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Abstract— Accurately estimating the human pose is an essen-
tial task for many applications in robotics. However, existing
pose estimation methods suffer from poor performance when
occlusion occurs. Recent advances in NLP have been very
successful in predicting the missing words conditioned on visible
words. We draw upon the sentence completion analogy in
NLP to guide our model to address occlusions in the pose
estimation problem. We propose a novel approach that can
mitigate the effect of occlusions motivated by the sentence
completion task of NLP. In an analogous manner, we designed
our model to reconstruct occluded joints given the visible
joints utilizing joint correlations by capturing the implicit
joint connectivity through the attention mechanism. In this
work, we propose a POse Relation Transformer (PORT) that
captures the global context of the pose using self-attention
and a local context by aggregating adjacent joint features.
To supervise PORT in learning joint correlations, we guide
PORT to reconstruct randomly masked joints, which we call
Masked Joint Modeling (MJM). PORT trained with MJM adds
to existing keypoint detection methods and successfully refines
occlusions. Notably, PORT is a model-agnostic plug-and-play
module for pose refinement under occlusion that can be plugged
into any keypoint detector with substantially low computational
costs. We conducted extensive experiments to demonstrate the
advantage of PORT mitigating the occlusion on the hand and
body pose PORT improves the pose estimation accuracy of
existing human pose estimation methods by up to 16% with
only 5% of additional parameters. The code is publicly available
at https://github.com/stnoahl/PORT.

I. INTRODUCTION

Human pose estimation (HPE) has attracted significant in-
terest due to its importance to various tasks in robotics, such
as human-robot interaction [1], [2], hand-object interaction
in AR/VR [3], imitation learning for dexterous manipulation
[4], and learning from demonstration [S]. However, in a
single-view camera setup, various occlusions such as self-
occlusion, occlusion by the object, and out-of-frame oc-
cur. As a consequence, the occlusion confuses the existing
keypoint detectors, an essential intermediate step of pose
estimation, and produces incorrect poses (see examples in
Fig. 3) that result in errors in applications such as lost
tracking and gestural miscommunication in human-robot
interaction. In this work, we aim to mitigate the effects
of occlusions to provide a more reliable solution for the
HPE task. Specifically, we improve the keypoint detection
accuracy under occlusion, an important intermediate step for
human pose estimation methods.

The recent success of Masked Language Modeling (MLM)
[6], a widely used pretraining task in Natural Language
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Fig. 1: Analogous to the fill-in-the-blank task that captures
word correlations to predict blanked words (Top), PORT pre-
dicts occluded joints by capturing the semantic connectivity
between hand joints (Bottom).

Processing (NLP), inspires our work. Inferring occluded
joints of the human skeleton is analogous to inferring missing
words in a sentence, as illustrated in Fig.1. The objective
of MLM is to train the model to predict blank words in a
sentence. Through this process, the model learns to capture
the contextual relations between the words. Intuitively, the
model learns ‘where and how much’ to attend in order to
predict the masked words.

We propose an occlusion refinement framework using a
pose refinement module, which we named POse Relation
Transformer (PORT). PORT refines locations of occluded
joints from existing keypoint detectors. Like MLM, we train
PORT by randomly masking joints and reconstructing them,
which we call Masked Joint Modeling (MJM). Through this
process, PORT learns to capture joint correlation and utilizes
it to reconstruct occluded joints. Then, the trained PORT is
used to refine occluded joints when plugged into existing
keypoint detectors. We found occluded joints in keypoint
detectors tend to have lower confidence and higher errors.
Therefore, we improve the detection accuracy by replacing
these joints with the reconstructed joints from PORT.

We design the architecture of PORT to capture the global
and local context of the human pose since these contexts
provide an important clue to reconstructing occluded joints.
The architecture of PORT is based on the transformer fol-
lowing the BERT [6] that first introduced MLM. The trans-
former’s self-attention mechanism captures the pose’s global
semantic context. To further utilize the semantic knowledge
embedded in the skeleton, we use graph convolution [7] for
the embedding and projection process of the transformer.
Graph representation has been widely adopted to model
the human skeleton [8]-[11] because of its versatility in
capturing physical constraints, relations, and semantics of



the skeleton. Graph convolution enables the PORT to be able
to extract the local context along with the global semantics
from self-attention.

Notably, PORT has several advantages that make it adapt-
able to existing keypoint detectors. First, PORT is model-
agnostic and therefore be plugged into any keypoint detector.
Second, PORT is light-weighted since the input format of
PORT is a joint location instead of an image. With only
5% of the parameters, PORT reduces up to 16% of the
error of the existing keypoint detector. Lastly, PORT does
not require additional finetuning. PORT trained with MIM
refines occlusions without further end-to-end training after
plugging into the keypoint detector.

To demonstrate the effectiveness of PORT in refining
occluded joints, we evaluate PORT on four datasets that
cover various occlusion scenarios. We prove that PORT
improves the performance of existing keypoint detectors
and demonstrates the occlusion refinement ability through
analysis. In short, our contributions are as follows,

e We introduce a novel architecture named POse Relation
Transformer (PORT) that captures global and local
semantic joint relations.

e We propose a model-agnostic occlusion refinement
framework. PORT trained with Masked Joint Modeling
(MJM) works as a plug-in and refines occluded joints
of any keypoint detector.

o Through extensive experiments on various datasets, we
prove that PORT mitigates the effect of occlusions and
improves the pose estimation accuracies of existing
keypoint detectors.

II. RELATED WORKS

Human Pose Estimation 3D Human pose estimation is cat-
egorized into regression-based [12]-[14] and detection-based
methods [15]-[18]. Regression-based methods directly pre-
dict the 3D coordinates of human joints, whereas detection-
based methods estimate 2D keypoints for its intermediate
step. Due to their accurate pose estimation performance,
detection-based methods are more popular than regression-
based methods. However, detection-based methods are more
sensitive to occlusion than regression-based methods [19]
since the keypoint detectors tend to fail to detect keypoints
under occlusion. To alleviate the errors from the occlusion,
recent approaches exploit large-scale datasets [15], [20]—
[22], or synthetic images [16], [23], [24] that include var-
ious occlusion cases. However, the data-driven approaches
do not explicitly tackle the occlusion prediction problem.
Cheng et al. [25] filter out the unreliable estimations of
occluded joints using optical flow, Ye et al. [26] model
different distributions for visible and occluded joints using
hierarchical mixture density networks, and et al. [27] utilizes
the concept of geometric constraints to refine the estimated
joints. The mixture density model [26], [28] exploits multi-
modal gaussian distribution to mitigate the effect of occlusion
and shows successful improvement. However, since they
do not consider the context of the pose, output poses are
often awkward. Unlike previous approaches, we focus on

mitigating the occlusion effect for the existing keypoint
detectors by utilizing the semantic connectivity of human
skeletons.

Transformer in Computer Vision The Transformer [29]
was first introduced to solve the Neural Machine Translation
problem in NLP. It has been a de-facto standard for NLP
tasks due to its outstanding performance and scalability.
The success of the Transformer in NLP has encouraged
researchers to exploit the Transformer in other domains,
including but not limited to Computer Vision. For example,
Transformer variants have been used in image recognition
[30], [31], object detection [32], [33], semantic segmentation
[34], and action recognition [35], [36], while achieving state-
of-the-art performances in each field. In the HPE field,
transformer-based approaches [37]-[41] achieve successful
performance due to their ability to capture the semantic
context. In this work, we utilize a transformer architecture to
refine occluded joints by capturing the context of the pose.

III. METHOD
A. Overview

We propose a PORT to refine occluded joints by capturing
the both global and local context of the pose through
graph convolution and self-attention. We introduce Masked
Joint Modeling (MJM) to supervise PORT in reconstructing
randomly masked joints. PORT, trained with MJM, produce
refined joints J by replacing occluded joints from a keypoint
detector with reconstructed joints from PORT J™°" as
illustrated in Fig. 2.

B. Preliminaries

Keypoint Detection. The goal of this task is to detect the
locations of N keypoints J = {j,})_, from an image
I. Detection-based approaches [42]-[46] utilize heatmaps
H = {H,,}\_, from an image to estimate the pose. A joint
location of n-th joint j, can be derived from a heatmap, i.e.,
argmax function argmax; ;[Hy]; ; or weighted sum after
applying soft-argmax operation [47] to the heatmaps.

W H W H
in = @noyn) = Q0D VilHulig, Y > iHaig). (1)
i g i
A confidence value c¢,, of the inferred joint is defined as

cn = Hul|2n7,lyn1> 2
where 0 < ¢, <1 and |-] denotes round operation.

Masked Language Modeling. Masked Language Modeling
(MLM) [6] is a widely used pretraining task in NLP to train
the model to learn the context of the language. During the
training, the words in a sentence are randomly masked, and
the model reconstructs the masked words by learning the
correlations between the words. Let W = {w,, }1_, denotes
the sequence of words, and M denotes a set of masked word
indices, then the objective of MLM is to maximize the log-
likelihood of masked word w; conditioned on visible words
Whiis Which are not masked.

1
™ > log p(wiWais) - 3)
ieM
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Fig. 2: (Left) Overview of proposed occlusion refinement
framework and (Right) detailed architecture of PORT. J
denotes estimated joints from a keypoint detector, and M
is a mask indicating the occluded joints.

Multi-Scale Graph Convolution. Graph convolution [48]
is an effective method to extract skeleton features since the
human skeleton can be represented as a graph with joints
as nodes and bones as edges. Let the C-dimensional node
feature matrix be X € RV*® and the adjacency matrix be
binary matrix A € RV*N, where A;; is 1 if i-th and
j-th joins are connected with a bone otherwise 0. Then,
graph convolution is formulated as A*XW, where A is
a symmetrically normalized form of A + I, I denotes the
identity matrix, and W € RE*C" are learnable weights. Note
that we omit non-linear activation since we use graph convo-
lution for feature projection and embedding. Especially, we
utilize Multi Scale Graph Convolution (MSGC) for PORT
that aggregates skeleton features with different kernel sizes.
MSGC is formulated as

MSGC(A, X) > AFXW, €

|’C| rex
where K is a set of exponents for the adjacency matrix.

C. POse Relation Transformer (PORT)

PORT consists of a joint embedding block, an encoder, and
a regression head (see Fig. 2 green box). In the embedding
block, we transform the skeleton features to the embedding
dimension using MSGC and use it as input for the encoder.
The encoder is built based on the Transformer [29] encoder,
and it captures the global and local context of the pose using
self-attention and graph convolution. Lastly, the regression
head projects the output of the encoder to the joint location.

Joint Embedding Block. We first transform the skeleton
joint locations J € RY*2 to D-dimensional joint embed-
dings using Multi-Scale Graph Convolution (MSGC).

Z (o) = MSGC(A, J), 5)

where J; = j; and Z;) € RM*P indicates a feature
embedding of [-th encoding layer. Unlike the transformer,
positional encoding for positional information is not added
since the graph convolution employs an adjacency matrix,
which implicitly includes positional information.

Encoder. The encoder consists of L encoding layers. It
captures the context of the pose utilizing self-attention and
graph convolution. To embed the local context, inputs are
first transformed to Key, Query, and Value (denoted as
K,Q,V € RMXP respectively) using MSGC in each
encoding layer.

Q(l 1)

Then, the attention is calculated as

V) =MSGC(A,Z_1)). (6)

KT
vD
We especially use the Multi-head Self-Attention (MSA) that
allows the model to explore different feature representation

subspaces. The overall encoding process of the encoding
layer is formulated as

Z() + MSA(LN(Z))), (8)
Z{;41) + MLP(LN(Z{; 1)), ©))
where LN(-) denotes layer normalization [49]. Two linear
layers with ReL.U [50] for activation is used for MLP.

Regression Head. The regression head transforms the output
of the last encoding layer Zz, to the joint location. To ex-
plicitly model channel inter-dependencies, we use Sequence-
and-Excitation (SE) [51] module,

Attention(Q, K, V) = Softmax( )V. @)

Z/(l+1) =
Zgiy =

SE(Z) = Sigmoid(MLP(— (10)

Zz

where the output SE(Z) € is weight for channel.
Finally, the entire decoding process is defined as

Jreeon — (SE(Z(L)) ® Z(L))W/,

RlXD

Y

where ® denotes broadcasted element-wise product and
W’ € RP*2 is a linear projection that is learnable.

D. Masked Joint Modeling (MJM)

We propose MJM, a training strategy for PORT. The ob-
jective of MIM is to reconstruct masked joints given visible
joints. We randomly select joint indices for the masking (M)
and train the PORT to reconstruct masked joints. Similar
to [31], rather than masking the input joints, we replace
corresponding rows of joint embedding Z ) with a learnable
mask embedding Emask ¢ RIXD Ty train PORT, we set the
target distribution of ¢-th joint to follow two dimensional
gaussian N; (i, 0;I) with a ground truth joint location as a
center y; = J&T and a fixed variance o; = 1. Then, PORT is
trained to minimize reconstruction loss £, defined as negative
gaussian log-likelihood.

M|Z —M||2 Z|

ieEM ieEM

|Jrecon |Jrecon JGT | |2

12
M| (12)



Mothods FPHB [20] CMU panoptic [52] RHD [53]
EPE | P-EPE | EPE | P-EPE | EPE | P-EPE |
HRNet_wd8 [43] 8.49 525 13.88 691 5.89 215
+PORT 8.19 (-0.30)  4.82 (-0.46) | 13.85 (-0.03)  6.53 (-0.38) | 5.86 (-0.03)  2.08 (-0.07)
HRNew2 wi8 [46] | 831 501 1552 627 6.30 235
+PORT 7.61 (:0.08) 454 (:0.47) | 1542 (-0.10)  6.16 (-0.11) | 6.28 (-0.02)  2.20 (-0.05)
MobileNet2 [54] | 9.57 6.29 1527 776 6.96 275
+PORT 8.94 (-0.63) 527 (-1.02) | 15.15 (-0.12)  7.46 (-0.30) | 6.96 (-0.00)  2.69 (-0.06)
ResNet50 [55] 10.59 632 13.63 7.16 6.45 234
+PORT 10.39 (-0.20)  5.96 (-0.36) | 13.62 (-0.01)  6.86 (-0.30) | 6.43 (-0.02)  2.31 (-0.03)
H36M [56] H36M_masked
Methods EPE | P-EPE | EPE | P-EPE |
HRNet w32 [43] | 10.10 8.56 20.05 16.99
+PORT 9.86 (-0.24)  8.16 (-0.40) | 19.24 (-0.81) 16.09 (-0.90)
HRNet w48 [43] | 7.60 6.29 15.07 12.65
+PORT 7.52 (0.08)  6.15 (-0.14) | 14.48 (-0.59) 11.97 (-0.68)

TABLE I: Keypoint detection performance comparison for various keypoint detectors with and without PORT on (Top): hand
and (Bottom): human body test sets. Bold figures indicate the results with PORT, and blue figures denote the improvement.

E. Occlusion Refinement

Here we propose a model-agnostic pose refinement frame-
work for occlusion using PORT trained with MJM (see
Fig. 2). We observe that estimated joints from the keypoint
detector tend to have low confidence under occlusion, leading
to high pose estimation error (see Fig. 4). Therefore, by
refining the joints with low confidence, overall performance
can be improved. To do so, we mask the estimated joints
with low confidence and then reconstruct them using PORT.
We add PORT at the end of the keypoint detector and let the
PORT refine the estimated joint from the keypoint detector
based on their confidence values. We define occluded joints
as the set of joints whose confidence c,, from the keypoint
detector is less than the predefined threshold § based on the
statistic of the training set.

1 ife, <6,
my =4 Lo (13)
0 otherwise.
Finally, the refined joint J is derived by replacing joint with
low confidence J with reconstructed joint J™°" from PORT.

J=(1-M)oJ+MoJwn (14)

where M € RV*! is a masking matrix with M,, = m,,.

IV. EXPERIMENT

To demonstrate the effectiveness of PORT under occlu-
sion, we carried out the keypoint detection task by adding
PORT to existing keypoint detectors. To cover various oc-
clusion scenarios, we test PORT on hand (FPHB [20], CMU
panoptic [52], RHD [53]) and body (Human 3.6M [56] and
Human 3.6M with synthetic mask) datasets.

We evaluate our results using two metrics, End Point Error
(EPE) and Procrustes analysis End Point Error (P-EPE). EPE
quantifies the pixel differences between the ground truth and
the predicted results. P-EPE quantifies the pixel differences
after aligning the prediction with the ground truth via a rigid
transform. We use P-EPE for all our analysis and ablation

studies since it properly reflects occlusion refinement by
measuring the pose similarity.

A. Datasets

FPHB [20] First-Person Hand action Benchmark (FPHB) is
a collection of egocentric videos of hand-object interactions.
We select the dataset to explore the scenario of self-occlusion
and occlusion by the object. We use action-split of FPHB in
our experiments.

CMU Panoptic [52] CMU Panoptic dataset contains third-
person view hand images. We select this dataset to test PORT
to various scenarios in third-person view images.

RHD [53] Rendered Hand pose Dataset (RHD) contains
rendered human hands and their keypoints, which comprised
41,258 training and 2,728 testing samples.

H36M [56] Human 3.6M dataset (H36M) contains 3.6
million human poses. Following the previous works [57]—
[59], we train our model with five subjects (1, 5, 6, 7, 8) and
test with two subjects (9, 11). However, images on H36M are
not much occluded since they are recorded on single-person
action in the indoor environment. Therefore, to simulate
the occlusion scenario, we introduce an additional test set,
which we call H36_masked, by synthesizing occlusion with
a random mask patch following [60], [61]. In this test set,
synthetic masks are randomly colored 30 x 30 pixel-sized
square centered on the joint. We generate the patches for each
joint following binomial distribution B(n = 17,p = 0.02).

B. Implementation Details

All experiments are performed using PyTorch [62] on
NVIDIA TITAN RTX. Our model is trained with ADAM
[63] optimizer with batch size 128 and an initial learning
rate (LR) 5e-4. Cosine LR decay with warm-up step 1,000
is used. In PORT, we employ four encoder layers (L) with
four heads and set hidden dimensions (D) for embeddings
as 64 unless otherwise stated. The max epoch is set to
100. For experiments, we train PORT with MJM using
joint locations as input and test its refinement ability after
adding the PORT to different keypoint detectors. We use



CMU Panoptic

Fig. 3: Qualitative results of joint refinement on five test sets. Yellow arrows poi

H36M Masked

nt from the pose of the keypoint detector

(HRNet_w48) to the refined pose of PORT. Blue points indicate visible joints, which have a high confidence value, whereas
Orange indicate occluded joints, which have a low confidence value. Green points represent refined joints from PORT.

pretrained keypoint detectors provided by MMPose [64]'.
We set the masking ratio for MIM to be 40% and K =
{1,2} for all our experiments unless otherwise stated. The
confidence threshold value § is empirically selected based on
the keypoint detector outputs on the training sets.

C. Experimental Results

We investigate the effect of PORT on the various keypoint
detectors (HRNet [43], HRNetv2 [46], MobileNetv2 [54],
ResNet [55]) on five test sets. In Table I, we compare the
error of estimated joints J from the pretrained keypoint
detectors and refined joints J from PORT. Bold figures
indicate the results with PORT, and blue figures denote the
improvement. We observe that PORT reduces the errors of all
keypoint detectors under different test sets in terms of both
EPE and P-EPE. We also find that P-EPE improvements are
more significant than EPE over all results. This result implies
that PORT tends to refine the results into plausible poses than
fix each joint into the exact location.

Qualitative results in Fig. 3 on five test sets further prove
the occlusion refinement ability of the proposed method.
PORT successfully refines the occluded joints by replacing
them with the structurally plausible joint when the hand does
not fully appear in the frame (RHD), occluded by the other
hand or patches (CMU Panoptic, H36M_masked), and self-
occluded (FPHB). We also observe that PORT can refine
incorrectly detected visible joints (H36M, H36M _masked),
which also have low confidence.

D. Analysis

Occlusion Refinement We analyze PORT’s effectiveness on
occlusion using experimental results from the HRNet_-w48
keypoint detector. In Fig. 4, we plot the error distribution
with and without PORT on five test sets to observe the effect
of PORT at different confidence values. We use box plots to
group joints based on their confidence values, connecting the
mean values of each box with blue and orange lines. Blue
lines (without PORT) are duplicated on the right plot for
easy comparison. We observe that the error distribution with
confidence less than § (vertical red lines), which we assume

ISince no pretrained models exist for the FPHB dataset, we train keypoint
detectors by ourselves with hyper-parameters provided by original works.
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Fig. 5: Distribution of error difference between with and
without PORT over the number of occlusion on H36M
(Left) and H36M _masked (Right). Positive values indicate

the reduction of errors.

Fig. 6: Example of the occluded skeleton (Left) and their
corresponding self-attention map from PORT (Middle), and
2-hop adjacency matrix (Right). The occluded joints of the
pinky finger and their corresponding weights are marked as
red boxes.

as occlusion, is reduced across all test sets. Additionally, we
note that the effect of PORT is greater on lower confidence
joints. These results demonstrate that PORT successfully
reduces error by refining low-confidence joints.

We investigate the relation between PORT’s refinement
performance and the number of occlusions. In Fig. 5, we
visualize the error difference distribution between with and
without PORT on the H36M and H36M_masked test sets over
the number of occlusions. PORT reduces the error when the
number of occlusions is less than 5 for H36M, but exac-
erbates the error after that. We conjecture that the context
for refining occlusion is insufficient under severe occlusion,
explaining why PORT shows similar P-EPE improvement
on H36M and H36M _masked despite the latter having 30%
more occlusions (4.6% vs. 5.3% in Table I).

Skeleton Feature Extraction. Fig. 6 gives an example of
an attention map and an adjacency matrix of the occluded
skeleton that represent global and local features of the
skeleton, respectively. Here we focus on the occlusion case
of the pinky finger, marked with red boxes. We first see that
the model attends more to its adjacent joints to reconstruct
occluded joints from the observation that the attention and
adjacency matrix has a similar pattern on occluded joints.
Still, the attention map attends to all the other joints. It shows
that PORT refines the result by combining local features from
adjacent joints and global features.

Parameter Comparison. We compare the number of pa-
rameters of existing keypoint detectors with that of PORT in
Table II. We note that the number of parameters of PORT is
significantly smaller than keypoint detectors. The number of
parameters of the PORT is only 0.8% ~ 5.2% of keypoint
detectors, which proves PORT can be a light-weighted plug-

Methods { # Parameters (M) ‘

HRNet_w32 [43] 28.5
Keypoint HRNet_w48 [43] 63.6
Detectors HRNetVZ,W18 [46] 9.6

MobileNetv2 [54] 9.6

ResNet50 [55] 34.0

PORT 0.5

TABLE II: Comparison of the number of parameters of
keypoint detectors and PORT.

‘ Methods ‘ P-EPE | ‘ Mask.ing P-EPE |

Linear 7.65 Ratio

MSGC 10% 7.63
wl/ K ={1} 7.54 20% 7.57
w/ K ={2} 7.40 30% 7.45
wl/ K ={3} 7.64 40% 7.36
w/ K ={1,2} 7.36 50% 7.39
w/ K ={1,3} 743 60% 7.37
w/ K= {2, 3} 7.38 (b)
w/ K ={1,2,3} 7.39

(a)
TABLE III: P-EPE comparisons on different (a) feature
projection methods and (b) masking ratios for MIM.

and-play to keypoint detectors.
E. Ablation Studies

In this section, we examine different configurations of
PORT. All ablation studies are conducted on CMU panoptic
[52] dataset with MobileNetv2 [54] as a keypoint detector.

Feature Projection. We compare the performance of differ-
ent projection methods for feature projection in Table III-(a).
When compared to the Linear layer, MSGC shows better
P-EPE. We also observed that increasing the cardinality
of the kernel set does not always lead the performance
improvement. Among different kernel sets, K = {1,2}
shows the best performance.

Masking Strategies. We report the performances of different
masking strategies in Table III-(b). Among the different
masking ratios, the model trained with 40% shows the
best performance. Until 40%, increasing the masking ratio
reduces P-EPE, but the ratios higher than 40% show slightly
worse results.

V. CONCLUSION

This work introduces a POse Relation Transformer
(PORT) to refine occluded joints in the intermediate step of
human pose estimation, trained with Masked Joint Modeling
(MIM) to capture the local and global pose context and
reconstruct occluded joints. Our experiments on four human
pose datasets demonstrate that PORT is a model-agnostic
plug-and-play module that mitigates occlusion for keypoint
detectors with minimal additional computational cost.
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