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Abstract
Predicting future action locations is vital for applica-

tions like human-robot collaboration. While some computer
vision tasks have made progress in predicting human ac-
tions, accurately localizing these actions in future frames
remains an area with room for improvement. We intro-
duce a new task called spatial action localization in the
future (SALF), which aims to predict action locations in
both observed and future frames. SALF is challenging be-
cause it requires understanding the underlying physics of
video observations to predict future action locations accu-
rately. To address SALF, we use the concept of NeuralODE,
which models the latent dynamics of sequential data by
solving ordinary differential equations (ODE) with neural
networks. We propose a novel architecture, AdamsFormer,
which extends observed frame features to future time hori-
zons by modeling continuous temporal dynamics through
ODE solving. Specifically, we employ the Adams method,
a multi-step approach that efficiently uses information from
previous steps without discarding it. Our extensive experi-
ments on UCF101-24 and JHMDB-21 datasets demonstrate
that our proposed model outperforms existing long-range
temporal modeling methods by a significant margin in terms
of frame-mAP.

1. Introduction
Human action understanding is essential in computer

vision, especially for applications like VR/AR [61, 64],
robotics [57, 60], and autonomous vehicles [28, 38]. These
applications help users by interpreting intentions or per-
ceiving others’ actions in the environment. Considerable
progress has been made in human action perception, in-
cluding action recognition [7, 10, 11], temporal action lo-
calization [3, 36], and spatio-temporal action localization
[2, 30, 42, 52].

Lately, predicting and anticipating human actions, such
as early action prediction [13, 23, 62], action anticipa-
tion [15, 16], and hand or pedestrian trajectory prediction

† Work done while at Honda Research Institute USA.

Figure 1. Future Spatial Action Localization (SALF) aims to iden-
tify diverse action patterns in both observed and future frames.
Green and red boxes represent observed and future frames, while
blue bounding boxes indicate predicted action locations.

[40,45,47], have gained attention due to the increasing need
to prepare for future events. While progress has been made
in predicting human actions, further exploration is needed
in localizing future actions, which is critical for various ap-
plications. For example, anticipatory behavior is essential
for effective collaboration in human-robot interaction [57].
Accurately predicting future activity locations enables robot
agents to support humans more efficiently.

In this work, we introduce Spatial Action Localization
in the Future (SALF), a novel task that expands upon tra-
ditional spatio-temporal action localization. SALF aims to
predict spatial locations and categorize actions in both long-
term future and past observations, as illustrated in Fig. 1.
By enabling models to recognize and classify present ac-
tions while anticipating and localizing future actions, SALF
significantly enhances real-time decision-making and adap-
tive responses in complex environments. As demonstrated
in Table 1, SALF uniquely focuses on diverse, highly non-
linear motion patterns across various action categories, set-
ting it apart from related tasks like pedestrian or hand tra-
jectory prediction. Additionally, SALF differs in input and
target, utilizing only video input and predicting multiple
bounding boxes and action categories for both future and
observed frames. In contrast, trajectory predictions gen-
erally estimate the future path of specific objects, such as
hands or pedestrians, without requiring bounding boxes.

To address the challenges of SALF, we leverage the con-
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Task Input Target
Video BBox Trajectory Classification

Pedestrian prediction [47] ✓ ✓ Bbox (F) Intention (Binary)
Pedestrian prediction [45] ✓ Bbox (F) -
Hand prediction [40] ✓ ✓ Center (F) -
SALF (ours) ✓ Bbox (O & F) Actions

Table 1. Comparison between SALF and trajectory predictions.
‘Bbox’ signifies the bounding box, while ‘O’ and ‘F’ represent
observation and future, respectively

cept of NeuralODE [6]. Recent works on Neural ODE
[6,49,67] and its applications [26,27,35,43,65] demonstrate
that Neural ODE successfully models continuous sequen-
tial data by solving ordinary differential equations (ODE)
with neural networks. Neural ODE has an advantage over
other temporal modeling methods like transformers [58] or
RNNs [21] in that it can model the underlying physics of
sequential data. We adapt the concept of Neural ODE to
predict information for future frames from observations to
address the proposed SALF.

From this motivation, We propose AdamsFormer, a net-
work designed to detect spatial locations of the action for
both the observed previous frames and unobserved future
frames. The proposed model predicts future action loca-
tions by extrapolating observed frames’ latent features to
the future time horizon we want to predict. With the ex-
trapolated latent features of future frames, we can predict
the locations of the action and their corresponding cate-
gories. When solving ODE, we adopt the multi-step method
(Adams method), which is more robust to noisy conditions
than single-step methods such as Euler or Runge-Kutta. A
single-step method that uses information from only the pre-
vious step can be easily affected by noise. In contrast, a
multi-step way attends several previous steps to predict the
future; thus, it gains efficiency and robustness by using the
information from previous frames rather than discarding it.
Using a toy example, we compare multi-step and single-step
methods in Fig. 2.

We conduct extensive experiments on action video
datasets UCF101-24 [54] and JHMDB-21 [32] to demon-
strate the advantage of the proposed architecture and bench-
mark the existing long-range temporal dependency mod-
eling algorithms on SALF. We observe that AdamsFormer
outperform other state-of-the-art models, thus demonstrat-
ing its efficacy. We also provide a deeper analysis to pro-
vide intuition to researchers on how to improve the model
performance on SALF.

In summary, our contributions are as follows,
• We present a novel task called Spatial Action Local-

ization in the Future (SALF), which aims to identify
the spatial boundaries of actions in both observed and
future frames.

• To address the SALF task, we introduce Adams-
Former, an innovative architecture that predicts action
locations in future frames by extrapolating the latent

state using the Adams method to solve ODEs.
• Our extensive experimental results demonstrate that

AdamsFormer significantly outperforms existing state-
of-the-art methods for long-range feature modeling in
the SALF task.

2. Related Work
Spatio-Temporal Action Localization This task aims to
localize atomic actions in videos with 3D spatio-temporal
bounding boxes. Motivated by object detection methods,
previous works [2, 30, 44, 52, 63] localize action in frame-
level and link frame-wise predictions to make temporal
bounds. Some work [17, 55] apply 3D CNN to capture
temporal information, and others [12,42,56] focus on mod-
eling the relation between captured actors or object-actor
to classify the actions better. Another branch of this task
is tubelet-level action detection [33, 34, 53, 68], which was
first introduced by [25]. Hou et al. [22] first proposed a 3D
cuboid proposal method, and Yang et al. [66] introduced a
method that progressively refined the proposals. More re-
cently, Zhao et al. [69] introduced a transformer [58]-based
method that can detect action tubelet with queries as pro-
posals. Our task is also localizing Spatial bounding boxes of
action on the observation, but, different from these works,
we are more focused on localizing activity for future frames.
Long-term Action Anticipation Action anticipation is
the task that predicts a sequence of actions in the future
based on the partial observation of past actions. Various ap-
proaches have been proposed to tackle this task in both third
person view [14, 24, 31, 59] and egocentric view [8, 39, 41]
actions. The recent works [15, 16] utilize transformer [58]
to anticipate action in the future, leveraging the advantage
of self-attention learning temporal interactions. Recently,
long-term action anticipation [1, 16, 29, 50] gained popular-
ity as the need to predict the distant future grows in many
computer vision applications. Unlike long-term action an-
ticipation, SALF aims to predict the location of the future
action and the category that makes the task more challeng-
ing than action anticipation.
Video Prediction Video prediction [9,18,43] is a task that
predicts future frames given past frames. Despite signifi-
cant community efforts in this domain, faithful modeling of
long-term future frames remains an area for improvement.
Compared to video prediction, the newly introduced SALF
makes action dynamics modeling much easier by abstract-
ing away appearance variations. It may be more beneficial
for human-robot interaction since it provides machines with
more direct access to future locations of human action.

3. Spatial Action Localization in the Future
We introduce a novel task, Spatial Action Localization in

the Future (SALF), which aims to predict the location and
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corresponding categories of activities in each frame of a fu-
ture video sequence. Formally, let X1:t = {X1, · · · ,Xt}
represent a video with t frames. Given the first O frames
of the video, X1:O, the task involves localizing and classi-
fying actions in both observed and future T frames. This
challenge is particularly difficult because localizing future
actions demands more information than early action predic-
tion, which only predicts the action class category.

4. Proposed Method
4.1. Background

Initial Value Problem (IVP) and NeuralODE An initial
value problem (IVP) is an instance of an Ordinary Differen-
tial Equation (ODE) with an initial condition specifying the
value of the unknown function at a point. Formally speak-
ing, an IVP can be expressed as follows:

z′(t) =
dz

dt
= f(t, z), z(t0) = z0, (1)

where the function z(t) is a solution of IVP. Recently, Neu-
ral ODE [6, 49] models ODE function f(·), a derivative of
z(t), with neural network for continuous times-series mod-
eling. Following these works, we also use the concept of
IVP with Neural ODE to model the dynamics of video.

Numerical methods for IVP Obtaining an analytical so-
lution to a differential equation is often infeasible. In this
case, we must resort to approximate methods that numer-
ically approximate the integration of derivatives with a fi-
nite sum. Single-step methods such as Euler’s method con-
sider only the derivative at one previous step to determine
the function value at the current step. Concretely, given the
step size of h,

zn+1 = zn + hf(tn, zn). (2)

Multi-step methods improve the precision of numerical ap-
proximation by considering function values from previous
N(≥ 2) steps. For example, second-order (N = 2) and
third-order (N = 3) Adams-Bashforth method can be ex-
pressed as:

(N=2): zn+1=zn+h[
3

2
f(tn,zn)−

1

2
f(tn−1,zn−1)],

(N=3): zn+1=zn+h[
23

12
f(tn, zn)−

16

12
f(tn−1, zn−1)

+
5

12
f(tn−2, zn−2)].

A step-size h is set to 1 in our work.

4.2. Problem Formulation

We formulate Spatial Action Localization in the Future
(SALF) task as extrapolating latent features of observed

Figure 2. Toy example results of (a) multi-step (b) single-step.
We can see that the multi-step method better captures underlying
physics compared to the single-step way.

frames. More formally, the task is predicting the latent fea-
ture of future frames ZO+1:O+T = {ZO+1, · · · ,ZO+T },
by extrapolating those of initial observation Z1:O =
{Z1, · · · ,ZO}, where Zt is a latent feature of the frame
at time t. The symbol T and O denote the video predic-
tion length and observation length, respectively. For this,
we convert the SALF task as the Initial Value Problem with
an initial condition as a latent feature of the last observed
frame z(0) = ZO as follows,

z(t) = z(0) +

∫ t

0

fθ(τ, z(τ))dτ. (3)

4.3. AdamsFormer

To tackle SALF, we propose a novel architecture that
can solve the initial value problem (IVP) defined at Eq. (3)
with the numerical method. We adapt the linear multi-
step method to solve IVP, which leverages previous steps
to calculate the next value, whereas the single-step way
takes only one previous step. We selected the multi-step
approach since it is known for being more robust to the
stiff equation than the single-step method. Action videos
often contain noise like camera motion to record the dy-
namic movement of action, which hampers accurate action
prediction. A multi-step based approach can robustly pre-
dict the future by attending multiple previous steps, similar
to the smoothing effect of sliding windows. We compare
multi-step and single-step in Fig. 2 with a toy example to
predict the trajectory of spiral function from sampled data
from the trajectory, We see that the multi-step method bet-
ter captures underlying physics (spiral function) than the
single-step. For the linear multi-step method for ODE, we
use the Adams method, one of the most popular methods,
and named our proposed architecture AdamsFormer after
the Adams method.

An overview of the proposed architecture is illustrated in
Fig. 3 Left. The AdamsFormer follows three steps to solve
SALF. First, the video encoder extracts latent features from
video clips. Next, the future feature predictor extrapolates
future features by solving IVP with the multi-step method.
Lastly, the decoder localizes and classifies the future clip’s
action using extrapolated future features.

17887



Figure 3. The overview of Adamsformer (Left) and detail about ODE function f(·) (Right). The yellow arrow on the left figure indicates
the ongoing direction of the sequence. Red and blue bounding boxes in the output indicate predictions and ground truth, respectively.

4.3.1 Video Encoder
The video encoder takes a video clip as input and produces a
corresponding latent feature. To fully utilize temporal infor-
mation, we combine features from 3D-CNN and 2D-CNN
(i.e. DarkNet [48] and 3D-ResNet [19], respctively) follow-
ing [30]. An input video clip at time t, Xt ∈ RH×W×L×3,
is passed through 3D-CNN and 2D-CNN and their out-
puts are concatenated together to construct latent feature
Zt ∈ RH′×W ′×D for video clip. Here, H , W , and L denote
height, width, and the number of frames in a video clip, re-
spectively. For 2D-CNN, the last frame of video clip Xt is
used as an input.

Zt = [Z3D
t ||Z2D

t ]W, (4)

where W ∈ R(D2D+D3D)×D is a learnable linear projection
matrix and [·||·] denotes concatenation of tensors among
channel dimension. Z2D

t and Z3D
t represent output of 2D-

CNN and 3D-CNN, respectively.

4.3.2 Future Feature Predictor
The next step is extrapolating the observed clips’ latent fea-
tures to reach for the future. As mentioned above, we solve
Eq. (3) with a numerical method, precisely a linear multi-
step method, formulated as follows.

Zt+1 = Zt + h

N∑
j=0

bjFt−j , (5)

where t ≤ T , Fi is the output of ODE function fθ(t,Zi),
and N is the number of step for multi-step method, and

h is step-size which is set to 1 in our setup. Coefficients
from N -th order Adams–Bashforth method, are used for b.
The detailed design of the ODE function fθ(t,Zi) will be
explained in the following section. To implement Eq. (5),
we use convolution along temporal axis of F1:t using b =
{b0, b1, . . . , bN−1} as (N×1) kernel and add Zt as a resid-
ual.

Zt+1 = Zt + (F1:t ∗ b)[t], (6)

where symbol ∗ denotes a convolution operator. The imple-
mentation is depicted in Fig. 3 Right.
ODE Function We design an ODE function f(·) that
models the dynamics of latent features using a Transformer
[58] decoder with a causal mask. It takes all previous latent
features Z1:i rather than only current frame Zi. If f(·) only
takes the latent feature of the current video clip Zi, it is only
dependent on the current video clip ignoring all contexts of
the video. For example, video clips with similar motion
‘running’ can be shown in many different action categories
like Fencing and Pole vault in UCF24-21 [54] dataset. If the
f(·) only takes Zi, f(·) will output a similar value despite
the context of action. Therefore, to provide more contextual
information of action for modeling dynamics of latent fea-
ture, we design f(·) to capture the context of the video by
feeding latent feature of all previous frames Z1:i as follows.

Fi = fθ(t1:i,Z1:i), (7)

where t1:i = {t1, · · · , ti} indicates a set of all previous
times until i-th time.
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We model f(·) with a neural network. An overview of
the ODE function is illustrated in the yellow box of Fig. 3
Right. We use self-attention to let the model attend to latent
features at different times. Sinusoidal positional embedding
(PE(·)) is added to each Zt in different time t to construct
initial hidden states H(0)

t ∈ RH′×W ′×D.

H
(0)
t = Zt + PE(t). (8)

Here, PE(·) ∈ R1×1×D is broadcasted to the spatial dimen-
sion H ′ and W ′. After the linear projection of H, we derive
Key K, Query Q, and Value V embeddings with the same
size as H for Self-Attention. Then, we calculate temporal
relations of the same spatial location (x, y) among embed-
dings with all different time horizons:

Attn(Q,K,V)[x, y]

= Softmaxj(
Qi[x, y]Kj [x, y]

⊤
√
D

)Vj [x, y], (9)

where i, j are temporal indices and x, y are spatial indices in
the range of 1 ≤ x ≤ W ′ and 1 ≤ x ≤ H ′. We use multi-
head attention (MSA) to explore subspaces of different rep-
resentations of hidden states and apply the causal mask to
guide the model to attend only to previous frames.

MSA(H) = [head1|| · · · ||headk]W′, (10)

headi = Attn(Qi,Ki,Vi) (11)

where W′ ∈ RD×D is a learnable weight matrix and k is
the number of head. Layer-wise update rule of latent feature
H is following,

H(l+1) = LN(MLP(H′(l))) +H′(l), (12)

H′(l) = LN(MSA(H(l))) +H(l), (13)

where LN(·) denotes layer norm [4]. Two fully-connected
layers with GeLU [20] as an activation function are used
for MLP(·). We stack L number of the above layers, and
finally, Ft is derived by passing through the output of the
last layer H(L) to the linear layer.

4.3.3 Decoder

The decoder takes Zt, derived from Eq. (5), regresses the
action bounding box, and classifies the action. Overall de-
coder design follows that of YOWO [30]. Latent tensor Zt

passed through CFAM module [30] to capture inter-channel
dependencies and project channel to final output channel.
The final output channel is set to the five anchors multiplied
by the sum of the number of classes, the number of bound-
ing box elements ({x, y, w, h}), and their confidence score
(5× (#Class+5)). K-means select prior anchors for each
dataset. More detail about the decoder is available in the
supplementary material.

4.4. Training

This section describes the training scheme and the loss
functions. We first present loss functions used to train our
model. We define our loss function by combining local-
ization loss and classification loss following [30]. We use
Huber loss for each element of the bounding box for action
localization (Lx,Ly,Lw,Lh) and Mean Square Error (MSE)
for confidence score (Lconf). We add all of them together to
define localization loss.

Lloc = Lx + Ly + Lw + Lh + Lconf (14)

We tested feature loss which minimizes MSE between pre-
dicted latent feature and encoded feature (MSE(Zt, Ẑt))
following [15]. However, performance is slightly decreased
when trained with feature loss. For action classification, we
use Focal loss [37].

Lcls = −
C∑
i=1

(yi(1− ŷi)
γ log(ŷi) + (1− y)ŷi

γ log(1− ŷi)),

(15)

where C is the number of classes, γ is a modulating factor
of focal loss, and yi and ŷi indicate one hot encoded vector
of ground-truth action label and predicted class probability,
respectively. Finally, the total loss for training is defined as,

Ltotal = Lloc + λLcls, (16)

where λ is the weighting parameter for classification loss.
For training, we used scheduled sampling [5] following

the extrapolation task of Latent ODE [49], that feeds in ei-
ther the previously observed value (Zt) or predicted value
(Ẑt) with probability 0.5. When inference, we use values
from observation (Zt, t ≤ O) and predicted values for fu-
ture frames (Ẑt, O ≤ t ≤ T ) to localize the actions.

5. Experiments
We tested our method on the SALF task and compared

the results with other state-of-the-art long-range tempo-
ral modeling methods [6, 15, 18, 51]. For evaluation, we
adapt frame-level mean Average Precision (Frame-mAP)
with IoU threshold 0.5 following previous works [30, 42].
The mAP is calculated as the AUC of the precision-recall
curve of detection results from each frame and means over
different action categories. We evaluate Frame-mAP on 1)
the entire sequence, which includes observed and unseen
frames, and 2) unseen frames only.

5.1. Datsaets
UCF101-24 UCF101-24 is a subset of UCF101 [54].
This dataset contains 24 action categories and 3,207 ac-
tion videos with spatio-temporal bounding box annota-
tions for action tubelets. Most videos have one actor, but
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Datasets Methods
Observation Ratio

10% 20% 30% 40% 50%
TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN

UCF101-24

RNN [51] 33.73 29.74 44.17 37.30 49.18 39.29 54.06 42.32 53.92 41.38
ODE-RNN [6] - 31.56 - 34.84 - 35.59 - 37.71 - 39.70
ODE2VAE [67] - 31.11 - 34.36 - 35.42 - 37.10 - 37.52
PhyDNet [18] 33.98 29.90 44.63 37.22 49.39 39.69 53.14 41.44 55.56 42.47
Transformer [15] 37.10 34.21 44.42 37.85 48.86 41.06 52.66 43.73 56.26 44.87
AdamsFormer (Ours) 43.28 37.86 50.04 41.00 52.82 42.92 57.03 45.25 62.21 48.74

JHMDB-21

RNN [51] 13.43 10.85 27.81 24.76 34.71 32.06 32.90 29.82 33.95 31.19
ODE-RNN [6] - 19.99 - 21.63 - 24.57 - 28.86 - 31.69
ODE2VAE [67] - 13.14 - 23.09 - 26.59 - 33.18 - 29.35
PhyDNet [18] 1.58 0.80 24.08 22.22 30.96 29.74 30.13 28.85 29.35 29.41
Transformer [15] 35.20 35.17 39.58 40.24 42.71 44.09 48.87 50.66 47.46 50.45
AdamsFormer (Ours) 49.93 49.39 49.72 49.55 50.94 51.72 52.35 53.28 51.18 52.81

Table 2. Experimental results on UCF101-24 and JHMDB-21 datasets. We evaluate the models in terms of frame-mAP. Bold figures
indicate the best performance for each setup. ‘TOTAL’ and ‘UNSEEN’ in the table represent localization performance on the total sequence
and unseen frames only, respectively.

some have multiple action instances with different spatio-
temporal boundaries. For experiments, we stack 8 frames
to make a clip and sample every 4 clips from the video to
construct an action sequence. We set the total length of the
sequence as 20 and used the split 1 for training and testing
following previous works. Further implementation details
are provided in the supplementary material.

JHMDB-21 This dataset is a subset of HMDB-51 dataset
[32], containing 21 action categories in 928 untrimmed ac-
tion videos. For our experiments, we use the first split of
the dataset. We stack 8 frames for the video clip and use all
possible subsequent 10 clips in the videos for both training
and testing. We discard items that are less than 10 clips.

5.2. Comparison with Other Methods

To investigate the advantage of our proposed method
in the SALF task, we compare our approach with exist-
ing long-range temporal dependency modeling methods. To
validate the effectiveness of temporal modeling in Adams-
Former, we replace the future feature predictor with other
temporal modeling methods. For pair comparison, all ex-
perimental setups are the same as the setup described in im-
plementation details 5.2.

Baseline Implementations We select five widely-used
long-range temporal modeling methods (RNN [51], ODE-
RNN [6], ODE2VAE [67], PhyDNet [18], and Trans-
former [15]) as our baselines: 1) RNN: Implemented using
a 3-layer Conv-LSTM [51] with a 3× 3 kernel, RNN takes
Zt as input for the observation frames where t≤O and pre-
dicts the next frame Zt+1. The network recursively predicts
future latent features by reinjecting the predicted represen-
tation as input for unseen frames where O≤ t≤T . 2) ODE-
RNN: A 3-layer Conv-LSTM with a 3 × 3 kernel is used
as the encoder, taking Z1:O as input. ODE-RNN [6] then
extrapolates the RNN output as an initial value using the

ODE solver1 with the Runge-Kutta 45 method. Since the
RNN output represents the entire observed sequence, we do
not report action localization scores on observed frames for
this method. 3) ODE2VAE: In this baseline, we replace the
ODE part of our ODE-RNN baseline with ODE2VAE [67].
4) PhyDNet: We use the official implementation2 provided
by the author [18], stacking three layers of each PhyCell and
ConvCell. 5) Transformer: Following [15], we use GPT-
2 [46] to construct the transformer. Additionally, we add a
feature loss to Eq. (16), defined as the Mean Square Error
between the predicted feature Ẑt and the encoded one Zt.

Results We present overall results in Table 2 that reveal
the effectiveness of AdamsFormer. For the 10% observa-
tion ratio, we report the performance of AdamsFormer with
N = 2 for UCF101-24 and N = 1 for JHMDB-21, whereas
all other setups are following Sec. 5.2. When the number
of observation frames is less than the multi-step order, the
model can’t take enough initial values to solve ODE. In
the case of UCF01-24, 10% of 20 frames are two frames
smaller than the multi-step order we set for this dataset
N = 4. In both UCF101-24 and JHMDB-21, our model
outperforms all other long-range temporal modeling meth-
ods on both observed and unseen frames in every observa-
tion ratio with a sizable margin. Significantly, the lower the
observation ratio is, the more significant the performance
gap is, demonstrating the advantage of our proposed work
on long-range temporal modeling. For example, Adams-
Former shows higher performance than other methods in
10% of observation ratio by 8 points in unseen frames com-
pared to PhyDNet. When the observation ratio is low, pre-
dicting the location of the future action is extremely dif-
ficult since the model needs to predict unseen long-range
frames from the few observation. Transformer [15] shows a
good performance on UCF101-24 but has poor performance

1https://github.com/rtqichen/torchdiffeq.git
2https://github.com/vincent-leguen/PhyDNet.git
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Methods
Observation Ratio

10% 20% 30% 40% 50%
TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN

Single-step (N = 1) 40.74 36.81 47.00 39.54 51.42 42.75 55.41 44.41 60.13 47.39
Multi-step (N = 2) 43.28 37.86 46.96 40.04 51.50 41.57 55.15 44.28 59.83 47.10
Multi-step (N = 3) - - 49.16 41.15 52.33 42.54 56.89 45.18 61.32 47.19
Multi-step (N = 4) - - 50.04 41.00 52.82 42.92 57.03 45.25 62.21 48.74
Multi-step (N = 5) - - - - 53.20 42.23 58.69 45.46 61.12 46.80
Multi-step (N = 6) - - - - 53.21 42.34 57.26 44.66 63.01 48.00

Table 3. Comparison of our model performances on different multi-step order setups. When the multi-step order is N = 1, it is equivalent
to the Euler method, which is single-step.

in low observation ratio on the JHMDB-21 dataset. In
contrast, AdamsFormer performs almost similarly in mAP
in total sequence with unseen frames in the JHMDB-21
dataset, indicating latent features in observed frames are
well-extrapolated to future frames.

5.3. Ablations and Analysis

To examine the effect of individual parameters and com-
ponents of AdamsFormer, we conduct SALF on different
configurations of our model. All experiments in this section
are performed on the UCF101-24 dataset.

Advantage of multi-Step method We first validate the
effect of our proposed multi-step method for future feature
prediction against the single-step method for solving ODE
in Table 3. When N = 1 in the Adams method, it is equiva-
lent to the Euler method, a single-step approach. We report
the results of the Euler method for the single-step method,
but most single-step methods (Runge Kutta, MidPoint, and
Dormand-Prince) show similar results to Euler. The multi-
step method outperforms the single-step method across all
observation ratios, confirming its advantage.

Both single-step and multi-step methods are imple-
mented with N×1 temporal convolution as in Eq. (6). The
increase in latency as N grows is negligible due to the
following reasons. First, temporal convolution contributes
only a tiny fraction of the total computational cost, which is
mainly dominated by other elements such as 2D/3D CNNs
and Transformers. Second, the latency of temporal convo-
lution usually grows sub-linearly with N due to its efficient
GPU implementation.

In Fig. 4, we further compare the action localization re-
sults for single-step and multi-step methods. The multi-step
method more precisely predicts the future by incorporat-
ing information from previous steps rather than discarding
it. These results validate our hypothesis that the multi-step
method provides robust representation extrapolation against
noisy camera motion.

Order of Multi-Step Method To investigate the impact
of multi-step order, we compare the frame-mAP of our
model using different multi-step orders (N ) in Table 3. We
evaluate each order in 20% and 50% of observation to see

Figure 4. Comparison of action localization results between (a)
Single-step and (b) Multi-step methods. The first two are observed
frames, and the last four are unseen.

Figure 5. Comparisons between different ODE function designs.
The red line shows the results of our model, and the blue line vi-
sualizes the results of stacked convolution layers.

the effect of order in long-term and short-term prediction,
respectively. We only report the case when the number of
frames is less than the order of the multi-step method. We
observe that the model with N = 4 shows the best perfor-
mance for both short-term (50% observation) and long-term
(20% observation) action localization. We also see that the
performance of unseen frames tends to decrease when N is
larger than 4, showing that larger-order does not necessarily
improve the performance.

ODE Function Configuration We plot the performance
of different ODE function (f(·)) designs in Fig. 5. We
design our ODE function to attend all previous frames
f(t1:i,Z1:i) with Transformer with a casual mask as de-
scribed in Sec. 4.3.2. To justify the design of our ODE func-
tion, we set up the baseline by stacking convolution four
layers with 3× 3 kernel following [43] that only takes cur-
rent frame information as input (f(ti,Zi)). All other setups
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Figure 6. Qualitative results of AdamsFormer on UCF101-24. The red and blue boxes represent prediction and ground truth, respectively.
The left five frames are localization results on the observed sequence, whereas the right five frames are those of future frames.

Methods Observation Ratios
20% 30% 40% 50%

w/ obs localization 41.00 42.92 45.25 48.74
w/o obs localization 39.99 41.01 44.10 45.67

Table 4. Comparison of our model performances with and without
action localization in the observed frames.

for baseline are the same as described in Sec. 5.2. Our de-
sign outperforms a baseline that uses only the current frame
for ODE function input. Attending to previous information
can provide the ability to distinguish similar scenes utilizing
context when modeling the dynamics of latent features.

Action Localization in Observed Frames We compare
the performance of our model with and without action lo-
calization in the observed frame in Tab. 4. We note that
the model trained with action localization in the observed
frames performs better than those without it. It is because
localizing action with the feature of encoded latent feature
from observed frames (Zt, t≤O) gives a generalization ef-
fect for the decoder regressing the action from the extrapo-
lated latent features (Ẑt, O≤ t ≤T ).

5.4. Qualitative Results

In Fig. 6, we provide qualitative action localization re-
sults on the UCF101-24 dataset. These results are the out-
put of AdamsFomer on 50% observation. For simplicity,
we visualize the last five frames from the observed and the

first five frames of predictions. It shows that AdamsFormer
localizes action accurately for both observation and future
time horizons. Especially when the action is slow (3rd rows
in Fig. 6), our model predicts action location with high ac-
curacy. As shown in the examples of the 2nd, 3rd, and
5th rows in Fig. 6, we also observe that Adamsformer suc-
cessfully predicts dynamic actions based on the captured
movement on observation. Also, since AdamsFormer ex-
trapolates latent features, it can detect multiple actions in
the same frame as the example in 1st row of the figure. In
a supplementary document, we provide more experimental
results of multi-agent and multi-action setups.

6. Conclusion
In this work, we introduce a new task, spatio-temporal

action localization in the future (SALF), which aims to lo-
calize and classify actions in future frames. To tackle this
problem, we propose a novel framework named Adams-
Former that extrapolate observed latent feature to future
frames. Through extensive experiments, we prove that
AdamsFormer outperforms existing long-range temporal
modeling algorithms on SALF.
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