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Abstract

In this paper, we study the deep Ritz method for solving the linear elasticity equation from a numerical analysis perspective.
modified Ritz formulation using the H1/2(ΓD) norm is introduced and analyzed for linear elasticity equation in order to deal

with the (essential) Dirichlet boundary condition. We show that the resulting deep Ritz method provides the best approximation
among the set of deep neural network (DNN) functions with respect to the “energy” norm. Furthermore, we demonstrate that
the total error of the deep Ritz simulation is bounded by the sum of the network approximation error and the numerical
integration error, disregarding the algebraic error. To effectively control the numerical integration error, we propose an adaptive
quadrature-based numerical integration technique with a residual-based local error indicator. This approach enables efficient
approximation of the modified energy functional. Through numerical experiments involving smooth and singular problems, as
well as problems with stress concentration, we validate the effectiveness and efficiency of the proposed deep Ritz method with
adaptive quadrature.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decade, Deep Neural Networks (DNNs) have achieved remarkable success in computer vision, natural
anguage processing, and many other machine learning (ML) applications. More recently, scientific machining
earning methods based on DNN have also been applied to modeling and solving complex engineering systems.
hese methods can be broadly divided into three categories based on how the DNN is used: (i) purely data-driven

approaches, which use supervised ML to create a surrogate model that regresses a physical model from a given
simulation dataset or experimental observations [1–6]; (ii) physics-enhanced approaches, which use semi-supervised
ML to implement physical laws as a regularizing term to solve a target regression problem with limited observation
data [7–9] ; and (iii) physics-driven approaches, which impose physics into the loss functional and training process
nd rely on unsupervised ML to directly solve various types of PDEs [10–17]. Mathematically speaking, purely
ata-driven approaches can be thought of as methods for finding the best curve fit through the data points, using
echniques such as least-squares regression. Physics-driven approaches, on the other hand, typically involve solving
DEs using numerical optimization methods. Numerous studies have demonstrated that DNNs possess highly
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desirable approximation properties that are not available in commonly used finite element methods. One such
advantage is that a DNN can adapt its physical partition to match the underlying function being approximated [18–
20]. In other words, a DNN model can dynamically adjust its function representation, akin to a moving mesh
method, but without the necessity of a geometric mesh.

Due to the fact that the set of DNN functions does not form a linear space, existing physics-driven methods
re typically based on either the energy minimization formulation [13,21,22] or various least-squares formula-
ions [11,12,14,15]. Energy minimization formulations are particularly suitable for problems that possess a natural

inimization principle, such as many problems encountered in solid mechanics. On the other hand, the effectiveness
f least-squares formulations depends on the specific principle employed. For example, the deep Galerkin method
DGM) [11] and the physics-informed neural networks (PINN) [14] rely on the discrete l2 norm least-squares

principle, which applies to differential equations, and boundary and initial conditions. However, these methods suffer
from suboptimal approximation and are limited to problems with H2-smooth solutions, thereby excluding problems
with geometric or interface singularities. To overcome these limitations, well-designed least-squares methods for
PDEs can be employed, as described in books such as [23] and papers such as [24,25] for linear elasticity. Recently,
the DNN-based first-order system least-squares (FOSLS) formulation has been utilized for the second-order elliptic
PDEs [15,26].

In this paper, we aim to investigate the deep Ritz method for solving the linear elasticity equation from a numer-
ical analysis perspective, as well as to introduce a deep Ritz method with adaptive quadrature. Originally proposed
in [13] for scalar elliptic PDEs, the deep Ritz method employs DNNs as the class of approximating functions
and is based on the Ritz formulation of the underlying PDE. However, unlike finite element approximations, the
deep Ritz method encounters two fundamental challenges arising from the characteristics of DNN functions. The
first challenge pertains to enforcing the Dirichlet boundary condition effectively. The second challenge involves
devising a numerical integration scheme that plays a crucial role in ensuring the accuracy and robustness of the
DNN approximation to the solution of the underlying problem.

Regarding the first issue, there are mainly two approaches. One is the Nitsche method [27,28] that converts the
Dirichlet boundary condition into the Robin boundary condition by penalizing the Neumann boundary condition, and
the penalization constant has to be sufficiently small. This approach is equivalent to penalize the energy functional
by the L2 norm of the residual of the Dirichlet boundary condition [13]. The other one is to enforce the Dirichlet
boundary condition exactly through an auxiliary continuous function vanishing on the Dirichlet boundary [29].
In this paper, we explore the penalization method with H 1/2 norm that guarantees stability of the perturbed
problem. Specifically, the standard minimization formulation is modified by adding the H1/2 norm of the residual
of the Dirichlet boundary condition to the energy functional. By using a fundamental inequality of Korn’s type in
H1(Ω ) (see, e.g., [30]), the modified minimization problem is shown to have a unique solution and the solution
continuously depends on the data (see Proposition 1). Based on the modified minimization problem, the deep Ritz
method is defined by minimizing the modified energy functional over the set of DNN functions and the deep Ritz
approximation with the exact integration and differentiation is proved to be the best approximation in the modified
energy norm (see Theorem 1).

An evaluation of the modified energy functional includes integration over both the domain and the boundary, as
well as differentiation at integration points. Naturally, the integration is approximated by quadrature-based methods,
since the dimension of the linear elasticity problem is at most four (including space and time). Under a reasonable
assumption on numerical integration, we demonstrate that the total error in the energy norm is bounded by the
approximation error of the set of DNNs plus the numerical integration error (see Theorem 2). It is important to note
that solving the minimization problems under the deep Ritz formulation using DNNs gives rise to a high-dimensional
and non-convex optimization problem. However, the algebraic error introduced during the solving/training process
falls beyond the scope of this discussion.

In the finite element setting, it is trivial to control the numerical integration error because the unknown
finite element approximation is a piece-wise polynomial on a fixed triangulation of the computational domain.
However, controlling the numerical integration error for the deep Ritz method is difficult since the unknown DNN
approximation is a composition function with several layers. Moreover, the accuracy of the DNN approximation
is determined by the quality of numerical integration mesh on which the solution can be approximated well by a
selected quadrature rule [31]. To overcome this obstacle, we propose an adaptive quadrature method that refines

integration mesh and quadrature points adaptively. A modified residual-based local error indicator is used for
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marking subdomains to be refined. The effectiveness and efficiency of the deep Ritz method with adaptive quadrature
is studied for several benchmarks.

The rest of the paper is organized as follows. Section 2 introduces the modified Ritz formulation for linear
lasticity problems and establishes its well-posedness (existence, uniqueness, and stability). Section 3 describes
he discretization of the problem with DNN functions and shows the upper bounds of the approximation error. In
ection 4, we propose the adaptive quadrature method and introduce the corresponding local error indicator. The

ast two sections present the numerical results and conclude the paper.
We will use the standard notation and definitions for the Sobolev space H s(Ω )d and H s(Γ ) for a subset Γ of

he boundary of the domain Ω ∈ Rd . The standard associated inner product and norms are denoted by (·, ·)s,Ω,d

nd (·, ·)s,Γ ,d and by ∥ · ∥s,Ω,d and ∥ · ∥s,Γ ,d , respectively. When there is no ambiguity, the subscript Ω and d in
he designation of norms will be suppressed. When s = 0, H0(Ω )d coincides with L2(Ω )d . In this case, the inner
roduct and norm will be denoted by (·, ·) and ∥ · ∥.

. Modified Ritz formulation of linear elasticity

Let Ω be a bounded domain in Rd (d = 2 or 3) with Lipschitz boundary ∂Ω = ΓD ∪ΓN , where ΓD and ΓN are
isjoint. Let n be the outward unit vector normal to the boundary. Denote by u and σ the displacement field and
he stress tensor. Consider the following linear elasticity problem{

−∇ · σ = f , in Ω ,

σ (u) = 2µϵ(u) + λ∇ · u δd×d in Ω
(1)

ith boundary conditions u
⏐⏐
ΓD

= g
D

and
(
σ n
)⏐⏐

ΓN
= g

N
, where ∇· is the divergence operator; ϵ(u) =

1
2

(
∇u + (∇u)T

)
is the strain tensor; the f , g

D
, and g

N
are given vector-valued functions defined on Ω , ΓD , and

ΓN , representing body force, boundary displacement and boundary traction force condition respectively; δd×d is the
d-dimensional identity matrix; µ and λ are the material Lamé constants.

Since it is difficult for directly constraining neural network functions to satisfy boundary conditions (see [13]),
as in [15], we enforce the Dirichlet (essential) boundary condition weakly using a half norm through the energy
functional. The modified Ritz formulation of problem (1) is to find u ∈ H1(Ω )d such that

J (u) = min
v∈H1(Ω)d

J (v), (2)

where the modified energy functional is given by

J (v) =
1
2

{∫
Ω

(
2µ |ε(v)|2 + λ |∇ ·v|

2) dx + γ ∥v − g
D
∥

2
1/2,ΓD

}
− ( f , v) − (g

N
, v)0,ΓN . (3)

ere, γ = µγD is a penalization constant scaled by µ, and ∥ · ∥1/2,ΓD denotes the Sobolev–Slobodeckij norm given
y

∥v∥1/2,ΓD =

(∫
ΓD

|v|
2d S +

∫
ΓD

∫
ΓD

|v(x) − v(x′)|2

d(x, x′)d
d S(x)d S(x′)

)1/2

, (4)

here d(x, x′) is the geodesic distance between x and x′ in ΓD . Let

a(u, v) = 2µ(ϵ(u), ϵ(v)) + λ(∇·u, ∇·v) + γ (u, v) 1
2 ,ΓD

and f (v) = ( f , v) + (g
N
, v)0,ΓN + γ (g

D
, v) 1

2 ,ΓD
,

hen the variational form of (2) is to finding u ∈ H1(Ω )d such that

a(u, v) = f (v), ∀ v ∈ H1(Ω )d . (5)

roposition 1. Problem (2) has a unique solution u ∈ H1(Ω )d . Moreover, the solution u satisfies the following a
riori estimate:

∥u∥ ≤ C
(
∥ f ∥ + ∥g ∥ + ∥g ∥

)
. (6)
1,Ω −1,Ω D 1/2,ΓD N −1/2,ΓN

3
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f

Fig. 1. Deep Ritz NN architecture. A fully connected L-layer network is employed to generate the map from an arbitrary spatial point
x in Ω to its displacement u(x), numerical operators are used to approximate the gradient, divergence and integral in the discrete energy
unctional J (uN ) as the Ritz loss.

With the following Korn inequality (see, e.g., [30]),

∥v∥1,Ω ≤ C
(
∥ε(v)∥0,Ω + ∥v∥1/2,ΓD

)
.

the proof of the proposition is standard.

3. Deep Ritz neural network method

In this section, we describe the deep Ritz method which includes a standard fully connected DNN as the class
of approximating functions and the discrete energy functional JT (v) as an approximation of the energy functional
J (v) by numerical integration and differentiation. The structure of the deep Ritz NN is illustrated in Fig. 1.

3.1. Deep neural network

For j = 1, . . . , l − 1, let N ( j)
: Rn j−1 → Rn j be the vector-valued ridge function of the form

N ( j)(x( j−1)) = τ (ω( j)x( j−1)
− b( j)) for x( j−1)

∈ Rn j−1 , (7)

where ω( j)
∈ Rn j ×n j−1 and b( j)

∈ Rn j are the respective weights and bias to be determined; x(0)
= x; and τ (t) is

a non-linear activation function. There are many activation functions such as ReLU, ReLUp, sigmoids, sinusoidal,
and hyperbolic tangent. (see, e.g., [32]).

Let ω(l)
∈ Rd×nl−1 and b(l)

∈ Rd be the output weights and bias. Then a l-layer neural network generates the
following set of vector fields in Rd

MN (l)=
{
ωl(N (l−1)

◦· · ·◦N (1)(x)
)
− bl

: ω( j)
∈ Rn j ×n j−1 , b( j)

∈ Rn j for all j
}
, (8)

where the symbol ◦ denotes the composition of functions.
This class of approximating functions is rich enough to accurately approximate any continuous function defined

on a compact set Ω ∈ Rd (see [33,34] for the universal approximation property). However, this is not the main
reason why NNs are so effective in practice. One way to understand its approximation power is from the viewpoint
of polynomial spline functions with free knots [35]. The set MN (l) may be regarded as a beautiful extension of
free knot splines from one dimensional scalar-valued function to multi-dimensional vector-valued function. It has
been shown that the approximation of functions by splines can generally be dramatically improved if the knots are
free.

3.2. Discretization

Note that neural network functions in MN (l) are nonlinear with respect to the weights {ω( j)
}

l−1
j=1 and the bias

( j) l−1

{b } j=1. This implies that it is difficult to discretize (1) by the conventional approach based on the corresponding
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variational formulation (5). Instead, discretization using NNs should be based on an optimization formulation. In
this paper, we employ the Ritz formulation (2) that minimizes the energy functional.

To approximate the solution of (1) using a neural network, the deep Ritz method minimizes the energy functional
ver the set MN (l), i.e., finds uN ∈ MN (l) ⊂ H1(Ω )d such that

J (uN ) = min
v∈MN (l)

J (v). (9)

Since M1
n(l) is not a linear space, problem (9) may have many solutions.

heorem 1. Let u ∈ H1(Ω )d be the solution of problem (5), and let uN ∈ MN (l) be a solution of (9). Then we
ave

∥u − uN ∥a = inf
v∈MN (l)

∥u − v∥a, (10)

here ∥v∥a :=
√

a(v, v) is the energy norm.

roof. Since uN ∈ MN (l) ⊂ H1(Ω )d , (10) is a direct consequence of

∥u − uN ∥
2
a = 2

(
J (uN ) − J (u)

)
≤ 2 (J (v) − J (u)) = ∥u − v∥

2
a

or any v ∈ MN (l). □

Theorem 1 indicates that uN is the best approximation with respect to the energy norm ∥ · ∥a , within the neural
etwork functions class MN (l).

.3. Numerical integration

Evaluation of the energy functional requires integration and differentiation which are often computed numerically
n practice. This section discusses numerical integration schemes suitable for neural network functions. To this end,
et us partition the domain Ω by a collection of subdomains

T = {K : K is an open subdomain of Ω}

uch that

Ω̄ = ∪K∈T K̄ and K ∩ T = ∅, ∀ K , T ∈ T .

hat is, the union of all subdomains of T equals to the whole domain Ω , and any two distinct subdomains of T
ave no intersection. The resulting partitions of the boundary ΓD and ΓN are

ED = {E = ∂K ∩ ΓD : K ∈ T } and EN = {E = ∂K ∩ ΓN : K ∈ T }.

When using a smooth activation function such as sigmoid, ReLUp etc., neural network functions belong to at
least C1(Ω ), i.e.,

MN (l) ⊂ C1(Ω ). (11)

In this case, as in [15] numerical integration may use the composite quadrature rule, such as composite mid-point,
trapezoidal, Simpson, Gaussian, etc., defined on an artificial partition T of the domain Ω . Here the artificial partition
refers its independence of the underlying geometry of the approximating function and it allows us to partition the
domain with few restrictions. With a chosen numerical integration, differentiation is evaluated at quadrature points
and can be done by either numerical differentiation with relatively small step size or automatic differentiation.

For simplicity of presentation, we describe the composite mid-point rule for interior and boundary integration in
(3) and (4) in two dimensions. Let x and x be the centroids of T ∈ T and E ∈ E for S = D and N . For any
T E S

5
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P

integrand v(x), the composite “mid-point” quadrature rule over the domain Ω and the boundary ΓS are given by∫
Ω

v(x) dx ≈

∑
T ∈T

v(xT ) |T | and
∫
ΓS

v(x) ds ≈

∑
E∈ES

v(xE ) |E |,

where |T | and |E | are the respective volume of element T ∈ T and area of boundary element E ∈ ES .
Let the Dirichlet boundary ΓD be the union of several disjoint Γ k

D for k = 1, . . . , I . On each Γ k
D , to approximate

the Sobolev–Slobodeckij semi-norm in two dimensions, denote by v[x; x′] the integrand in the second term of (4)
as the divided difference of a vector-valued function v(x) along Γ k

D , where each component of v[x; x′] is given by

vi [x; x′] =

⎧⎪⎪⎨⎪⎪⎩
dvi (x)
dΓ k

D
, x′

= x,

vi (x) − vi (x′)
d(x, x′)

, x′
̸= x.

Then we have∫
Γ k

D

∫
Γ k

D

|v(x) − v(x′)|2

d(x, x′)2 ds(x)ds(x′) ≈

∑
E∈Ek

D

∑
E ′∈Ek

D

|v[xE ; x
E ′ ]|

2
|E | |E ′

|. (12)

Define the discrete bilinear and linear forms, aT (·, ·) and fT (·), by

aT (u,v) = 2µ
∑
T ∈T

(
ε(u) : ε(v)

)
(xT ) + λ

∑
T ∈T

(
∇·u∇ · v

)
(xT )

+µγD

⎧⎪⎨⎪⎩
∑

E∈ED

(u · v)(xE ) +

I∑
k=1

∑
E∈Ek

D

∑
E ′∈Ek

D

u[xE ; x
E ′ ] · v[xE ; x

E ′ ]|E∥E ′
|

⎫⎪⎬⎪⎭
fT (v) =

∑
T ∈T

( f ·v)(xT) +

∑
E∈EN

(g
N
·v)(xE )

+µγD

⎧⎪⎨⎪⎩
∑

E∈ED

(g
D
·v)(xE ) +

I∑
k=1

∑
E∈Ek

D

∑
E ′∈Ek

D

g
D

[xE ; x
E ′ ]·v[xE ; x

E ′ ]|E∥E ′
|

⎫⎪⎬⎪⎭ .

Define the discrete counterpart of the energy function J (·) by

JT (v) =
1
2

aT (v, v) − fT (v).

Then the deep Ritz approximation to the solution of (1) is to seek uT ∈ MN (l) such that

JT (uT ) = min
v∈MN (l)

JT (v). (13)

To understand the effect of numerical integration, we extend the first Strang lemma for the Galerkin approximation
over a subspace (see, e.g., [36]) to the Ritz approximation over a subset.

Theorem 2. Assume that there exists a positive constant β independent of MN (l) such that

β ∥v∥
2
a ≤ aT (v, v), ∀ v ∈ MN (l). (14)

Let u be the solution of (2) and uT a solution of (13). Then we have

∥u − uT ∥a ≤
2
β

sup
w∈M2N (l)

| f (w) − fT (w)|
∥w∥a

+
2 + β

β
inf

v∈MN (l)

{
∥u − v∥a + sup

w∈M2N (l)

|a(v, w) − aT (v, w)|
∥w∥a

}
. (15)

roof. For any v ∈ MN (l) ⊂ H1(Ω )d , we have
JT (uT ) ≤ JT (v) and a(u, uT − v) = f (uT − v).
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It follows from assumption (14) and the definition of JT (·) that

β

2
∥uT − v∥

2
a ≤

1
2

aT (uT − v, uT − v)

= JT (uT ) − JT (v) + fT (uT − v) − aT (v, uT − v) ≤ fT (uT − v) − aT (v, uT − v)

=

(
fT (uT − v) − f (uT − v)

)
+

(
a(v, uT − v) − aT (v, uT − v)

)
+ a(u − v, uT − v).

hich, together with the triangle and Cauchy–Schwarz inequalities, implies
β

2
∥uT − v∥a ≤

| fT (uT − v) − f (uT − v)|
∥uT − v∥a

+
|a(v, uT − v) − aT (v, uT − v)|

∥uT − v∥a
+ ∥u − v∥a

≤ sup
w∈M2N (l)

| fT (w) − f (w)|
∥w∥a

+ sup
w∈M2N (l)

|a(v, w) − aT (v, w)|
∥w∥a

+ ∥u − v∥a .

ombining the above inequality with the triangle inequality

∥u − uT ∥a ≤ ∥u − v∥a + ∥v − uT ∥a

nd taking the infimum over all v ∈ MN (l) yield (15). This completes the proof of the theorem. □

This theorem indicates that the total error in the energy norm is bounded by the approximation error of the set
f neural network functions plus the numerical integration error.

. Adaptive quadrature method

As indicated in Theorem 2, numerical integration plays an important role in NN-based numerical methods. How
o control the numerical integration error for the deep Ritz method is a non-trivial matter because the unknown
NN approximation is a composition function with several layers. To overcome this obstacle, in this section we
ropose adaptive Ritz method that refines integration mesh adaptively.

Numerical integration defined in the previous section is based on an artificial partition T of the domain Ω . This
partition may not capture well the variation of the underlying solution and hence (13) would possibly lead to an
inaccurate approximation.

One may choose a uniform partition with sufficient fine mesh; however, it is cost inefficient. In this section, we
describe an adaptive quadrature algorithm on numerical integration introduced in [18] under the assumption that
the neural network is large enough to approximate the solution accurately.

A key ingredient for an adaptive quadrature scheme is an efficient local error indicator. In this paper, we use a
modified residual-based indicator. To this end, let T be the current integration mesh and uT be a solution of (13).
For each T ∈ T , we define the following local error indicator for each T ∈ T ,

ηT (uT ) =
⏐⏐T ⏐⏐1/d∇ · σ T + f


0,T , (16)

where σ T is the numerical stress given by

σ T = 2µϵ
(
uT

)
+ λ∇ · uT δd×d .

Note that the typical jump terms in finite element vanish due to the fact that MN (l) is in C1(Ω ). The L2 norm of
he residual ∇ · σ T + f on each T ∈ T may be approximated as follows,∇ · σ T + f


0,T ≈ |T |

−
1
2

⏐⏐⏐⏐∫
T

(
∇ · σ T + f

)
dx
⏐⏐⏐⏐ = |T |

−
1
2

⏐⏐⏐⏐∫
∂T

σ T n d S +

∫
T

f dx
⏐⏐⏐⏐

which implies

ηT (uT ) ≈
⏐⏐T ⏐⏐ 2−d

2d

⏐⏐⏐⏐∫
∂T

σ T n d S +

∫
T

f dx
⏐⏐⏐⏐ . (17)

With this local error indicator, we then define a subset T̂ of T by using either the following bulk marking
strategy: finding a minimal subset T̂ of T such that∑

η2
T

≥ γ1

∑
η2

T
for γ1 ∈ (0, 1) (18)
T ∈T̂ T ∈T

7
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or the average marking strategy:

T̂ =

{
T ∈ T : ηT ≥

γ2

#T
∑
T ∈T

ηT

}
, for γ2 ∈

(
0,

max{ηT }

#T
∑
T ∈T

ηT

)
(19)

here #T is the number of subdomains of T . For each marked domain T ∈ T̂ , we subdivide T into 2d subdomains
niformly and denote the refinement partition by T ′.

Let uT be an approximation of (13) based on an initial partition T , which in general, is an uniform partition of
he domain, the adaptive quadrature refinement method is summarized as follows,

Algorithm 3.1 Adaptive Quadrature Refinement (AQR) with a fixed NN.

(1) for each T ∈ T , compute the local error indicator ηT ;
(2) mark T by the marking strategy and refine marked element to obtain a new partition T ′;
(3) numerically solve the minimization problem in (13) on T ′;
(4) if η(uT ′ ) ≤ γ η(uT ), go to Step (1) with T = T ′; otherwise, output T .

As indicated in [18], the stopping criterion used in Algorithm 3.1 is based on whether or not the quadrature
efinement on numerical integration improves approximation accuracy. When the refinement does not improve
ccuracy much, the adaptive quadrature stops and outputs the current integration mesh.

. Numerical studies

In this section, we present our numerical results for several 2D problems. In all experiments, the DNN structure
s represented as din − n1 − n2 · · · nl−1 − dout for a l-layer network with n1, n2 and nl−1 neurons in the respective
rst, second, and (l − 1)th hidden layers, and din = dout represent the network input and output dimensions. The
inimization of the deep Ritz NN loss function (13) is solved using the Adam version of gradient descent [37]. All

ifferential operators are calculated using numerical differentiation (ND) with the step size ∆x = h/4, where
h = min{

⏐⏐T ⏐⏐1/d
} is the smallest partition size of an adaptive integration mesh. All experiments use sigmoid

σ (t) =
1

1+e−t ) as the activation function. For adaptive quadrature, the average marking strategy is reported due
to its computational simplicity.

5.1. Test case I: smooth stress distribution

Consider problem (1) defined on Ω = (−1, 1) × (−1, 1) with the body force

f = 2µ
(
3 − x2

− 2y2
− 2xy, 3 − 2x2

− y2
− 2xy

)T
+ 2λ

(
1 − y2

− 2xy, 1 − x2
− 2xy

)T
,

nd the traction

g
N

= 2(y2
− 1)

(
2µ + λ, µ

)T

n ΓN = {(1, y) : y ∈ (−1, 1)}, with the clamped boundary condition on ΓD = ∂Ω \ ΓN . The exact solution of the
est problem has the form

u(x, y) = (1 − x2)(1 − y2)
(
1, 1

)T
.

Set the material property µ = 1, and λ = 1, we first test three-layer DNNs of varying number of neurons and
ifferent numerical quadrature resolutions. Uniformly distributed quadrature points of size 100 × 100, 200 × 200
nd 400 × 400 are used to evaluate the effect of numerical integration combined with three network structures.
able 1 list the numerical results. As shown in the table, With a small DNN of 106 parameters (2-8-8-2) and
00 × 100 uniformly distributed quadrature points, deep Ritz can approximate the problem at a relative energy norm
f 0.1658. Increasing the resolution of quadrature reduces the numerical integration error and therefore improves the
pproximation accuracy. E.g. by increasing the number of quadrature points to 200 × 200, and further to 400 × 400,
he accuracy of the numerical solution is continuously improved, as measured by the relative energy norm, or the L2
8
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a
t

Table 1
Numerical results of deep Ritz method for test case I using fixed quadrature.

DNN
(No. para.)

#T
∥u − uN ∥a

∥u∥a

∥σ − σN ∥

∥σ∥

∥u − uN ∥

∥u∥

2-8-8-2
(106)

100 × 100 16.58% 16.35% 6.42%
200 × 200 10.81% 10.61% 3.91%
400 × 400 6.09% 6.00% 2.15%

2-16-16-2
(338)

100 × 100 11.94% 11.77% 4.17%
200 × 200 8.55% 8.50% 2.90%
400 × 400 5.94% 5.93% 1.96%

2-32-32-2
(1186)

100 × 100 3.3% 3.67% 1.42%

200 × 200 2.76% 2.73% 1.13%

400 × 400 2.19% 2.17% 0.93%

*Training details: γD = 100;
Total number of iterations for each row: 200,000;
Learning rate initial is 0.01 and it decays 90% every 50000 iterations.

Fig. 2. Test case I problem (µ = 1, and λ = 1) and numerical results using deep Ritz (2-32-32-2) with fixed 400 × 400 quadrature points.

norm of u and σ . On the other hand, larger DNNs with more parameters have better expressive power and thus can
pproximate the solution with better accuracy, this is a property from Theorem 2 and is confirmed experimentally as
he results given in Table 1. A three-layer DNN (2-32-32-2) combined with finer quadrature points 400 × 400 has a

better accuracy compared with smaller network or coarser quadrature points. The result is also depicted graphically
in Fig. 2.

Second, we test the adaptive quadrature refinement (AQR) method using the DNN structure 2-32-32-2. Starting
from the initial 100 × 100 uniformly distributed quadrature points, and using the residual-based local error indicator
(16) and the average marking strategy (19) with γ2 = 1, the AQR process stops at run 4 and reaches a relative
energy norm 0.0174. As shown in Table 2, with 45,757 quadrature points after three-run AQR, the adaptive deep
Ritz can achieve a similar relative energy norm as the fixed uniform quadrature method using 160,000 quadrature
points. Adding more runs of adaptive quadrature process will improve the approximation accuracy, but it converges
to a limit when the network approximation error becomes dominant. For example, by increasing the number of

quadrature points from 45,757 to 99,262, error measured by the three norms are not improving significantly. To

9
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k

Table 2
Numerical results of deep Ritz for experiment 1 using AQR.

AQR run #T
∥u − uN ∥a

∥u∥a

∥σ − σN ∥

∥σ∥

∥u − uN ∥

∥u∥

∑
T ∈T ηT

#T
1 10,000 3.73% 3.67% 1.42% 0.0004
2 21,145 2.81% 2.78% 1.17% 0.0002
3 45,757 1.98% 1.97% 0.89% 5e−5
4 99,262 1.74% 1.73% 0.82% 2e−5

*Training details: γD = 100;
Run 2–4 are trained using weight transferred from the previous run;
Each trained 100,000 iterations using fixed learning rate 0.001.

further improve the accuracy, one may need to enlarge the DNN size to obtain a better network approximation
power.

5.2. Test case II: L-shape plate with corner singularity

The second test is a common benchmark problem with a re-entrant corner forming a typical point singularity [38].
The problem is posed on an L−shaped domain Ω = (−1, 1)2

\ ([0, 1] × [−1, 0]) with a body force f = 0. The
nown analytical solution is,

u = [A cos θ − B sin θ, A sin θ + B cos θ ]T ,

where r, θ are the polar coordinates and⎧⎨⎩ A =
rα

2µ

(
−(1 + α) cos

(
(1 + α)θ

)
+ C1(C2 − 1 − α) cos

(
(1 − α)θ

))
,

B =
rα

2µ

(
(1 + α) sin

(
(1 + α)θ

)
− C1(C2 − 1 + α) sin

(
(1 − α)θ

))
.

Here the critical exponent α ≈ 0.544483737 is the solution of the equation α sin (2ω)+sin (aωα) = 0 with ω = 3π/4
and C1 = −(cos (α + 1)ω)/(cos (α − 1)ω), C2 = (2(λ+2µ))/(λ+µ) [39]. A bronze material with Young’s modulus
E = 100000 and Poisson’s ratio ν = 0.3 is tested with the Neumann BCs prescribed on ΓN = {(1, y) : y ∈ (0, 1)}
and Dirichlet BCs on ΓD = ∂Ω \ ΓN .

Due to a stress singularity at the corner point (0, 0), the direct LS physics-driven methods do not apply to this
type of problems. Using the deep Ritz method, we test the performance of a four layer DNN structure (2-48-48-48-2,
4898 parameters) with fixed uniform quadrature and adaptive quadrature refinement (AQR). As shown in Table 3,
with AQR generated non-uniformly distributed quadrature points, adaptive deep Ritz approximates the solution using
less data (quadrature points) compared with the uniform fixed quadrature method. During the iterative process, the
marked regions with larger residuals who need refinement are depicted in Figs. 3(g)–3(i) and the generated non-
uniform quadrature points are plotted in Fig. 3(f). The stress singularity is well captured by the local error indicators
and correspondingly, more quadrature points are distributed over the re-entrant corner region. The final numerical
solutions obtained are plotted in Figs. 3(a)–3(d). This experiment shows the validity of the proposed local error
estimator for the adaptive quadrature scheme.

5.3. Test case III: A quadratic membrane under tension

The third test problem is given by a quadratic membrane of elastic isotropic material with a circular hole in
the center. Traction forces act on the upper and lower edges of the strip, body forces are ignored. Because of the
symmetry of the problem, it suffices to compute only a fourth of the total geometry. The computational domain is
then given by

Ω = {x ∈ R2
: 0 < x < 10, 0 < y < 10, x2

+ y2 > 1}.

The boundary condition on the top edge of the computation domain (Γ1 : {y = 10, 0 < x < 10}) are set to
σ n = (0, 4.5)T , the boundary condition on the bottom (Γ : {y = 0, 1 < x < 10}) are set to (σ , σ )·n = 0, u = 0
2 xx xy y

10
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Table 3
Numerical results of adaptive deep Ritz for test case II using a DNN structure 2-48-48-48-2.

Quadrature
method

#T
∥u − uN ∥a

∥u∥a

∥σ − σN ∥

∥σ∥

∥u − uN ∥

∥u∥

uniform
fixed

120,000 10.99% 10.20% 1.83%

non-uniform
AQR

run 1 30,000 23.38% 21.58% 3.31%
run 2 42,897 14.44% 13.45% 1.78%
run 3 60,306 11.32% 10.48% 1.69%
run 4 90,237 10.71% 9.86% 1.68%

*Training details: γD = 1 ;
For the uniform quadrature and the AQR run 1: trained with 200,000 iterations with learning rate
starts from 0.01 and decays 90% every 50,000 iterations;
For non-uniform AQR run 2–4, trained with 100,000 iterations using fixed learning rate 1e−5.

Fig. 3. Test case II numerical solution using adaptive deep Ritz (2-48-48-48-2). (a–d) component-wise numerical solution u and σ ; (f) final
quadrature points obtained through AQR; (g–i) marked element during the four-run AQR process.

(symmetry condition), and finally, the boundary condition on the left (Γ3 : {x = 0, 1 < y < 10}) are given
by (σyx , σyy) · n = 0, and ux = 0 (symmetry condition). The material parameters are E = 206900 for Young’s
modulus and ν = 0.29 for Poisson’s ratio. The challenge of this test is the stress concentration located around point
(0,1) due to the presence of the small hole. Since there is no analytic solution, a reference solutions is obtained

using finite element analysis (FEA) with an adaptive mesh refinement (adaptive p-element refined with highest

11
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w

p

Fig. 4. Test case III Numerical solution using adaptive FEA p-element and deep Ritz with adaptive quadrature. (Rtiz solution is obtained
ith a DNN structure: 2-64-64-64-2 of 8578 DoF. FEA solution is obtained using p-element with 14786 DoF).

Table 4
Using Deep Ritz with adaptive quadrature to solve test case III.

Iteration No. of quad max ∥u∥ max σ yy

∑
T ∈T ηT

#T
1 28,392 2.1327e−4 7.9155 9.5942e−3
2 40,878 2.1566e−4 10.0728 6.7179e−4
3 60,434 2.1623e−4 13.2632 4.4317e−4
4 88,574 2.2672e−4 13.8912 2.9309e−4

*Training details: γD = 1;
Run 1 is trained with 200,000 iterations, with learning rate starts from 0.01 and decays
90% every 50,000 iterations;
Run 2–4: 50,000 iterations each with fixed learning rate 1e−5.

polynomial order of 7). The reference solution is given in Figs. 4(b) and 4(c), where we use two key measures:
max σ yy = 13.8876, an max ∥u∥ =2.288e−4 as references (a similar reference solution is also provided in [24]
using adaptive h-elements).

We tested the adaptive deep Ritz with a four-layer structure (2-64-64-64-2, 8578 parameters). Initially, 28,392
uniform quadrature points using polar coordinates are used for getting the first iteration that captures well for the
displacement field u. However the stress concentration factor is not accurate with uniformly distributed quadrature

oints. After four iterations of AQR using the average marking strategy (γ2 = 1.5), a total of 88,574 quadrature
points are generated adaptively as shown in Fig. 4(d) and with this set of non-uniform quadrature points, the method
is capable of obtaining a similar stress concentration factor compared with the adaptive FEA solution, see the
numerical results depicted in Figs. 2(a)–2(c) and Table 4. As expected, more quadrature points are distributed
adaptively near the small hole region during the AQR processes such that the stress concentration can be simulated
accurately.

Furthermore, we explored the potential of using transfer learning to solve a family of stress problems. To this

end, we conducted a sensitivity study by varying the center hole from r = 1 to r = 5, taking a step size of 0.5.

12
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Fig. 5. Sensitivity study of the test case III with varying hole radii. First row shows the generated adaptive quadrature points at the listed
ole radius steps; second and third rows show the numerical solution using adaptive deep Ritz, and the last row give the reference adaptive
EA solutions.

sing the trained DNN model in the previous experiment (with an initial hole size of r = 1) as the starting point,
e stepped through the various hole sizes by training a DNN using weight transferring. Our assumption was that

he DNN trained from the previous step forms a good initial for the next parametric step, and therefore the adaptive
eep Ritz would converge faster if applied to a family of similar problems. In our test, we verified this assumption
nd it took significantly fewer number of iterations (in this example, 50,000 iterations and two-run AQR for each
ole size step) to converge to the results. This is compared to the total 350,000 iterations used for the result obtained
n Table 4, demonstrating that transfer learning saves significant time. Our results at each step also align with the
umerical solutions evaluated through FEA adaptive p-refinement method. Fig. 5 lists the displacement component

uy and the associate stress tensor component σ yy obtained from adaptive deep Ritz transfer learning and adaptive
EA.

.4. Discussion

Numerical Differentiation (ND) or Automatic Differentiation (AD). For each quadrature point xT , the
valuations of ε

(
v(xT )

)
and ∇ ·v(xT ) in the energy functional are based on the first order partial derivatives that

may be calculated through either automatic differentiation (AD) or numerical differentiation (ND). AD is a common
choice for some physics-driven methods such as the PINN and its variants. When a DNN function has the first order
derivatives at all sampling points, AD eliminates numerical error caused by ND. However, when using AD, there are
some difficulties in training PINN as noticed in [40]; moreover, a discrete differential operator combining AD and
ND was proposed. In our experiments, pathologies in training deep Ritz with AD were also observed. Nevertheless,
our experiments show numerically that ND with quadrature-based numerical integration is robust in training/solving
the deep Ritz.

Here, we use the test case I as an example and list the results of using combinations of different integration and

differentiation methods: (1) standard quadrature-based integration plus AD (SQ+AD), (2) standard quadrature-based

13
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Fig. 6. Comparison study for test case I using numerical differentiation v.s. automatic differentiation, and standard quadrature-based integration
v.s. quasi-Monte Carlo-based integration. All results are trained using deep Ritz DNN structure (2-32-32-2).

integration plus ND (SQ+ND), (3) quasi-Monte Carlo-based integration plus AD (qMC+AD), and (4) quasi-Monte
Carlo-based integration plus ND (qMC+ND). As shown in Fig. 6(a), only SQ+ND converges to the real potential
energy of the tested problem J ⋆(u) ≈ −11.2 within 100,000 iterations, the other three methods are suspiciously
trapped in local minima and the obtained solutions are non-physical as shown in Figs. 6(c)–6(e).

Non-convex optimization The exceptional approximation power of neural networks allows them to effectively
represent a wide range of solutions, including those with irregular geometries, discontinuities, or singularities that
can pose challenges for traditional finite element methods. However, this type of approximating functions also
introduces a computationally demanding optimization problem. NN-based algorithms for solving PDEs typically
involve a high-dimensional and non-convex optimization for which the first order stochastic gradient descent-
based methods are the most widely employed solvers. Currently, NN-based methods are not competitive with
well-established mesh-based methods due to the considerable computational cost of the algebraic solvers, even
though NN-based methods may require fewer degrees of freedom than their mesh-based counterparts. Developing
fast solvers is an open and challenging problem and requires lots of efforts from numerical analysts.

6. Conclusion

In this paper, linear elasticity problems are formulated under the Ritz framework and are discretized using DNN
functions. To enforce the essential boundary condition, the energy functional is modified with an extra penalization
term using H 1/2 norm. It is shown that within the function class, the minimization of the modified energy functional
yields the best approximation with respect to the modified energy norm. To calculate the modified energy functional
accurately and efficiently, adaptive quadrature refinement equipped with a local residual-based error indicator was
proposed and tested, and its effectiveness and efficiency in improving numerical simulation was demonstrated.

There are still numerous unresolved issues that require further research. In this study, we make the assumption
that the DNN is sufficiently large to approximate the solution. However, selecting an appropriate network structure
for different problems and establishing a suitable initial DNN model are still open questions. While we conducted

a basic sensitivity analysis to demonstrate the potential of DNNs for parametric PDEs, exploring efficient methods

14



M. Liu, Z. Cai and K. Ramani Computer Methods in Applied Mechanics and Engineering 415 (2023) 116229

h

D

A

a
D
t
o

R

to extend the transfer learning strategy to general design space exploration and even solving topology optimization
problems requires further investigation.
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