segmentation masks (f). The collision data between hands and objects generates fine-grained human–object
(g) and object–object (h) interactions. This fine-grained information and the provided end and start conditions
are used to create coarse-grained action segmentations (i).
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information that is stored in a CSV file. This collision information,
combined with manual video action segmentation annotations (con-
stitute level 3 annotations as shown in Fig. 2), allows us to segment
the video into coarse-grained level 2 annotations as shown in Fig. 2.
This approach allows for the fine-grained detection of human–
object and object–object interactions, providing a novel way to clas-
sify and divide tasks into relevant steps. Please refer Algorithm 1 for
details.

Algorithm 1: Action segmentation from collision information

Inputs: CSV file
/* Start and end collision information of each step */
DECLARE list : array of size (N−1)
/* where N is number of steps in the video.
list contains information of number of
objects collide at the end of each step */

INITIALIZE step_start_time: array of size(N) = []
step_end_time: array of size(N) = []
/* where N is number of steps */

for frame = 0 To N do
object_colliding = x
/* where x is number of objects colliding in frame */

for i = 0 To length(list) do
if list[i] == object colliding then
step end time[i] = frame/fps
step start time[i+ 1] = frame/fps

end
end

end

3.3.4 Handling Tracking Loss. As mentioned earlier, Annota-
teXR relies on Antilatency for 6DOF object tracking and Oculus
SDK for hand tracking. Though both these are fairly reliable,
there are cases where tracking could be lost. In the case of Antila-
tency, if the sensors are directly occluded, there tend to be discrep-
ancies in the way the objects are tracked. In the case of hand
tracking, when the user moves their hands out of view of the
HMD, tracking can be lost. When such discrepancies in tracking
occur, the associated virtual models automatically snap to the
virtual world’s origin. Such discrepancies are unwanted since accu-
rate virtual–physical mapping is essential to generate precise 6DOF
and segmentation mask data sets. To address this, whenever the
tracking of the objects or the hands is lost, corresponding frames
are dropped, and a UI element is rendered (shown in Fig. 6) to

the user indicating that the tracking is lost. The users are then
instructed to re-perform the task.

3.4 Use Cases. The two tasks mentioned are examples of how
the proposed workflow can be used in a practical setting. In the first
task, a simulated action of welding two steel flat plates is shown,
while in the second task, a simulated action of drilling into a
block of wood is demonstrated. A sample of this can be found in
Fig. 7. In both cases, only a simulation of the action was performed
instead of the actual task. For the welding use case, this was done to
conform to safety standards. While for the drilling task, it was not
possible to track the moving spindle of the drill during task opera-
tion. Due to the complexity of the geometry involved, object align-
ment required multiple attempts.
These tasks were chosen to highlight the generalizability of the

workflow and to identify potential limitations (mentioned in
Sec. 6), as they are both spatial tasks that require detailed data
sets. The use of XR applications for data annotations is still an
area of active research, and in this work, a more straightforward
use case was explored using tangrams. This approach reduces the
complexity of the pre-processing steps involved in task perfor-
mance for the users and provides insight into the task heuristics
and workflow verification.

4 Evaluation
Since the goal of AnnotateXR is to produce auto-annotated data

for CV, we designed our study and utilized evaluation metrics used
by the CV community [7] to measure the quality of annotated data
obtained from AnnotateXR against human annotated data. We aim
to address

• What is the effect on performance of standard ML models
using annotations from AnnotateXR. We measured this
across three applications: object detection (refers to identifying
and localizing of the objects in the image), object segmentation
(refers to classify each pixel in the image), and action segmen-
tation (refers to temporally segment a video and each segment
is then classified to different action labels).

• What is the quality of annotated data across three applications
and the sensitivity of these annotations with respect to capture
distance, capture orientation, and occlusion percentage.

We chose to evaluate three CV applications (object detection,
segmentation, and action segmentation). Since action segmentation
incorporates information from three other parameters: H–O, O–O

Fig. 6 UI element to warn users of tracking loss during data
collection

Fig. 7 Example applications to show the generalizability of
AnnotateXR: (left) drilling and (right) simulated actions of
welding
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interactions, and 3D scene recording (refer Sec. 3.3.3 and Algo-
rithm 1), insights from action segmentation performance results
will lead to insights into these other parameters (H–O, O–O, and
3D). This approach is similar to recent CV experimentation of indi-
rect validation; for example, Action Genome [18] verifies the
importance of H–O interaction annotation by evaluating corre-
sponding action recognition performance. In addition, it would be
needless to make users manually annotate for all variations of
data leading to user fatigue.
Due to the lack of an equivalent baseline system and the nascent

stage of research into XR-based data annotation interfaces, we
limited our evaluation to 12 users. This was done as part of a “first-
use” study, aimed at the initial assessment of our AnnotateXR
system. A “first-use study” is a controlled experiment conducted
in a laboratory to evaluate the ease of use and effectiveness of a
tool or system [90].

4.1 Participants. We invited 12 participants (three female,
nine male) (P1–12) from a technical university’s graduate and
undergraduate programs. The mean age was 23.5 years. Five partic-
ipants had prior experience with machine learning or computer
vision, two of whom use ML-based CV algorithms for research.
The other three have taken courses in CV. Five users reported
using a VR headset (less than three times) within the past year,
four users had no experience with VR and three users reported
regular use of VR for games (ranging from once a week to once a
month).

4.2 Study Design. We designed a two-session study to collect
annotated data obtained under two conditions: (1) manual annota-
tion via current state-of-art tools, and (2) automated AnnotateXR
system. A four-piece tangrams puzzle was the chosen task for an
in-lab study. A simple task was chosen to keep user training time
to a minimum and reduce user fatigue (more complex applications
were explored as part of the use case demonstration discussed in
Sec. 3.4). This allow us to keep primary focus on system’s usability
and the interactions performed. Since the system requires multiple
interactions such as alignment and tracking, ensuring it is user-
friendly and intuitive is critical for its adoption and effectiveness.
Both sessions lasted for about 2 h and 15min, and the users were
compensated with a $30 Amazon gift card.
Procedure Session 1: Upon users’ arrival, an explanation of the

study was provided, followed by a signature on the consent form.
The researchers provided the users with instructions on the four-step
assembly of the tangrams puzzle. Users were instructed not to
change the sequence of steps and perform only one action at a
time (i.e., not to assemble two pieces at the same time). The users
were offered a 5min practice time, after explanation. Sample
puzzle pieces were provided alongside printed instructions for prac-
tice. After practice, the researchers tested each user to verify their
familiarity with the task.
After training, the users were brought into the Antilatency track-

ing space. The researchers first demonstrated AnnotateXR’s fea-
tures, such as virtual–physical alignment and data capture. The
users were provided with practice time to familiarize themselves
with the system. All users said they were comfortable using the
system with less than 5min of practice. During the study, the
users were asked to align the physical and the virtual models of
all four tangrams. After which, the users were asked to assemble
the tangrams in the same sequence as practiced. The users were
then asked to perform the task under 12 different capture conditions.
The 12 capture condition parameters were: four different occlu-

sion conditions ranging from 5%, 10%, 15%, and 20% occlusion
of objects as shown in Fig. 8 (the occlusion conditions are deter-
mined by the amount of surface area obscured by another object
in the tangrams); four different distances between capture (the
camera) and assembly environment (i.e., the desk) varied by a
delta of 20 cm, with starting distance of 30 cm; and four different

camera locations chosen to evaluate view variance at 0 deg, 45
deg, 90 deg, and 135 deg from a horizontal axis to the desk.
Procedure Session 2: In Session 2, we explained the concept of

semantic segmentation and action segmentation to the users, and
then demonstrated widely used annotation tools. We used super-
visely [14] to annotate the segmentation mask and Vidat [39] to
annotate action tasks in videos. Each user was provided with one
image and one video for practice. After training, the users were
asked to annotate two randomly chosen RGB frames from the
data collected in the previous session. Each user was asked to anno-
tate two frames/images per case for a total of 24 images, followed
by one video per case for action segmentation. Segmentation
mask labels and action labels were created before the study.
Measures
Prior to the study, the participants were asked to fill out a demo-

graphic questionnaire. Upon completing the data capture in
Session 1, a System Usability Scale (SUS) [91] survey was admin-
istered to the users to test the usability of AnnotateXR. In addition
to this, during Session 1 we collected the time taken for virtual–
physical alignment, total number of data points collected and time
taken for data collection. During Session 2, the time taken for
manual annotation of images and videos was collected. After
Session 2, the researchers showed the users visually generated seg-
mentation masks and action segmentation data for both the manual
and auto-annotated cases. Finally, a semi-structured interview was
conducted to collect qualitative feedback on both systems.

5 Results and Discussion
We performed a comparative analysis to evaluate the data’s

quality and performance. Finally, we report the results along with
the manual annotation time, total amount of data collected, usabil-
ity, and qualitative results in the following section.

5.1 Data Collection. AnnotateXR was able to generate a total
of 112,737 semantically segmented and labeled image frames
during the entire course of the study, while users performed the
assembly task for a total of 66.55min (12 users). 144 videos were
also annotated for action segmentation simultaneously by our
system. The mean time for virtual–physical alignment for four
objects with AnnotateXR by the users was M = 1.2 min;
SD = 0.86. In the second session, the users manual annotation
time for semantic segmentation per image were M = 1.61 min,
SD = 0.93 for occlusion variation; M = 1.19 min, SD = 0.58 for
distance and M = 1.06 min, SD = 0.52 for orientation. The annota-
tion time for action segmentation are: M = 1.29 min, SD = 0.40.
The user’s manual annotation time varied based on the capture

parameters. The users spent more time annotating occluded data
than the other conditions. This observation correlates with prior
work [52] that reported difficulty with annotating segmentation
masks over objects in a cluttered scene. However, by automating
the annotation, similar to AnnotateXR, it is possible to circumvent
this limitation with the variation of capture constraint.

5.2 Performance. Object Detection: For the performance
evaluation we used Faster RCNN [92], a commonly used object
detector pre-trained on MS COCO [93] data set. A mean average

Fig. 8 Occlusion conditions during user study: (a) 5 % occlu-
sion and (b) 20 % occlusion
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precision metric is used to evaluate model performance with the
intersection of union (IOU) threshold as 0.5 and 0.75 (well accepted
by the CV community [7]). The data set was split as 70:30 for
training and testing. The Faster RCNN model was trained on 200
users annotated images with 88 images for testing = 288
(2 per case × 12 cases × 12 users) and corresponding system
annotated images until convergence; each image contained four
tangram objects. These results are reported in Sec. 5.2. A paired
sample t-test between user and AnnotateXR IOU for 0.5 and 0.75
were: t(87) = 1.47; p = 0.14 > 0.05; and t(87) = 1.87;
p = 0.06 > 0.05; respectively.
Object Segmentation: The evaluation for segmentation was

similar to object detection, except the model was a commonly
used pre-trained mask RCNN [94] on MS COCO [93]. These
results are reported in Sec. 5.2 and a paired sample t-test between
user and AnnotateXR IOU was t(87) = 1.35; p = 0.18 > 0.05.
Action Segmentation: Out of 144 videos collected from the users

(12 users × 12 cases), 100 videos were set for training and the rest
for testing (70:30). We separately trained the Bi-LSTM [95] model
until convergence on both the user and system annotations. The
gating mechanism in LSTM implicitly learn temporal dynamics
and a representation within and between action [96], making it
ideal for evaluation. We used frame level classification accuracy
(widely accepted by the CV community [97]) for action segmenta-
tion evaluation. Results reported in Sec. 5.2 and a paired sample
t-test user and AnnotateXR data was: t(43) = 0.47; p = 0.63 > 0.05.
Discussion: From the results, we realize that there is no statistical

difference in performance between manual user annotation and
auto-system annotated data across all three CV applications. This
insight is interesting as this suggests that the data collected with
tools such as AnnotateXR are able to perform just as well as cur-
rently commercially used interfaces. This coupled with the capabil-
ity of AnnotateXR to handle multi-modal large-scale data
annotations highlights our system strength and also suggests that
AnnotateXR can have a significant impact the CV community to
develop their models.

5.3 Quality. We evaluate the annotation quality by first com-
paring it against a “standardized annotation” scrupulously created
by the authors. It is similar to evaluation protocols established in
prior work LabelAR [53], with “gold standard” labels. The gold
standard labels were collected by three researchers, each with 1–3
years of experience in collecting and annotating computer vision
datasets. Each image and video was individually annotated by

these researchers, with final annotations determined through a con-
sensus discussion among all three. This rigorous process ensures the
reliability and accuracy of the annotations, providing a gold stan-
dard benchmark for evaluating the performance of the AnnotateXR
system. We are expanding this approach to evaluate quality annota-
tion metrics beyond labeling to include semantic segmentation of
objects and action segmentation. Hence, all 288 image frames and
144 videos were carefully annotated by the researchers.
We used a bounding box IOU metric between our standardized

and manual annotations and compared the results with the same
IOU metric between standardized and AnnotateXR annotations
for object detection. A similar analysis was performed between
the three groups’ annotations for semantic and action segmentation,
but the metrics used were pixel-wise IOU and frame-level classifi-
cation accuracy, respectively.
We then performed a paired sample t-test on the corresponding

data capture conditions (occlusion, distance, and view orientation)
and presented the results as follows:
Object Detection Occlusion t(95) = 1.87; p = 0.06 > 0.05;

Distance t(95) = 1.91; p = 0.06 > 0.05;
View orientation t(95) = 1.77; p = 0.08 > 0.05;
Object Segmentation Occlusion t(95) = 1.90; p = 0.06 > 0.05;

Distance t(95) = 0.56; p = 0.36 > 0.05; orientation t(95) = 1.8;
p = 0.07 > 0.05;
Action Segmentation t(143) = 1.1; p = 0.27 > 0.05; (Analyzed

together as capture conditions don’t play a role for segmenting
videos)
Discussion:We realized no statistical difference in IOU accuracy

and frame-level classification accuracy based on the analysis. The
marginally higher p-value, above 0.05, may be due to the limited
quantity of manually annotated data. Consequently, it might be
challenging to derive meaningful insights regarding annotation
quality. Nonetheless, we were still able to use the auto-annotated
data to train a Faster RCNN and Bi-LSTM model, as described in
Sec.5.2. This leads us to conclude that auto-annotated data
remains usable. Our finding is still evidence that AnnotateXR can
produce annotated data with reduced human effort while still main-
taining the quality of the data that is usable for training ML models,
despite the variation in data capture conditions (occlusion, capture
distance, and view orientation).

5.4 Usability and Qualitative Feedback. The user’s reported
an M = 91; SD = 6.86 SUS (refer Table 2). This score is promising
since an average score of 70, and above translates to “excellent”

Table 2 Results from the user study: virtual–physical alignment time; number of data points generated using AnnotateXR; manual
annotation time for images and video action segmentation under various capture conditions (occlusion, distance, and orientation),
and SUS scores

Manual annotation

Time to annotate images (min) Time to annotate video (min)

Occlusion Distance Orientation Occlusion Distance Orientation

User no. Alignment time (min) No. of datapoints AVG SD AVG SD AVG SD AVG SD AVG SD AVG SD SUS

1 1.42 6864 3.86 1.72 3.68 0.66 3.40 0.61 1.61 0.14 1.35 0.21 1.15 0.07 90.0
2 0.42 8541 5.79 0.80 4.30 0.63 3.32 0.84 1.60 0.05 1.71 0.09 1.53 0.29 85.0
3 0.75 9444 5.48 1.59 2.83 0.43 3.29 0.17 2.24 0.77 1.48 0.05 1.56 0.41 100.0
4 0.58 7305 5.94 1.20 4.13 0.33 3.70 0.48 1.22 0.07 1.06 0.08 0.90 0.13 97.5
5 1.42 13,652 2.88 1.19 2.11 0.09 2.15 0.14 1.84 0.35 1.38 0.07 1.41 0.20 100.0
6 1.25 7703 2.16 0.26 1.74 0.08 1.69 0.20 1.63 0.47 1.19 0.19 0.91 0.04 85.0
7 1.00 13,205 3.26 0.81 2.31 0.86 1.60 0.13 1.53 0.23 0.99 0.21 0.91 0.03 82.5
8 0.58 8518 1.59 0.14 1.43 0.10 1.26 0.03 1.42 0.10 0.98 0.21 0.98 0.08 97.5
9 3.58 9210 2.37 0.03 1.85 0.47 1.43 0.11 1.78 0.48 1.12 0.15 1.11 0.08 85.0
10 0.42 9522 2.31 0.22 1.67 0.16 1.44 0.12 1.50 0.22 1.13 0.26 0.98 0.15 97.5
11 1.58 6586 1.51 0.24 0.95 0.05 0.83 0.10 1.23 0.34 0.95 0.09 1.08 0.54 85.0
12 1.50 12,187 1.59 0.46 1.56 0.21 1.38 0.20 0.98 0.08 1.04 0.18 1.31 0.25 87.5

Note: We provide the manual annotation time for users’ image and video action segmentation, which will provide a helpful benchmark for future work.
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usability, as indicated in Bangor et al. [98]. Qualitative feedback
obtained from users in post-study interviews also backs the quanti-
tative score. All 12 participants stated they would prefer to use
AnnotateXR over manual annotation due to its ease of use and auto-
mated annotation approach. P3: “Mentally [cognitively], since I was
performing repeated task, I got irritated with the manual approach
”; P5: “I will prefer your [AnnotateXR] system so that I don’t have
to do the work.” One of 12 participants commented they would
prefer a manual method for a small amount of data. P4: “For
very, very few images, I might do it manually instead of setting
up. But if I had to do a lot of data, I would like it automated.”
The participants were largely optimistic about AnnotateXR. In

addition, 7 of 12 participants commented positively on applying
extended reality for automating annotations. P11: “It’s a fascinating
system for sure. Fascinating application. Very cool.” P4: “I think
it’s really cool. I think I can see the benefit, or we will have
someone sit and do it manually versus having something done on
real time.” Comments on recommendations for improvement
revolved around two categories: “tracking loss” (four participants)
and “providing visual feedback for virtual–physical alignment”
(three participants) both have been present in limitation and
future work (Sec. 6).
The participants with prior experience with data annotation were

able to provide additional insight into the effectiveness of Annota-
teXR’s workflow. In particular, they noted how quick the in situ
data capture technique was compared to the post-hoc protocol
that is currently prevalent in the field. This result is similar to the
findings of recent work by Zhou and Yatani [65] on gesture-aware
in situ object annotations. However, these users also mentioned the
challenges of creating an elaborate tracking system for their appli-
cations. Despite this limitation, they believed that the benefits of
the in situ approach outweigh the additional effort required to
setup the tracking system. Overall, the feedback from these partic-
ipants suggests that AnnotateXR’s workflow is both effective and
efficient for large-scale data annotation tasks.

6 Limitation and Future Work
In our study, we focused on exploring the potential of using XR

applications for data annotations in a simple use case. However, we
acknowledge that there are limitations to our approach, such as the
assumption of ideal lighting and the limitations of sensor size and
occlusion. In the following section, we will outline the limitations
of our approach and provide recommendations for future research
directions in the use of XR-based annotation tools (Table 3).
Object tracking and size: Direct occlusion of sensors or HMD

prevents AnnotateXR from tracking the objects or hand pose. We
currently handle this by dropping frames from recording (refer
Sec. 3.3.4) and allowing users to redo the task with a UI prompt
(refer Fig. 6). Four of the twelve participants mentioned this limita-
tion during the post-study interview. P8: “When I grabbed the
object but accidentally touched the sensor, I was supposed to
redo the task. I wish that could be better.”Another limitation is con-
cerning object size and flexible objects. Due to the size of the
sensors, objects smaller or comparable to sensor size
(18mm × 66mm) would not be compatible with the system.
These are current inherent limitations of sensor-based spatial track-
ing technology. We believe with advances in sensing hardware such
as smaller tracking setup, markers, and electronics, these limitations

can be addressed. In addition, our use of sensor-based protocols for
data collection is in line with previous research in the field
[55,56,78,95]. The users during the study were also asked to treat
the sensors as part of the object. While previous work has explored
removing sensors from RGB pixel information such as Ref. [55],
we did not pursue this in our study as it is not the focus of our work.
Object Alignment: Three of the twelve participants commented

on providing additional features for virtual–physical alignment.
P12: “I would recommend while doing the alignments, some sort
of feedback [referring to visual widget] would be nice.” However,
these suggestions did not limit users from creating usable annotated
data sets from AnnotateXR, as confirmed by results presented
earlier (refer Secs. 5.3 ans 5.2). Prior work in human computer inter-
action (HCI) has explored virtual–physical alignment for AR crea-
tion in SnapToReality [99] and precise virtual model alignment for
VR in Hayatpur et al. [100]. Incorporating such design principles in
AnnotateXR workflow might improve the performance and quality
of annotations.
Human Pose: Currently, AnnotateXR can partially capture

human pose: head and hand pose. Although this would suffice for
many real-world applications [101], our system can be improved
by capturing the entire human pose better with advances in XR
HMD hardware such as wearables [102,103] or the availability of
smaller size sensors, leading to higher quality human pose annota-
tions. Alleviating these limitations will lead to data sets of multiple
synthetic humans with realistic poses and many human–object
interactions. Furthermore, these challenging data sets can support
research in higher performance algorithms to tackle challenging
problems in computer vision related to human pose-based
interactions.
User Study: In our current user study setup, we conducted a con-

trolled “first-use” study with 12 participants [90] to establish a base-
line for the system’s performance and to gather initial feedback.
While this study provided valuable insights, we recognize the
importance of expanding our research to enhance the robustness
and applicability of the AnnotateXR system.
Future studies should involve a larger number of participants,

complex tasks, diverse objects, and varied environmental condi-
tions. Conducting open studies with the AnnotateXR will allow
us to better understand how the system manages real-world com-
plexities and diverse scenarios. This will enable a comprehensive
evaluation of AnnotateXR’s capabilities across various real-world
application domains. The study also evaluates computer vision
algorithms using data annotated by humans and collected via Anno-
tateXR, providing comparative insights. Future work should
include comparisons of annotation quality with existing datasets
and assessments of computer vision algorithm performance.

7 Conclusion
This work introduces AnnotateXR, an extended reality applica-

tion capable of in situ collection and annotation of data with a
single demonstration to support several CV applications. Annota-
teXR relies on the virtual–physical alignment to generate a digital
twin coupled with hand tracking information offered by modern
HMDs to obtain annotation cues. AnnotateXR uses the physical
and virtual mapping information to generate segmentation masks
for images and H–O/O–O interaction information to identify task
actions automatically.

Table 3 Results of performance evaluation between AnnotateXR and manual user annotations

Object detection Object segmentation Action segmentation
(mIOU > 0.5) (mIOU > 0.75) mIOU Accuracy

User 0.48 0.23 48.6 53.5
System 0.49 0.21 49.7 54.1

Note: For three applications: object detection, object segmentation, and action segmentation.
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With the help of a user study, we showed that AnnotateXR could
simultaneously collect and annotate over 112,000 image segmenta-
tion and 144 video based action segmentation in about 67min.
Extrapolating average 1.29min/data point, it would take over
2000 h to manually collect and annotate the same dataset (based
on mean user annotation rate). We performed a comparative analy-
sis across three annotation applications: object detection, semantic
segmentation, and action segmentation. Our study also collected
data under various capture conditions that are present in real
world such as varying occlusion, distance, and view orientation.
AnnotateXR across all these conditions and is a promising tool
for generating large-scale customized data for various CV
applications.
We also have discussed limitations of the system and identified

potential future research directions for the HCI and CV community
to explore. We believe extended reality applications such as
AnnotateXR have great potential for auto-annotation of data,
which can aid in quicker advancement and deployment of research-
based ML and CV approaches.
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