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InfoGCN++: Learning Representation
by Predicting the Future for Online Human

Skeleton-based Action Recognition
Seunggeun Chi∗1, Hyung-gun Chi∗1, Qixing Huang2, Karthik Ramani1 .

Abstract—Skeleton-based action recognition has made signif-
icant advancements recently, with models like InfoGCN show-
casing remarkable accuracy. However, these models exhibit a
key limitation: they necessitate complete action observation prior
to classification, which constrains their applicability in real-
time situations such as surveillance and robotic systems. To
overcome this barrier, we introduce InfoGCN++, an innovative
extension of InfoGCN, explicitly developed for online skeleton-
based action recognition. InfoGCN++ augments the abilities of
the original InfoGCN model by allowing real-time categorization
of action types, independent of the observation sequence’s length.
It transcends conventional approaches by learning from current
and anticipated future movements, thereby creating a more
thorough representation of the entire sequence. Our approach
to prediction is managed as an extrapolation issue, grounded
on observed actions. To enable this, InfoGCN++ incorporates
Neural Ordinary Differential Equations, a concept that lets
it effectively model the continuous evolution of hidden states.
Following rigorous evaluations on three skeleton-based action
recognition benchmarks, InfoGCN++ demonstrates exceptional
performance in online action recognition. It consistently equals or
exceeds existing techniques, highlighting its significant potential
to reshape the landscape of real-time action recognition applica-
tions. Consequently, this work represents a major leap forward
from InfoGCN, pushing the limits of what’s possible in online,
skeleton-based action recognition. The code for InfoGCN++
is publicly available at https://github.com/stnoah1/infogcn2 for
further exploration and validation.

Index Terms—Human Action Recognition, Online Action
Recognition, Human Motion Prediction, Neural ODE.

I. INTRODUCTION

Human action recognition, a critical branch of computer
vision, is indispensable in a wide array of applications, in-
cluding but not limited to Augmented Reality (AR), Virtual
Reality (VR) [1], [2], human-robot interaction [3], [4], and
autonomous vehicles [5], [6]. Given the nature of these ap-
plications—whether designed to assist humans or perceive
them as essential elements in a dynamic environment—it is
important to have a robust and accurate understanding of
human actions.
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Fig. 1. A visual representation of the InfoGCN++ model. The In-
foGCN++ model leverages Neural ODE to predict future movements from
given observations, thereby forming comprehensive sequence representations.
This anticipatory approach equips the model with the necessary discriminative
information for swift and accurate action recognition.

In this context, skeleton-based action recognition has proven
to be particularly effective. The recent surge in its popularity
can be attributed to its resilience against the cluttered back-
ground often encountered in video data and the advancements
in 3D camera technologies. Many pioneering works have
leveraged this approach, reporting impressive performance in
classifying a variety of actions with a high degree of accuracy
[7]–[17].

However, a significant limitation of existing methods, in-
cluding the state-of-the-art method InfoGCN [18], is the
requirement to capture the entire action observation for clas-
sification, leading to latency issues in real-time applications.
The need to capture the entire action observation as input
for classification often results in a latency that can be up
to 10 seconds. For instance, recognizing the action “wear a
shoe” from the NTU dataset can be time-consuming [19]. This
latency impedes applications such as human-robot interaction,
where swift anticipatory behavior is crucial for seamless
cooperation [4], [20].

To address this challenge, we present InfoGCN++, an inno-
vative extension to the original InfoGCN [18] that specifically
targets online action recognition. By facilitating recognition
as actions progressively unfold, InfoGCN++ eliminates the
need for complete action observation prior to classification,
thus paving the way for real-time applications. While In-
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foGCN++ inherits the successful skeleton embedding and
spatial encoding components of InfoGCN, it departs from its
predecessor by introducing a unique capability to recognize
actions from partial observations. This capability addresses a
key limitation of existing models [21]–[26] on early action
recognition, which tends to predict actions at specific fractions
of the observation (such as 10% or 50%), rather than during
the continuous performance of the action.

Our multi-task learning strategy, employed in InfoGCN++,
simultaneously performs future motion prediction and action
recognition. By learning to predict future motion, the model
can better anticipate the future trajectory of the skeleton,
thereby enhancing its ability to recognize actions in real-
time. This is achieved by incorporating the concept of Neu-
ralODE [27], which models the time series data dynamics by
solving ordinary differential equations (ODEs) using a neural
network, as shown in Fig. 1. By incorporating this advanced
modeling approach, InfoGCN++ bridges the gap between
observing actions and predicting their outcomes, significantly
reducing the latency of the recognition process.

To rigorously evaluate InfoGCN++’s performance, we lever-
age several well-established datasets for skeleton-based action
recognition, including NTU RGB+D 60 [19], 120 [28], and
NW-UCLA [29]. These datasets provide a diverse range of
action sequences, making them ideal for testing our approach.

Furthermore, to contextualize InfoGCN++’s performance,
we draw comparisons with other prevalent methods in the field.
Specifically, we compare ours with early action prediction
methods and offline skeleton-based action recognition meth-
ods. This comparative evaluation is conducted using varying
fractions of observation, offering a fair and comprehensive
assessment of the strengths and weaknesses of each method.

Our results indicate that InfoGCN++ either surpasses or is
on par with the existing methods in terms of performance.
More importantly, InfoGCN++ provides a distinct advantage,
it allows for continuous and real-time action inference. This
capability not only confirms the effectiveness of our approach
but also demonstrates its potential for transforming real-time
applications in various fields.

Our contributions are summarized as follows:
• We propose a novel framework named InfoGCN++ for

online skeleton-based action recognition that addresses
the challenge of requiring the entire action sequence for
classification in real-time applications.

• InfoGCN++ utilizes multi-task learning to simultaneously
learn action recognition and future motion prediction,
improving its discriminative power for action recognition
by anticipating the future movement of the skeleton.

• InfoGCN++ achieves competitive performance compared
to existing methods while having the advantage of con-
tinuous online action inference, making it well-suited
for real-time applications where anticipatory behavior is
crucial.

II. RELATED WORKS

A. Offline Skeleton-based Action Recognition
There has been a surge of interest in skeleton-based action
recognition recently, resulting in significant strides in this

TABLE I
SUMMARY OF DIFFERENT ACTION RECOGNITION TASKS.

Task Observation Inference Frequency
Online Action Recognition Partial Every frame
Early Action Prediction Partial Specific fractions
Offline Action Recognition Whole One time

domain [7]–[17]. Many approaches seek to enhance perfor-
mance by leveraging Graph Convolution Networks to model
the topology between the joints [30]. A subset of this work [7],
[9], [12], [31] focuses on exploiting the explicit topology of
the joints, using the skeleton as a graph to extract features.
Meanwhile, other studies [8], [11], [13], [18] delve into the
modeling of intrinsic topology to further uncover implicit
connections between joints. Despite the advances made, these
methods are unsuitable for applications requiring low latency.
A method for online skeleton-based action recognition is
proposed by Liu et al. [32]; however, it primarily concen-
trates on detecting short action clips from untrimmed videos.
In contrast, our work tackles the challenge of continuously
recognizing ongoing actions from trimmed videos that can
span over 10 seconds.

B. Skeleton-based Early Action Prediction

Early action prediction [21]–[26], [33], [34] is another active
area of research that aims to predict actions as early as
possible based on the initial parts of a video. Notable works
in this direction [21]–[26] primarily focus on skeleton data.
Several innovative methods have been proposed; for example,
Foo et al. [21] and Liu et al. [23] focus on distinguishing
subtle differences between challenging samples, while Wang
et al. [24] employ a teacher-student distillation model to
transfer long-term knowledge. However, as these models are
designed to recognize actions based on a specific fraction of
the observation, they are not suitable for recognizing streaming
actions online. In Table I, we present a comparison of the
action recognition tasks to emphasize the distinctions between
the existing tasks and our online action recognition task.
In contrast to early action prediction works, our proposed
InfoGCN++ is designed to recognize ongoing actions where
observations evolve continuously. We achieve this through the
novel use of NeuralODEs, enabling us to predict future motion
for each evolving observation.

C. Neural Ordinary Differential Equation

Chen et al. [27] first introduced the concept of Neural
Ordinary Differential Equation (NeuralODE), a mechanism
whose output is a black-box differential equation solver. This
method offers a generative approach to modeling time-series
data, representing them via continuous latent trajectories. The
potential of NeuralODEs has been explored further in the
context of irregularly sampled time-series data by Rubanova
et al. [35], while Park et al. [36] have investigated video
generation using the same concept. Chi et al. [37] delved
into its applications to localize action in the future frames. In
our study, we leverage the concept of NeuralODE to predict
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Fig. 2. Overview of proposed InfoGCN++. Given the representation of the observation Zt, the InfoGCN++ extrapolates the representation to future frames
by solving the IVP to predict future motion. Learned representations by predicting the future are then used for classifying the action at a given observation.
The detailed structures for the encoder and classification head are shown in Fig. 3.

future skeleton motion, which facilitates the recognition of
actions from partial observations. This unique application of
NeuralODEs sets our work apart from existing research and
presents a novel direction in the domain of online action
recognition.

III. ONLINE SKELETON-BASED ACTION RECOGNITION

Online skeleton-based action recognition is a real-time task
that involves classifying actions from a streaming skeleton
action sequence. The goal is to predict the action category
y from every accumulated partial observation X1:t up to time
t, where Xt ∈ RV×3 is the 3D skeleton pose at time t, and
V is the number of joints in the skeleton. Unlike early action
prediction, which predicts actions based on a limited fraction
of observations (i.e., 10%, 50%), online action recognition
requires inference of the action in every single frame with
low latency, making it more efficient and adaptable for real-
time applications. We summarize the difference between the
tasks in Table I.

IV. PRELIMINARIES

A. Initial Value Problem and NeuralODE

A NeuralODE [27] is an ordinary differential equation (ODE)
where a neural network formulates its derivative function.
NeuralODE is used to solve the initial value problem (IVP),
which is defined as ODE with an initial value h1:

dh(t)

dt
= fθ(h(t), t), where h(t1) = h1, (1)

where the neural network fθ(·) models the first-order deriva-
tive of h(t) with a learnable parameter θ. By using numerical
methods such as the Euler method or Runge-Kutta, a hidden
state ht for future time t can be derived by recursively
predicting the next hidden state:

h1, . . . , hτ = ODESolve(fθ, h1, (t1, . . . , tτ )). (2)

B. Self-Attention Graph Convolution.

The Graph Convolution Network (GCN) is a powerful model
that enables efficient extraction of features from graph-
structured data [30]. Considering the human skeleton, which
can be represented as a graph where the nodes symbolize
joints and edges signify bones, the GCN serves as a robust
mechanism for capturing the spatial characteristics of the
skeletal structure. In this context, we can denote a binary
adjacency matrix as A ∈ RV×V , and a feature matrix of
the graph with V nodes and D-dimensional node features as
H ∈ RV×D. The operation of the GCN is defined as,

GCN(H) = σ(

M∑
m=1

ÃHWm), (3)

Here, σ(·) represents a non-linear activation function such as
ReLU [38], H is the feature matrix, M symbolizes the number
of heads, and W ∈ RD×D is a learnable weight matrix. In the
base version of GCN [30], a symmetrically normalized form
of A is utilized for Ã.

InfoGCN [18] introduced the concept of Self-Attention
Graph Convolution (SA-GC), which incorporates a self-
attention-based adjacency matrix into graph convolution. SA-
GC has proven its effectiveness in encoding human action
by discerning the context-dependent intrinsic topology of the
human skeleton. In our study, we deploy SA-GC as a spatial
encoding method for the human skeleton. The neighborhood
information for graph convolution is represented by SA-GC
as Ãm⊙SAm(Ht) where ⊙ indicates Hadamard product. The
overall rule for updating the joint representation is expressed
as,

SA-GC(H) = σ

( M∑
m=1

(
Ãm ⊙ SAm(H)

)
HWm

)
, (4)

where SA(H) = softmax(HWK(HWQ)
⊤/
√
D′) and

WQ,WK ∈ RD×D′
are the linear projections of H to Key
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Fig. 3. The detail architecture of the (a) SA-GC [18] module, (b) the Encoder, (c) Future motion prediction decoder, and (d) Action classification decoder
of infoGCN++.

and Queue of a self-attention. A multi-head attention approach
with the number of heads M is employed, following InfoGCN.
The overall SA-GC process is illustrated in 3 (a)

V. INFOGCN++

In this section, we introduce InfoGCN++, a carefully en-
gineered extension of InfoGCN [18] tailored to tackle on-
line skeleton-based action recognition. The cornerstone of
InfoGCN++ is its ability to construct a richly informed
representation for each observed action, thus providing an
accurate foundation for subsequent action classification. In
addition to this core function, InfoGCN++ embarks on an
auxiliary task of future motion prediction. This innovative
feature equips InfoGCN++ with the capacity to extrapolate
a complete sequence representation even from partial obser-
vations. This twofold approach not only enhances the model’s
action recognition capability but also situates it as a future-
ready solution for real-time applications.

A. Architecture overview

InfoGCN++ comprises four key components: an embedding
layer, an encoder, a future motion predictor, and task-specific
decoders. The embedding layer, encoder, and action clas-
sification decoder are inherited from InfoGCN, while the
future motion predictor and future motion prediction decoder
is a newly introduced component exploiting SA-GC of In-
foGCN [18]. The embedding layer transforms the 3D skeleton
data into latent space, and the encoder creates a sequence
of representations encapsulating the spatiotemporal features
of the skeleton. Leveraging an initial value problem (IVP)

formulation, the future motion predictor extrapolates future
motion based on the current observation. The extrapolated
representation is used for both future motion prediction and
action category classification tasks.

B. Embedding Layer

Following the InfoGCN, the embedding layer transforms the
3D skeleton feature Xt ∈ RV×3 into a D dimensional latent
feature through linear projection. We then add learnable spatial
positional embeddings PE ∈ RV×D to inject the positional
information of joints. The overall skeleton embedding process
is formulated as,

H(0)
t = Linear(Xt) + PE, (5)

C. Encoder

The encoder is designed to convert the latent features of the
skeleton pose from time 1 to t (H1:t) to representation Zt ∈
RV×D:

Zt = Encoder(H1:t). (6)

Our encoder is comprised of two fundamental components:
a spatial modeling module and a temporal modeling module.
Although the overarching encoding procedure takes inspira-
tion from InfoGCN [18], we deviate from its approach by
employing the Transformer model [39] for the purpose of
temporal encoding. With a casual mask for temporal modeling,
we strategically guide the model to focus only on historical
frames, further optimizing our system for real-time, online
skeleton-based action recognition.
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We adopt the Transformer [39] encoder with a causal mask
for temporal modeling. The causal mask enables our model
to attend only observed frames, making it capable of online
action recognition. To combine spatial and temporal features,
we replace the linear projection for Queue Qt, Key Kt,
and Value Vt embedding in Transformer with SA-GC (4) of
infoGCN [18] to extracts contextual features from the skeleton
action (See 3 (b)).

We calculate temporal attention between hidden feature H(l)
t

and those of all previous observations H(l)
1:t. We only calculate

attention between the different times at the same joint index
i because we aggregate spatial features from the projection
layer using GCN. Then, the attention process of our encoding
layer is defined as follows,

Attentiont[i] = Softmax(
Qt[i]K

⊤
1:t[i]√

D
)V1:t[i], (7)

where 1 ≤ i ≤ V . Further, we use multi-head self-attention
(MHSA) followed by multi-layer perceptron (MLP), and we
employ layer normalization [40] (Layer Norm) for inputs for
both MHSA and MLP. The detailed architecture of the encoder
is illustrated in Fig. 3 (a).

D. Future Motion Predictor
The future motion predictor predicts the representation of
future N frames (Ẑt

t+1:t+N ) given the representation of ob-
servation Zt from the encoder. To predict future motion
representation, we reformulate the prediction problem as an
extrapolation problem. Motivated by NeuralODE [27], which
successfully models the dynamics of continuous latent flow,
we define the Initial Value Problem (IVP) with the represen-
tation of an observation Zt as an initial value to extrapolate
representations to the future N frames. With the ODE function
fθ(·) that captures the dynamics of latent features, we solve
the IVP to derive extrapolated future representations using the
ODE solver:

Ẑ
(t)
t:t+N = ODESolve(fθ,Zt, (t, ..., t+N)) (8)

Here, we denote Ẑt
t+n as the predicted representation of the

n-th future frame from ODESolve with an initial condition
Zt, and Ẑt

t = Zt. We use the Runge-Kutta method for the
ODE solver. We tried other ODE solvers like Mid-point and
Dormand-Prince, but they have little difference in terms of
motion prediction loss.

We design the ODE function fθ(·) with a neural network
following [27]. For the time-variant property, we first add
temporal positional embedding (PEtemporal ∈ RT×D) to the
input of the ODE function. Specifically, we use sinusoidal
positional embedding [39] for PEtemporal to inject relative
temporal positional information. Then, the feature is passed
through multiple SA-GC layers to model the dynamics of
latent states. We stack two SA-GC layers to construct the ODE
function.

E. Task-specific Decoders
InfoGCN++ uses multi-task learning to simultaneously learn
action recognition and future motion prediction. The fu-
ture motion prediction task guides the model to anticipate

Fig. 4. The visualization of a representation Zt (first row) and predicted
future representations Ẑ

(t)
t+1:t+N .

future movements, enhancing its discriminative power for
action recognition. By learning both tasks simultaneously,
InfoGCN++ can represent the entire action sequence from
partial observation and achieve better accuracy and efficiency
in action recognition.

1) Future Motion Prediction Decoder: We propose a fu-
ture motion prediction task as an auxiliary task for action
classification in InfoGCN++. This task guides the model
to capture the dynamics of the skeletons by predicting the
trajectory of N future frames. It helps the encoder to encode a
better representation for action classification, representing the
entire sequence from partial observation. The future motion
prediction head comprises two GCN layers followed by a
Linear layer that projects the latent feature to 3D data space
(see Fig. 3 (a)). By using this approach, InfoGCN++ can learn
to represent the entire action sequence from partial observation
and anticipate future motions, enhancing its discriminative
power for action recognition.

X̂
(t)
t+n = PredHead(Ẑ(t)

t+n). (9)

We define the motion prediction loss using the Mean Square
Error (MSE) between the ground truth and prediction.

Lpred =
1

K

N∑
n=1

T−n∑
t=1

MSE(X̂(t)
t+n,Xt+n), (10)

where K=NT−N(N+1)/2. Since the predicted representa-
tions where t + n > T have no ground truth (gray boxes in
Fig. 4), we omit those frames when calculating the loss.

Further, we supervise the model to predict future Ẑ
(t)
t+n

matching with the true future representation Zt+n that
comes from encoding the future observations (Zt+n =
Encoder(H1:t+n)). The design of feature loss is motivated
by previous works [41]–[43] that show anticipating future
representations is practical self-supervision. We use MSE to
define the feature loss.

Lfeat =
1

K

N∑
n=1

T−n∑
t=1

MSE(Ẑ(t)
t+n,Zt+n). (11)

2) Action Classification Decoder: Through the classifica-
tion task, the predicted representation embeds the information
to classify the action. The classification head consists of two
SA-GC layers followed by a Linear layer, spatial mean pool-
ing, and SoftMax function that converts logits to categorical
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distribution as illustrated in Fig. 3 (b). We concatenate the
predicted representations for the classification head input.

ŷt = ClassHead(Ẑ(t)
t:t+N ). (12)

Classification loss is defined using cross-entropy:

Lcls = −
1

TC

T∑
t=1

C∑
c=1

y[c] log([ŷt[c]), (13)

where C is the number of action categories, and y is a one-
hot encoded vector of ground truth. We further employ label
smoothing [44] with a value of 0.1 for generalization.

F. Training

We combine the prediction, feature, and classification losses
to train our model. The total loss is defined as,

L = Lcls + λ1Lpred + λ2Lfeat, (14)

where λ1 and λ2 are weight coefficients for feature loss and
classification loss, respectively. We tested different combina-
tions of coefficients and chose the set that showed the best
performance. We compare our model performance on different
coefficient combinations in the Table VIII.

The overall training and inference procedure is summarized
in Algorithm 1 and Algorithm 2, respectively. We omit the
embedding layer in the algorithms for simplicity. To boost
training on different observation lengths, we parallelize the
training by exploiting the causal mask on the encoder, forcing
the model to attend to only previous frames. For inference,
the motion prediction head is not used.

VI. EXPERIMENT

To demonstrate the superiority of InfoGCN++ in online
skeleton-based action recognition, we conducted experiments
on three widely used datasets: NTU RGB+D 60 [19], 120
[28], and NW-UCLA [29]. We compared InfoGCN++’s per-
formance with 1) early action prediction methods, 2) offline
skeleton-based action recognition methods, and 3) offline
methods separately trained on different partial observations.

A. Datasets

For our experiments, we utilize three widely used skeleton
action datasets.

1) NTU RGB+D [19], [28]: NTU RGB+D 60 [19] is
a large-scale 3D human activity dataset comprising 56,880
videos across 60 distinct action classes. An extension to this
dataset, named NTU RGB+D 120 [28], includes an additional
57,600 videos with 60 new action classes. We followed
existing literature [8], [18] to evaluate the real-time skeleton-
based action recognition performance in different scenarios:
cross-subject and cross-view for NTU RGB+D 60, and cross-
subject and cross-setup for NTU RGB+D 120. For the sake
of clarity, we denote cross-subject, cross-view, and cross-setup
splits as X-Sub, X-View, and X-Set, respectively.

Algorithm 1 Training Procedure
Input: X1:T : Full observation of skeleton sequence.
Output: ỹ1:T : Action category of each observation.

for epoch← 1 toMaxEpoch do
for t← 1 toT do ▷ Working parallel

Zt ← Encoder(X1:t)
Ẑt

t:t+N ← ODESolve(fθ,Zt, (t, ..., t+N))

X̂t
t:t+N ← PredDecoder(Ẑt

t:t+N )

ŷt ← ClassDecoder(Ẑt
t:t+N )

end for
end for

Algorithm 2 Inference Procedure
Input: X1:t: Accumulated observation of skeleton sequence.
Output: ỹt: Action category.
Zt ← Encoder(X1:t)
Ẑt

t:t+N ← ODESolve(fθ,Zt, (t, ..., t+N))

ŷt ← ClassDecoder(Ẑt
t:t+N )

2) NW-UCLA [29]: This dataset consists of 1,494 videos
spanning 10 action categories, captured from three different
camera perspectives. We used videos from the first two cam-
eras for training, and those from the third camera for testing,
adhering to the original paper’s protocol.
Preprocessing. We adhere to the methods used in previous
works [8], [18] for training our InfoGCN++ model. We
performed normalization and localization on the skeleton data,
and truncated the input video length to 64 frames for NTU
RGB+D 60 and 120, and to 52 frames for NW-UCLA.

B. Implementation Details

1) InfoGCN++: Our model is implemented with PyTorch
[45], and all experiments are conducted on an Nvidia Titan
RTX GPU. To build InfoGCN++, we stack 4 encoding layers
for the encoder (L=4) with hidden dimension 128 (D=128).
We train our model to predict 3 future frames (N = 3).
We use an SGD optimizer with an initial learning rate of
0.1 and decaying the learning rate by a factor of 0.1 at
the 50 and 60 epochs. The max epoch for training is set
to 70. Weight decay is set to 0.0003. The loss coefficients
λ1 = 1e−1 and λ2 = 1e−3 are used for NW-UCLA dataset
and NTU RGB+D datasets. We compare the performance of
the different combinations of coefficients in Table VIII and
choose the one that shows the best performance. For the
NTU RGB+D datasets [19], [28], the batch size is set as
64. For NW-UCLA [29], we use batch size 32. We publicize
our code (https://github.com/stnoah1/sode) to reproduce the
experimental results of InfoGCN++. This code includes details
for data acquisition, preprocessing, environmental setup, and
execution commands for the experiments in our main paper.

2) Baseline setup: When pretrained weights are unavailable
(e.g., ST-GCN on NTU RGB+D 120), we train baseline
models. To implement baselines, we use the code provided by
the authors of the original works (ST-GCN1, 2S-AGCN2, MS-

1https://github.com/yysijie/st-gcn
2https://github.com/lshiwjx/2s-AGCN

https://github.com/stnoah1/sode
https://github.com/yysijie/st-gcn
https://github.com/lshiwjx/2s-AGCN
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TABLE II
PERFORMANCE COMPARISONS AT DIFFERENT OBSERVATION RATIOS.

(Left) A SINGLE MODEL TRAINED USING THE FULL OBSERVATION, AND (Right) MULTIPLE MODELS TRAINED USING EACH OBSERVATION.

Datasets Methods
Single model trained on 100% OR Separately trained on each OR

Observation Ratio (OR) Observation Ratio (OR)
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

NTU 60 X-Sub

ST-GCN [9] 10.78 33.44 67.68 78.34 81.50 37.36 64.74 76.32 80.99 81.50
2S-AGCN [11] 12.34 33.54 61.88 81.45 86.73 37.73 69.41 80.61 84.91 86.73
MS-G3D [7] 12.09 36.58 66.76 83.88 88.57 43.09 73.35 82.76 87.40 88.57
CTR-GCN [8] 9.02 33.93 66.32 86.07 89.93 42.17 73.74 83.90 88.83 89.93
InfoGCN [18] 12.14 35.65 70.65 87.33 89.80 41.96 74.44 84.84 88.55 89.80
InfoGCN++ (Ours) 44.57 73.59 81.68 84.42 85.38 44.57 73.59 81.68 84.42 85.38

NTU 60 X-View

ST-GCN [9] 14.02 35.81 70.85 86.55 88.00 45.20 79.55 84.51 87.45 88.00
2S-AGCN [11] 14.25 38.34 69.57 89.57 93.95 55.15 84.08 89.96 92.93 93.95
MS-G3D [7] 11.34 38.35 73.33 90.65 95.00 53.46 86.76 90.83 93.87 95.00
CTR-GCN [8] 11.07 35.10 71.37 91.60 94.67 53.31 85.43 91.94 94.06 94.67
InfoGCN [18] 12.59 39.09 75.41 92.50 95.20 54.56 86.88 93.09 94.42 95.20
InfoGCN++ (Ours) 55.57 84.62 90.79 92.35 92.55 55.57 84.62 90.79 92.35 92.55

NTU 120 X-Sub

ST-GCN [9] 7.09 19.02 43.04 67.74 77.44 29.41 56.90 71.77 76.40 77.44
2S-AGCN [11] 10.59 28.67 55.50 74.34 80.36 33.10 61.51 73.74 76.70 80.36
MS-G3D [7] 7.94 24.25 52.46 76.08 83.41 31.00 61.45 78.23 82.13 83.41
CTR-GCN [8] 5.08 20.64 54.09 77.91 84.93 32.54 60.60 76.39 82.01 84.93
InfoGCN [18] 5.77 18.86 50.17 77.13 85.10 31.72 60.70 76.42 82.54 85.10
InfoGCN++ (Ours) 33.63 58.86 71.72 76.35 77.42 33.63 58.86 71.72 76.35 77.42

NTU 120 X-Set

ST-GCN [9] 8.35 21.37 46.20 71.74 80.36 29.67 60.32 72.77 77.45 80.36
2S-AGCN [11] 10.95 30.18 57.02 76.98 82.53 35.05 63.80 75.97 80.92 82.53
MS-G3D [7] 8.78 26.46 55.80 78.23 84.79 36.13 66.59 79.23 83.00 84.79
CTR-GCN [8] 9.02 21.02 51.99 78.63 85.93 32.54 60.60 78.67 84.40 85.93
InfoGCN [18] 7.59 25.67 58.47 80.58 86.30 35.32 65.58 78.97 84.53 86.30
InfoGCN++ (Ours) 38.70 64.90 76.01 80.31 81.20 38.70 64.90 76.01 80.31 81.20

NW-UCLA

ST-GCN [9] 12.93 33.84 57.54 78.45 87.50 64.80 75.33 81.90 86.96 87.50
2S-AGCN [11] 24.57 51.94 68.53 83.19 90.87 62.28 76.29 86.64 87.28 90.87
MS-G3D [7] 26.94 53.45 75.65 88.79 92.67 78.45 84.78 89.22 91.22 92.67
CTR-GCN [8] 13.79 43.32 71.55 91.16 95.04 76.94 83.84 90.73 91.59 95.04
InfoGCN [18] 23.71 57.54 79.74 90.52 94.00 71.77 82.11 86.64 91.81 94.00
InfoGCN++ (Ours) 78.02 85.99 88.15 90.73 90.09 78.02 85.99 88.15 90.73 90.09

Fig. 5. Visualization of different input modification strategies. Different colors
represent different temporal positions. The white color indicates the zero-value
padding.

G3D3, CTR-GCN4, InfoGCN5). We use pretrained weights if
available; otherwise, we train the networks with the parameter
provided by the authors and finetune the parameter until the
performance converges. For NTU RGB+D 60 dataset, all the
baselines provide hyperparameters or pretrained weights, so
we use them. However, for NTU RGB+D 120 and NW-
UCLA datasets, we train ST-GCN and 2S-AGCN using the
same hyperparameter on the NTU-RGB+D 60 dataset and
finetune. We further train MS-G3D on NW-UCLA with the
same strategy.

3https://github.com/kenziyuliu/MS-G3D
4https://github.com/Uason-Chen/CTR-GCN
5https://github.com/stnoah1/infogcn

C. Quantitative Results

1) Comparison with offline skeleton-based action recogni-
tion methods: We contrast InfoGCN++ with offline skeleton-
based action recognition methods. These include pre-trained
models and those individually trained on different observation
ratios. The baselines include five state-of-the-art methods: ST-
GCN [9], 2s-AGCN [11], MS-G3D [7], CTR-GCN [8], and
InfoGCN [18]. We use the code and pretrained weights from
the original papers, modifying the input during inference for
partial observations.

To assess pretrained offline skeleton-based action recog-
nition methods, we test three input sequence modification
strategies: zero-padding for future frames, interpolation of
partial observation, and duplicating the last frame as per [46]
(see Fig. 5). The last frame duplication strategy performs best,
so we used it to report baseline performance.

In Table II, we evaluate the baseline models at intervals
of 20% of the observation ratio. Our findings show that
InfoGCN++ excels over all other baseline methods when
the observation ratio is under 80%. Although our model’s
performance matches the baselines when the observation ratio
is over 80%, it isn’t the best. This trend is consistent across
all datasets. Nevertheless, InfoGCN++ achieves the highest
AUC on all three datasets, outdoing the baselines considerably.
Notably, our performance advantage over the baselines is
more pronounced at lower observation ratios. For example, at
20% observation on the NTU 60 X-Sub, InfoGCN++ achieves

https://github.com/kenziyuliu/MS-G3D
https://github.com/Uason-Chen/CTR-GCN
https://github.com/stnoah1/infogcn
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Fig. 6. Performance comparison of InfoGCN++ with early action prediction methods at different observation ratios. While InfoGCN++ provides action
classification in every single frame in a continuous manner, early action prediction methods produce output at a specific fraction of the observation length.

TABLE III
COMPARISON WITH EARLY ACTION PREDICTION METHODS.

Datasets Methods Observation Ratio AUC20% 40% 60% 80% 100%

NTU 60 X-Sub

Weng et al. [26] 35.56 54.63 67.08 72.91 75.53 57.51
Wang et al. [24] 35.85 58.45 73.86 80.06 82.01 60.97
Pang et al. [47] 33.30 56.94 74.50 80.51 81.54 61.07
Wang et al. [22] 32.72 69.71 80.18 83.49 84.45 -
Li et al. [23] 42.39 72.24 82.99 86.75 87.54 70.56
Foo et al. [21] 53.98 74.34 85.03 88.35 88.45 73.87
InfoGCN++ (Ours) 47.66 76.13 83.91 86.47 87.02 73.14

NTU 60 X-View Weng et al. [26] 37.22 57.18 69.92 75.41 77.99 59.71
InfoGCN++ (Ours) 59.11 87.48 92.56 93.89 93.92 82.28

NTU 120 X-Sub Foo et al. [21] 31.73 45.67 67.08 78.84 82.43 57.02
InfoGCN++ (Ours) 37.28 62.81 75.43 79.67 80.65 64.24

NTU 120 X-Set InfoGCN++ (Ours) 41.03 67.60 78.54 82.47 83.22 67.69

NW-UCLA InfoGCN++ (Ours) 78.02 85.99 88.15 90.73 90.09 85.47

44.57% accuracy, compared to around 10% for other base-
lines. This underscores InfoGCN++’s prowess in accurately
classifying actions by predicting the future, even with limited
observations.

In the second part of Table II, we contrast InfoGCN++
with baselines individually trained on each partial observation.
Despite being a single model capable of classifying action
classes at any observation ratio, InfoGCN++’s performance
holds up against these individually trained models.

2) Comparison with early prediction methods: Fig. 6 and
Table III showcases the superior performance of InfoGCN++
over previous early action prediction methods. We adopt the
two-stream setup from Foo et al. [21] to ensure an unbiased
comparison. Our model is assessed by calculating classifica-
tion accuracy at intervals of 20% observation ratios, reporting
the area under the curve (AUC) as a single metric, in line with
[21], [23]. Our results on the NTU 120 X-Set and NW-UCLA
datasets are also included to spur further research. Despite
being created for continuous action classification, InfoGCN++
demonstrates versatility, performing comparably or better than
early action prediction methods. Specifically, we match the
AUC on the NTU 60 X-Sub split, and surpass the state-
of-the-art method on the NTU 60 X-Sub and NTU-120 X-
Set datasets. Unlike early action prediction methods that only
output at specific observation fractions, InfoGCN++ provides
dense inference. Additionally, with an inference speed of 18ms
per frame, InfoGCN++ is apt for real-time applications.

TABLE IV
COMPARISON ON DIFFERENT LOSS SETUPS.

Losses Observation Ratio AUCLcls Lpred Lfeat 20% 40% 60% 80% 100%
✓ 73.28 80.82 83.19 86.21 86.85 81.83
✓ ✓ 77.80 84.48 87.93 89.22 89.44 84.85
✓ ✓ ✓ 78.02 85.99 88.15 90.73 90.09 85.47

TABLE V
COMPARATIVE RESULTS OF FUTURE MOTION PREDICTION METHODS.

Future Predictor AUC ↑ Lrec ↓

Baseline 81.83 -
RNN 83.38 0.0302
NeuralODE [27] 85.47 0.0092

D. Ablation Studies and Analysis

This section features ablation studies and analyses, investi-
gating the effects of individual design components within
InfoGCN++. Unless otherwise stated, all studies are conducted
on the NW-UCLA [29] dataset.

1) Contribution of Future Motion Prediction: Our first line
of inquiry pertains to the role of future motion prediction
in online skeleton-based action recognition. In Table IV, we
compare our model’s performance using different loss setups
when predicting future 3 time steps (N = 3) motion. The
model trained solely with Lcls (i.e., without future motion
prediction) forms the baseline. Our findings reveal that the
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Fig. 7. Class-wise performance comparison of the InfoGCN++ with and
without future motion prediction at 20% and 80% observation ratio (OR),
where the red and blue colors correspond to the result of the first and third
rows in Table IV, respectively.

TABLE VI
COMPARISON ON DIFFERENT NUMBERS OF PREDICTION STEPS.

# Prediction Step
(N)

Observation Ratio AUC
20% 40% 60% 80% 100%

0 73.28 80.82 83.19 86.21 86.85 81.47
1 74.35 82.33 85.13 85.99 87.50 82.00
2 73.71 83.41 85.13 87.28 88.36 82.61
3 78.02 85.99 88.15 90.73 90.09 85.47
4 75.86 83.62 85.13 88.15 89.01 83.64
5 76.51 84.48 88.36 89.98 90.09 84.78

TABLE VII
COMPARATIVE RESULTS OF DIFFERENT ENCODER CONFIGURATIONS.

Encoders # Params AUC
RNN 2.07M 77.27
Transformer

w/ linear 1.47M 81.18
w/ GCN 2.04M 83.23
w/ SA-GC [18] 2.09M 85.47

model’s AUC increases by 3.17 upon adding Lrec to Lcls, and
by an additional 1.36 upon incorporating Lfeat. This highlights
the significant contribution of future motion prediction to
online skeleton-based action recognition. In Fig. 7, we dis-
play class-wise accuracy at different observation ratios (OR),
showing that future motion prediction enhances classification
accuracy across almost all action categories at both 20% and
80% OR. Specifically, complex actions like pick up 1’ and
carry that are challenging to discern early in motion and
exhibit low accuracy at 20% observation, witness a substantial
accuracy boost when employing InfoGCN++’s future motion
prediction.

2) Advantage of NeuralODE in Future Motion Prediction:
Next, we demonstrate the edge of NeuralODE over RNN
in predicting future motion. Table V presents a comparison
between different future motion prediction methods, including
the baseline InfoGCN++ without future motion prediction.
In our RNN construct, we modify Conv-LSTM [48] by
substituting convolution with the graph convolution of GCN
(Eq. (3)) and stacking two RNN layers. The NeuralODE
outperforms the RNN, yielding lower prediction loss and
higher AUC, thereby echoing previous works [27], [35] that
have championed NeuralODE’s capacity to model sequential
data and predict future steps with observed values and captured

TABLE VIII
AUC COMPARISON BETWEEN DIFFERENT LOSS COEFFICIENTS ON

NW-UCLA DATASET.

λ1

1e−2 1e−1 1
1e−3 84.80 85.47 83.80

λ2 1e−2 83.77 84.62 84.21
1e−1 82.96 83.36 84.57

TABLE IX
THE INFERENCE SPEED OF INFOGCN++ ON DIFFERENT DATASETS.

Datasets Inference Speed
NTU RGB+D 60 & 120 18.0 ms (56 fps)
NW-UCLA 15.6 ms (64 fps)

physics.
3) The Number of Future Prediction Steps: In Table VI, we

delve into how the number of future motion prediction steps
influences performance. We discern that the model performs
optimally at N = 3, equivalent to 5% of the entire sequence.
This implies that lengthier prediction steps during training
do not necessarily yield a better representation. We posit
that this is due to the increased uncertainty when predicting
the long-term future, which could impede the learning of a
discriminative representation for action classification.

4) Encoder Configurations: Table VII compares differ-
ent encoder designs. Transformer-based encoders outperform
RNN-based ones significantly, even when bearing similar
or fewer parameters, thereby establishing the transformer’s
superiority in temporal modeling. Moreover, the Transformer
coupled with GCN projections offers the highest AUC, un-
derlining the advantage of our skeleton feature aggregation
method in amalgamating spatio-temporal information. Fur-
thermore, the Transformer with SA-GC by [18] outperforms
the standard GCN, suggesting that InfoGCN++ capturing the
intrinsic topology of the skeleton proves beneficial in online
skeleton-based action recognition.

5) Coefficients for Multi-task Learning: We performed
a grid search over the loss coefficients space, specifi-
cally in the range of λ1 ∈ {1e−2, 1e−1, 1}, and λ2 ∈
{1e−3, 1e−2, 1e−1}.The resulting performance across vari-
ous combinations is summarized in Table VIII. We select the
coefficient pair that yielded the best performance to be utilized
in our experiments.

6) Inference Speed: Finally, we evaluated InfoGCN++’s
inference speed on both the NTU RGB+D and NW-UCLA
datasets, as reported in Table IX. InfoGCN++ exhibits an
average inference speed of 18.0 ms (equivalent to 56 fps)
for the NTU RGB+D dataset, and 15.6 ms (or 64 fps) for
the NW-UCLA dataset. This finding showcases InfoGCN++’s
capability for real-time inference—an essential requirement
for diverse practical applications. Since the NTU RGB+D 60
and 120 datasets share the same graph topology, we present
their inference speeds as a single value.

7) Attention Visualization: Fig. 8 presents a comparison
of the attention maps produced by InfoGCN++’s encoder for
models trained with and without future motion prediction. It’s
observed that the model trained with future motion prediction
shows a marked correlation between the attention map and
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Fig. 8. Qualitative samples from NTU 120 X-Sub. (left) without future prediction and (right) with future prediction of N = 3. For attention visualization,
we randomly select one head from the last encoding layer and average the value over spatial dimension. The brightness in the attention map indicates the
magnitude of attention. We uniformly sample the rows of attention maps for simplicity.

prediction probability, with distinct frames receiving more
attention than others. Conversely, the model trained without
future motion prediction demonstrates a tendency to focus
more on recent time frames rather than on specific ones.
This observation implies that future motion prediction guides
the encoder to discern which frames to focus on in order
to accurately recognize the action from partial observations.
Additional examples from other datasets are provided in Fig. 9.

E. Qualitative Results

We further illustrate qualitative results derived from the NTU
RGB+D 60, NTU RGB+D 120, and NW-UCLA datasets in
Fig. 9. We depict the outcomes from the InfoGCN++ trained
with a future prediction step of N = 3. Each row in the
figure shows the skeleton sequence, the classification score
(p(y)), and the attention map, mirroring the format of figures
in the main paper. The attention maps exhibit similar patterns
to those presented in the main paper. The model prioritizes
frames with discriminative motion within the input sequence,
and a notable increase in the classification score p(y) is
observed around these attended frames.

VII. DISCUSSION

A. Length of Action Sequence

Our proposed InfoGCN++ framework encodes representation
based on all previous observations. However, this approach
encounters a limitation concerning the memory requirement.
Specifically, memory usage grows quadratically with an in-
crease in sequence length, rendering InfoGCN++ less scalable
for longer-term sequences. This constraint offers a direction
for our future work, where we aim to develop a memory-
efficient design of InfoGCN++ that is capable of handling
extended action sequences.

B. Model Performance on Full Observation
In terms of performance across the entire observation of
the sequence (i.e., 100% observation ratio), InfoGCN++ de-
livers results that are comparable to, but not superior to,
current skeleton-based action recognition algorithms (i.e. In-
foGCN [18]). We envision integrating the strengths of other
methods into our framework to enhance its performance at
full observation. For example, incorporating intrinsic topology
modeling in our encoder may help push InfoGCN++’s perfor-
mance closer to the state-of-the-art. This aspiration forms part
of our agenda for future enhancements to the system.

VIII. CONCLUSION

In this work, we introduced InfoGCN++, an extended ver-
sion of InfoGCN for online skeleton-based action recogni-
tion, which integrates the strengths of Neural ODEs with
Transformer encoders to simultaneously predict and classify
actions in real-time. Our method showed superior performance
in comparison to other early action prediction methods and
offline skeleton-based action recognition methods, highlighting
its versatility. Through ablation studies, we validated the
significance of future motion prediction and the advantage of
Neural ODEs over RNNs. Furthermore, we demonstrated that
our model exhibits robust performance across multiple datasets
and offers a valuable tool for real-time applications due to its
rapid inference speed. We also highlighted the potential of
future motion prediction in guiding the encoder to focus on
the most informative frames. Our results not only substantiate
the efficacy of InfoGCN++ but also open new avenues for
future research in online action recognition and prediction.
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Fig. 9. Qualitative Results. We provide a corresponding classification score and attention matrix similar to Fig. 8.
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