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a b s t r a c t

Most three-dimensional (3D) computer-aided design (CAD) models of mechanical parts, created during
the design stage, have high shape complexity. The shape complexity required of CAD models reduces
according to the field of application. Therefore, it is necessary to simplify the shapes of 3D CAD models,
depending on their applications. Traditional simplification methods recognize simplification target
shape based on a pre-defined algorithm. Such algorithm-based methods have difficulty processing
unusual partial shapes not considered in the CAD model. This paper proposes a method that uses a
network based on a generative adversarial network (GAN) to simplify the 3D CAD models of mechanical
parts. The proposed network recognizes and removes simplification target shapes included in the
3D CAD models of mechanical parts. A 3D CAD model dataset was constructed to train the 3D CAD
model simplification network. 3D CAD models are represented in voxel form in the dataset. Next, the
constructed training dataset was used to train the proposed network. Finally, a 3D voxel simplification
experiment was performed to evaluate the performance of the trained network. The experiment results
showed that the network had an average error rate of 3.38% for the total area of the mechanical part
and an average error rate of 14.61% for the simplification target area.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Due to advances in computing power, 3D CAD models are now
sed for various purposes such as product design, engineering
imulations, and virtual prototyping. CAD models have different
egrees of shape complexity according to their purpose. 3D CAD
odels of mechanical parts, created in the design stage, include

eatures such as holes, pockets, chamfers, and fillets and have
high level of detail (LOD). However, when these models are
sed for manufacturing simulations, design reviews, visualization,
nd virtual training, the model’s connectivity between parts and
verall appearance is more important than its detailed shape.
herefore, in real-world applications, there is a need for methods
o simplify the shapes of original 3D CAD models according to
heir purpose. For example, if engineering analysis is performed
n a part model consisting of hundreds of features, the compu-
ational time will significantly increase. Additionally, rendering
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and transmitting complex 3D models requires large amounts of
storage, computing power, and bandwidth.

Traditional simplification methods evaluate the importance of
shape elements, select the elements to be simplified according to
importance, and remove the selected elements based on a pre-
defined algorithm [1–5]. Such algorithm-based methods produce
different simplification results according to the simplification al-
gorithm used. In addition, they have difficulty processing unusual
partial shapes not considered in the CAD model. They also have
difficulty performing simplification tasks quickly because they
require many geometric operations to evaluate the importance
of shape elements and remove them. Finally, the algorithms that
can be used vary depending on the shape representation method
used in the CAD model.

In this study, we propose a learning-based simplification
method that uses a generative adversarial network (GAN) [6],
which, unlike traditional algorithm-based methods, is a deep
learning technique to simplify 3D CAD models of mechanical
parts. The proposed simplification network consists of a generator
and a discriminator. The generator receives the original CAD
model as input and generates a sample simplified CAD model.

Then, the discriminator compares this model to real simplified
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ADmodels and classifies the data created by the generator either
s generated data or real data. Next, in the learning process,
dversarial learning is performed in which the generator and
iscriminator are developed competitively to train the generator
or the process of identifying and removing shapes that must
e simplified in the original 3D CAD model. During adversarial
earning, the original 3D CAD model and the simplified model are
sed as training data.
This study has the following differences from preexisting

lgorithm-based simplification studies. First, in conventional
ethods, users should determine simplification target shape or
OD. If it is impossible to recognize simplification target shape
sing predefined algorithm, the shape cannot be simplified. In
ur proposed method, simplification target shape depends on
raining dataset unlike the conventional methods. Accordingly,
equired user intervention can be significantly reduced. By aug-
enting the training dataset, it is possible to recognize various

ypes of simplification target shapes. Second, the biggest problem
f algorithm-based simplification is that if a small change in
he model prevents a particular algorithm from recognizing the
implification target shape or region, no change may occur in
he model. In other words, if the geometry in a model is the
ame and the topology is different, one model can be simplified
nd the other cannot. Our proposed network uses only voxel-
ased geometry information. Therefore, the network can generate
simplification result regardless of the difference of topological
tructure.
In this study, a voxel model with a relatively low resolution

ompared to the original CAD model was used. The boundary
epresentation (b-rep) is the de-facto shape representation in
AD to model solid and sheet objects [7]. The reason why we
sed voxel instead of b-rep is as follows. B-rep data is composed
f various geometric and topological entities that have different
ets of parameters, including parametric curves and surfaces.
dditionally, there is no one-to-one mapping between a shape
nd a surface type. As a result, it is not possible to input raw
urface information, such as parametric coefficients or spline
ontrol points, directly into a neural network because it would
ot be invariant to the specific parameterization [8]. Therefore,
n the field of 3D deep learning, mesh, point cloud, and voxel
orms are mainly used. Voxels provide an efficient and regular
epresentation of 3D space that can be processed effectively by
NN. Similar to pixels in an image, voxels are 3D units that are
bstracted, with predefined volumes, positions, and attributes,
nd can be used to structurally represent discrete points in a
opologically explicit and information-rich manner [9]. Compared
o b-rep, voxels mainly have the advantage of having a uniform
esolution over the entire shape, and the representation is very
imple, making it robust to small changes or noise in the ge-
metry. Recently, there have been studies where signed distance
ields (SDF) have been added to voxel data, improving the perfor-
ance of CNN-based shape recognition in 3D CAD models [10].
hus, voxel data’s validity has been consistently demonstrated in
he CAD/CAM field.

This study’s contributions are as follows. First, we propose
learning-based method rather than a conventional algorithm-
ased method to perform shape simplification of 3D CAD models.
econd, we developed a new simplification network that com-
ines variational autoencoders (VAEs) [11] and WGAN (Wasser-
tein Generative Adversarial Network) [12] to control the shapes
f 3D CAD models of mechanical parts. To the best of our knowl-
dge, the proposed network is the first GAN-based network de-
eloped for shape simplification of 3D CAD models. Third, we
onstructed a training dataset that consisted of approximately
000 pairs of 3D CAD models (CAD models before and after
implification) before augmentation. This dataset can be used for
arious purposes in 3D deep learning applications.
2

This paper is organized as follows. Section 2 describes resea-
rch on the simplification of 3D CAD models and research on
deep learning in the field of 3D CAD. Section 3 summarizes the
proposed method and proposes a network for simplifying 3D
CAD models. Section 4 discusses the results of implementing the
proposed deep learning network and performing 3D voxel simpli-
fication experiments. Finally, Section 5 presents our conclusions.

2. Related research

2.1. 3D CAD model simplification technology

Studies on 3D CAD model simplification can be classified into
one of the following categories according to the model type:
Polygon-based methods [13–16], boundary-representation (B-
rep) based methods [17–20], and feature-based methods [2,21,
22]. Polygon-based methods (Fig. 1(a)), most used in computer
graphics, simplify models by reducing the number of triangle
meshes. These methods produce good results when used on regu-
lar, dense meshes that are used in the field of computer graphics.
However, the meshes generated by 3D CAD models are gener-
ally not regular or dense. Therefore, the characteristics of the
original shape can become distorted if mesh-based simplification
is applied to CAD models. B-rep-based simplification methods
(Fig. 1(b)) use topology information to simplify shapes and are
classified into two types [23]. Dimensional reduction methods
convert thin solids into faces or convert long solids into edges.
Feature suppression methods simplify shapes by removing shapes
such as rounds, fillets, and holes that do not significantly affect
engineering analysis. Feature-based methods (Fig. 1(c)) simplify
shapes by sequentially removing features with low importance
from CAD models [1–5]. Each feature’s importance varies accord-
ing to the usage goals of the model. In B-rep-based simplification
methods, the use of feature removal is limited to features recog-
nizable by an individual recognition algorithm, but feature-based
simplification methods can use feature removal on all features.

Shape simplification is used to find and remove shape el-
ements that have low importance in a model when the LOD
of the model needs to be reduced according to its purpose. In
the simplification process, simplification target shape elements
are removed, and the rest of shape elements must be kept the
same as the original model. For this purpose, the volume of the
simplification target shape elements must be removed (e.g. boss)
or added (e.g. hole) based on the boundary separated by edges or
faces in the CAD model. The importance of shape elements varies
according to the evaluation criteria. Accordingly, the simplifica-
tion result may differ from the designer’s intention according to
the evaluation criterion and parameter values (e.g. fillet radius,
hole diameter). Once the 3D CAD model representation (mesh,
point cloud, solid etc.) is changed, the algorithm applicable only
to a specific representation method cannot be used. To simplify
bosses and holes, a robust feature recognition algorithm is re-
quired. However, even if the recognition algorithm is robust,
the recognition result may vary depending on the quality of
the model to which the algorithm is applied, which may lead
to differences in simplification results. For example, it may be
difficult to expect identical recognition results in cases where a
cylinder is expressed as one surface in a B-rep model, and where
it is expressed as two or more surfaces.

2.2. 3D deep learning in the field of 3D CAD

2.2.1. Classification and part segmentation
Object classification is a technology that recognizes the object

types represented in 3D models, such as chairs or tables; various
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Fig. 1. 3D CAD model simplification methods: (a) polygon-based simplification method; (b) B-rep-based simplification method; and (c) feature-based simplification
method.
approaches that use deep neural networks (DNNs) have been pro-
posed in previous related studies. CNNs have shown remarkable
performance in 2D image classification. Therefore, research that
targets 3D data is now being undertaken and can be classified into
multiview-based methods [24–26], volumetric methods [27–30],
and point-based methods [31–33].

Shape segmentation is a technology that divides the sub-
arts that constitute an input 3D shape or semantically segments
he 3D shape. Recently, researchers have developed deep learn-
ng models for segmenting 3D shapes, which are represented in
arious ways, including volumetric grids [28,29], point clouds
34–36], multi-view rendering [37], and surface meshes [38,39].

.2.2. Shape generation and simplification
Shape reconstruction is a technology that compresses 3D

hapes into latent space with a 3D encoder, uses this as input,
nd generates 3D shapes using a 3D decoder. Unlike traditional
ulti-view stereo algorithms, deep learning models can encode
rior knowledge of the space of 3D shapes, which can help resolve
mbiguities in the input data [40]. Shape reconstruction tech-
ology can be classified into voxel-based reconstruction [41–45],
oint cloud-based reconstruction [26,46–48], and mesh-based
econstruction [49,50] according to the input data representation
ethod.
As the image generation ability of GAN has been proven

hrough many experiments, studies on the generation of 3D
odels have also been proposed. Li et al. [51] uses conditional
AN to generate voxel-based 3D models from a single image. Yu
t al. [52] uses Point Encoder GAN to inpaint 3D point clouds. Liu
t al. [53] uses MapGAN to reconstruct 3D models from a single
mage. Yang et al. [54] uses X2CT-GAN to generate 3D spine data
rom simulated bi-planar 2D X-ray images.

Mesh and point cloud simplification methods aim to reduce

he complexity of 3D models while retaining visual quality and

3

relevant salient features. Potamias et al. [55] proposed a method
of simplifying point clouds using a graph neural network. In their
follow-up study, they proposed a method to learn the mesh con-
nection distribution in an unsupervised learning manner using a
graph neural network [56].

2.2.3. Data translation
Image-to-image translation is the task of changing certain

aspects of the original image. With the introduction of GAN, this
task has allowed for improvements in areas such as changing
hair color [57], reconstructing images from edge maps [58], and
performing style transfers on certain images [59].

For example, Pix2Pix was trained to perform an image trans-
lation task under supervised learning using conditional GANs
(CGANs) [58]. Pix2Pix requires paired data samples because it
combines adversarial loss and L1 loss. To resolve the problem
of having to obtain data pairs, unpaired image-to-image transla-
tion frameworks have been proposed [57,60,61]. UNIT [60] cre-
ated a GAN framework by combining variational autoencoders
(VAEs) [11] and CoGAN [62]. The two generators that make up
this framework share weights to train for the joint distribution of
images in cross domains.

CycleGAN [61] and DiscoGAN [57] preserve the key attributes
between input images and translated images by applying cycle
consistency loss. However, these frameworks can only be trained
on the relationships between two different domains at a time.

3. Proposed network

3.1. Background

In this section, we present our baseline models and explain

the theory of each model. The baseline models for this study are
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ix2Pix [58] and Shape Inpainting [63]. Isola et al. [58] proposed
network that uses conditional GAN for image-to-image trans-

ation [64]. They used a U-net-based generator and a PatchGAN-
ased discriminator. To perform image translation, the network
ust be trained to translate the input data into the ground truth.
y combining the input image and the ground truth image, they
upplied auxiliary information corresponding to the condition to
e translated. Wang et al. [63] proposed a network that uses GAN
nd recurrent convolutional neural networks (RCNN) to perform
hape completion on corrupted 3D scan data. They used GAN to
econstruct low-resolution voxels from corrupted 3D scan data,
hile RCNNs were used to generate high-resolution voxels from
he low-resolution voxels.

.1.1. Variational autoencoder
VAE [11] consists of a network that encodes a data sample

into latent variables z and a network that decodes the latent
ariables into a reconstructed data x̃ (Eq. (1)).

z ∼ Enc (x) = q (z|x) , x̃ ∼ Dec (z) = p(x|z) (1)

The main limitation of VAE is that the generated samples tend
o be blurry. This limitation is caused by imperfect elementwise
easures, such as squared error and injected noise.

.1.2. Generative adversarial network
GAN trains two models simultaneously. The generator G gen-

erates the sample G(z) from the prior p(z) to mislead the discrim-
inator D. The discriminator is trained to distinguish the generated
samples from the given ground truth data. The objective function
of GAN [6] is shown in Eq. (2).

LGAN (G,D) = Ex∼pdata(x) [logD (x)] + Ez∼pz (z) [log(1 − D (Gz))] (2)

GAN has disadvantages in that the training process is generally
unstable and the generated samples may be unnatural. Currently,
many studies are being conducted to improve the stability of the
training and the quality of the generated samples.

3.1.3. Wasserstein generative adversarial network
Adversarial learning of traditional GAN is formulated as mi-

nimizing the Jenson–Shannon divergence between the proba-
bility distributions of the real data and the generated data.
However, this is a major cause of GAN’s instability. To improve
upon this method, Wasserstein GAN [12] substitutes Earth-Mov-
er’s distance (EMD) for Jenson–Shannon divergence (Eq. (3)).

W
(
Xr , Xg

)
=

inf
γ ∼ Π (Xr , Xg )

E(Xr ,Xg)∼γ [∥Xr − Xg∥] (3)

Π (Xr , Xg ) represents all joint distributions of the real data’s
distribution Xr and the generated data’s distribution Xg as defined
in the original GAN. γ (x, y) is the mass that must be moved to
transform distribution Xr to distribution Xg . The EM distance is
the cost of the optimal transport plan. The loss function of WGAN
is shown in Eq. (4).

LWGAN = Ex∼pg (x) [D (x)] − Ex∼pr (x) [D (x)] (4)

Where pr represents the probability distribution of the real sam-
ples. pg represents the probability distribution of the samples
generated by generator. E is a mathematical expectation that
indicates the average value is calculated multiple times during
the actual operation.

In addition to variational autoencoders, generative adversar-
ial networks, and Wasserstein generative adversarial networks,
researchers have also proposed networks that combine VAE and
GAN, such as VAE–GAN [65] and adversarial autoencoders [66].
The studies that have been mentioned in Section 3.1 up to this
point have significantly influenced the development of our sim-

plification network. a

4

3.2. 3D CAD model simplification network

Our objective is to implement a network that simplifies 3D
CAD models of mechanical parts using a learning-based method.
In this study, the word ‘‘simplification’’ means the recognition and
removal of simplification target shapes included in the original 3D
CAD model. The input model and the output model used by the
proposed network are both expressed as voxel grids. To represent
the 3D CAD model, we only used occupancy information compris-
ing of 1s and 0s. Here, 1 indicates an occupied cell, and 0 indicates
an empty cell. The resolution of the voxels is 64 × 64×64.

Our network consists of a generator and a discriminator. This
network was defined by combining VAE and GAN [65]. In several
studies, by utilizing VAE–GAN, they showed good performance
not only in image fields [67,68] but also in 3D data [45,69,70]. Our
goal is to implement a network that can recognize and remove
simplification target area from input voxel. In the voxel simplifi-
cation experiment, in the case of autoencoder (AE) and VAE, the
error rate for the part total area was low, but the error rate for
the simplification target area was relatively high. In this study,
we were able to overcome this issue through adversarial learning
using WGAN. The results of the voxel simplification experiment
are mentioned in Section 4.1.1.

The generator’s baseline is that of a variational autoencoder
(VAE) [11]. We configured the generator’s layers by referencing
our previous study [71]. In our proposed method, the simpli-
fication target shape included in the original 3D CAD model is
expressed as an empty cell, and the same shape included in the
ground truth is expressed as an occupied cell. To simplify the
3D CAD model, the simplification target shape area included in
the original model must be outputted as an occupied cell. At the
same time, the area that is not the simplification target shape
must be the same as the original model in the output. To do
this, during the generator training, mean square error (MSE) is
used to compare the generated model and the ground truth and
calculate loss. Also, the discriminator compares the difference in
the data distribution of the generated model and the ground truth
to calculate loss. To perform this kind of adversarial learning, it
is necessary to have a paired dataset that pairs original 3D CAD
models and simplified models.

An overview of the proposed 3D CAD model simplification
network is shown in Fig. 2. First, when the original 3D CAD model
x is provided as input to the generator G, the average (µ) and
variance (σ ) are produced as output by the 3D encoder. Then,
epsilon (ε) is created by a sampling function following Gaussian
probability distribution. Epsilon is multiplied by the variance (σ ),
and this is added to the average (µ) to determine the value of
the latent vector. Next, the 3D decoder generates a shape from
the latent vector. Here, the 3D decoder must generate a shape
in which the simplification target shape is removed from the
original model. The model (G(x)) generated by the decoder is used
to calculate the MSE loss and the original GAN’s adversarial loss,
along with the simplified model (y) that corresponds with the
ground truth. After this, G(x) and y are provided as input to the
discriminator D to calculate the EM distance.

3.2.1. Objective function
To intentionally mislead the discriminator, the generator must

create a voxel model similar to the ground truth(y). The mean
square error (MSE) loss for training the generator is shown
in Eq. (5).

LMSE =
1
m

m∑
i=1

∥G
(
x(i))

− y(i)
∥
2 (5)

m is of model index. G(x) is the model that the generator cre-
tes by simplifying the original 3D CAD model x. G(x) is entered
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n the MSE loss calculation formula along with the ground truth
.
The proposed network’s objective function is shown in Eq. (6).

simplification = LWGAN (D) + LMSE(G) + LGAN (G) (6)

In the equation above, the generator receives the original 3D
AD model x as input and generates the simplified model G(x).
M distance is calculated to train the discriminator D. This calcu-
ation trains the network to ensure that the distribution of G(x),
hich was created by the generator, is similar to the distribution
f the ground truth. After this, to train the generator G, the MSE
etween G(x) and the ground truth is calculated, and the original
AN’s adversarial loss is calculated. These calculations directly
ompare the ground truth and the G(x) that was generated by
he generator, and the network is trained to minimize the error.
n addition, weights are updated to minimize the sum of the
M distance, MSE, and the adversarial loss of the original GAN.
y using this objective function, we could train the generator to
ecognize the simplification target shape included in the original
odel and generate a simplified model.
In WGAN, adversarial loss is calculated using data distribution

o train a generator. When this method was used in our network,
lurry models were generated, or mode collapse occurred. In
ddition, performing calculations by combining L1 distance and
dversarial loss, like the Pix2Pix objective function, is not suit-
ble for generator training. As such, the proposed method uses
GAN’s adversarial loss to train the discriminator, and it uses
SE and the original GAN’s adversarial loss to train the generator.

.2.2. Model architecture
The structure of the proposed network is as follows. The

ormats of the input model and the output model are both voxel
ormats, and they have one channel that represents known space
occupied space) and unknown space (empty space). Known
pace refers to the area occupied by voxels, while unknown
pace refers to the area devoid of voxels. The generator con-
ists of an encoding layer, latent space, and decoding layer. The
iscriminator consists of an encoding layer.
A 3D voxel with a size of 64 × 64 × 64 is inputted into

he generator’s encoding layer. First, the voxel goes through a
ropout layer with a probability of 0.5. Next, a low-dimensional
atent space is generated through four 3D convolutional layers. In
he first convolutional layer, the kernel size is set to 4 × 4 × 4,
nd the stride is set to 2 × 2 × 2. In the second to fourth
onvolutional layers, the kernel size is set to 3 × 3 × 3, and the
tride is set to 2 × 2 × 2. The numbers of channels in the layers
re set to 64, 128, 256, and 512. As a result, 512 channels with a
ize of 3 × 3 × 3 are created via the convolutional layers. After
his, in order to flatten the feature map into a one-dimensional
ector with a length of 13,824, a fully connected layer with the
ame length is used.
In the generator’s decoding layer, simplification of the 3D

odel is performed as a latent space that includes the features of
he input shape passes through a 3D deconvolution layer as input.
he kernel sizes, stride, layer sizes, and numbers of channels
ollow the reverse order of the encoding layer. In addition, a
kip connection similar to that of the U-net architecture [72] was
dded between the encoding layer and the decoding layer. In
oing so, it was possible to significantly improve upsampling per-
ormance by transferring the intermediate output of the encoding
ayer to the decoding layer.

In the encoding layer of the discriminator, the distribution of
he input data is calculated using EM distance, and this value is
inimized. The kernel sizes, stride, layer sizes, and numbers of
hannels are the same as in the generator’s encoding layer.
5

The network training process is as follows. First, the original
D CAD models and the simplified models that correspond to
ach original model are loaded from the training dataset. In the
raining of the discriminator, the EM distance that was defined in
GAN is used to calculate the difference in the distributions of

he ground truth and the model generated by the generator. This
alue is used to update the weights of the discriminator. After
his, the weights are clamped by the clipping parameter. In the
raining of the generator, the MSE of the ground truth and the
odel generated by the generator is calculated. After this, the
dversarial loss of the original GAN is calculated. These values
re used to update the generator’s weights. The detailed training
lgorithm is shown in List 1.

3.3. Construction of network training dataset

The purpose of our network is to translate the input data. To
train the network for data translation, adversarial learning must
be performed using the input data and the ground truth data of
the domain to be translated. Our goal is to simplify the original
3D CAD model. As such, there is a need for a paired dataset
that comprises the original 3D CAD models, which correspond
to the input data, and the simplified models, which correspond
to the ground truth data. We constructed a training dataset for
the proposed network using the process shown in Fig. 3. The
small ridges seem to be present in some of the models with
cylindrical shapes, as shown in Fig. 3. However, the original
models have smooth cylinders without any ridges. This is because
the voxel model’s resolution was reduced during the process of
voxelizing the original model. Our dataset consisted of voxel
models with a grid size of 64 × 64×64. The training dataset was
constructed using open datasets that consisted of 3D CAD models
of mechanical parts. To construct the dataset, we used the 3D CAD
models provided by ESB [73] and DSB [74]. However, additional
modifications were performed because these 3D CAD models
included many cases where the simplification target area was too
small or large. We performed remodeling under the following
conditions. First, simplification target shape’s types are limited
to holes and pockets for efficient learning. Second, considering
that the voxel size is 64 × 64×64, size of simplification target
shape was modeled with an increase of at least 5% compared
to the overall model size. Finally, if there are holes or pockets
in the original model, the size is modified to meet the size
conditions above. In addition, we also modeled simplified models
(y) that corresponded to each of the original 3D CAD models
(x). As a result, 985 CAD model pairs (CAD models before and
after simplification) were prepared. Of these, the 98 CAD model
pairs that were to be used in the simplification experiments in
Section 4 were excluded. The CAD model pairs that were to be
used in the simplification experiments were selected by selecting

one model from among several models with the same part type.
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Fig. 2. Overview of 3D CAD model simplification network.
Fig. 3. Construction of 3D CAD model dataset for network training.
fter this, data augmentation was performed on the remaining
87 CAD model pairs.
In the data augmentation process, we allowed the 3D CAD

odel to be rotated around the x and z axes and set up a total of
orientations. For example, ‘‘x-axis 90◦ and z-axis 270◦’’ means

otating the model 90◦ counter-clockwise around the x-axis and
hen rotating it 270◦ counter-clockwise around the z-axis. This
rocess expanded the number of CAD model pairs in the train-
ng dataset to 5322. After this, these files were converted to
DF5 [75]. HDF5 is a data format generally used to manage large-
cale data. To reduce the data size of the HDF files, one-bit bools
ere used in the voxel representation.

. Implementation and experiments

To train the deep learning model, Python 3.7.7 and the Ten-
orFlow 2.2.0 library were used. All experiments were performed
n a computer with 128 GB memory, 2 Nvidia GeForce RTX
090 GPUs and an Intel Core i9-10900K CPU (3.7 GHz). The 3D
AD model simplification network was implemented using the
onfiguration described in Section 3. Adam was used for gradient
escent optimization [76]. The epoch was set at 350. The batch
ize was set to six. The learning rate was set to 1e-05.
As shown in Fig. 4, 2 test cases were used in the 3D voxel

implification experiments. Test Case A consists of 98 models,
hich were not used for network training in the dataset built in
6

the way of remodeling the ESB and DSB datasets in Section 3.3.
The ESB’s 3D model covers a wide range of geometries with many
real-world engineering artifacts. They classify 3D models into
three super-classes: solids of revolution, rectangular–cubic prism
or prismatic, and thin-walled. The DSB dataset contains various
types of data, including synthetic datasets composed mainly of
primitive shapes and actual artifact datasets composed of me-
chanical engineering parts. We calculated the average error rate
of the simplification target area under various configurations for
Test Case A to determine the optimal hyperparameters and loss
function. The sensitivities of the hyperparameters are shown in
Fig. 5, and the performance variations according to different types
of loss functions are shown in Table 1.

Test Case B consists of a total of 12 models, with four models
selected from the CADNET dataset [77], MCB dataset [78], and Fu-
sion360 dataset [79], respectively. The CADNET dataset includes
engineering CAD models with 42 classes, such as elbows, bear-
ings, flanges, nuts, etc. The MCB dataset consists of mechanical
components with 68 classes, such as caps, flanges, nozzles, bolts,
etc. 3D models from the Fusion 360 dataset were modeled using
sketch and extrude, including washers, pegs, plates, etc. The 3D
CAD models that made up Test Case B did not include simplified
models. Therefore, the experiments results were confirmed by
visualizing the simplified models.
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Table 1
Average error rate of simplification target area according to types
of loss functions.
Loss function Average error rate of

simplification target area (%)

Mean Squared Error 14.61
Mean Absolute Error 15.53
Huber 16.38

4.1. 3D voxel simplification

This section describes the method for calculating the proposed
etwork’s 3D voxel simplification performance via the average
rror rate. Then, we compared the results of performing 3D
oxel simplification experiments using several GANs including
ur proposed network.
Studies on the 3D reconstruction based on deep learning use

ice similarity coefficient, Jaccard similarity coefficient, overlap
olume, and structural similarity index measures as performance
valuation indicators [54]. These methods are often used to com-
are the similarity of data contributions. However, in our pro-
osed method, since we have ground truth that can be directly
ompared with the model generated by the generator in the test
ataset, we used a method of directly comparing the voxels of
he generated model and the ground truth. Furthermore, in order
o measure simplification performance, it is necessary to obtain
n error rate for simplification target area rather than the part
otal area of the voxel model. For the reasons above, the average
rror rate for the part total area of part and the average error
7

rate for the simplification target area were used as performance
evaluation indicators.

3D voxel simplification performance is calculated by compar-
ing the ground truth and the model that the generator created
by simplifying the input model. The average error rate is defined
by Eq. (7).

Average error rate =
100
N ∗ q

N∑
i=1

q∑
j=1

Vj
(i)

(GT ) − Vj
(i)

(Gen) (7)

N is the total number of test models that are used in the voxel
simplification experiment. q is the total number of voxels that
make up the input data. i is the index for the test models. j is the
ndex for the voxels included in the ith test model. Vj(GT ) is the
ccupancy information of the jth voxel of the ground truth. Vj(Gen)
s the occupancy information of the jth voxel of the model created
y the generator. Because the occupancy information that we use
s expressed as 1 or 0, the error rate can be calculated through
ubtraction between voxels that are in the same location.
We determined that there was a limit to simplifying the target

ocal shape while maintaining the overall shape of the model only
ith VAE. In GAN, in terms of 3D shape simplification, in order
o fool discriminator, generator trains by repeating the process
f recognizing and removing local shape area. Since this training
ethod was thought to be effective in shape simplification of 3D
AD models, our network was constructed by combining VAE and
AN. In this study, simplification target shapes of training dataset
ere limited to machining features (hole, pocket, chamfer, fillet).

t is assumed that simplification is performed only when the
implification target shape is smaller than a certain size.
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Fig. 6. Results of 3D voxel simplification for Test Case A: (a) input model; (b) ground truth; (c) original GAN; (d) Shape inpainting; (e) WGAN; (f) Pix2PixGAN; and
g) proposed network.
To verify effectiveness of the proposed network, a 3D voxel
implification experiment was conducted using AE and VAE struc-
ures. As shown in Table 2, when the AE and VAE were used,
he average error rate of part total area was calculated to be ap-
roximately 3%. However, the average error rate of simplification
arget area was calculated to be 23% or higher. Except for our
tudy, AE and Pix2PixGAN methods showed good performance in
erms of the average error rate of part total area. These methods
ompress the input data into latent space without sampling.
omparing the simplification performance, the average error rate
f simplification target area was calculated to be about 10%
igher than our method. Through 3D voxel simplification exper-
ments, we confirmed that VAE/GAN has a better simplification
erformance than AE or Pix2PixGAN.
Table 2 shows the error that occurred when different networks

ere used to simplify the 3D voxels of Test Case A. The ‘‘average
rror rate of part total area’’ in Table 2 is the average value of the
rror rate that was calculated for voxels in the area of the overall
hape of the test model. The ‘‘average error rate of simplification
arget area’’ is the average value of the error rate calculated only
or voxels in the area of the test model’s simplification target
hape. The experiment results show that the proposed network
xhibited the best performance with an ‘‘average error rate of part
otal area’’ of 3.38% and an ‘‘average error rate of simplification
arget area’’ of 14.61%.

.1.1. GAN
Fig. 6 shows the results of performing 3D voxel simplification

xperiments on 3 random models from among the 3D CAD mod-
ls of Test Case A. Fig. 6(c) shows the original GAN’s 3D voxel
implification results, in which mode collapse occurred and only
oxels for a cubic shape were generated. Mode collapse is an
rror in which the generator only generates one sample or a set
f very similar samples. Fig. 6(d) shows the Shape inpainting’s
D voxel simplification results. Fig. 6(e) and (f) are the 3D voxel
implification results of WGAN and Pix2Pix, respectively. Of these
8

Table 2
Average error rate obtained by various network models for Test Case A.
Dataset Method Average error

rate of part
total area (%)

Average error
rate of
simplification
target area (%)

Test
Case A

Auto
encoder

VAE [11] 3.72 30.49
AE [80] 3.36 25.32

Generative
Adversarial
Networks

Original GAN [6] 51.15 80.83
Shape inpainting [63] 16.23 26.51
WGAN [12] 12.37 41.31
Pix2PixGAN [58] 3.94 27.45
Ours 3.38 14.61

networks, Pix2Pix’s ‘‘average error rate of part total area’’ was
similar to that of the proposed network. However, when the
‘‘average error rate of simplification target area’’ values were
compared to that of the proposed network, it was found that
Pix2PixGAN’s value was 12% higher and WGAN’s value was 26%
higher. Fig. 6(g) shows the model that was simplified using the
proposed network, and it had the lowest error rate in the area
of the simplification target shape in the test model. Fig. 6(1)–
(6) are enlargements of the simplification results produced by
Pix2PixGAN and the proposed network for the simplification tar-
get area in the 3D voxel model. Fig. 7 shows the results of using
the proposed method to perform 3D voxel simplification exper-
iments on Test Case B. The experiment results confirmed that
shape simplification could also be performed on 3D CAD models
that were not used to train the network. However, for some of
the models, shape simplification was not performed completely.
As seen in Fig. 7, area (a) in Model 3 was not recognized as
the simplification target shape. In Models 4, 6, and 9, the area
around the outer boundary was not completely simplified. It takes
approximately 2 s to create each simplified model.

Test Case A and Test Case B mainly consist of 3D CAD models
of mechanical parts, including real-world engineering compo-
nents. The simplification outcomes for Test Case A and Test Case
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Fig. 7. Results of 3D voxel simplification for Test Case B.
, as shown in Figs. 6 and 7, respectively, were quite similar. For
nstance, the model in the second row of Fig. 6 and models 7 and
in Fig. 7 have a cylindrical shape and include the simplification

arget shape. Our method successfully identified the inside of the
ylinder as the simplification target shape in all models.

.1.2. VAE and AE
To compare the simplification performance of VAE, AE and

AN, we defined each network and performed a 3D voxel sim-
lification experiment. In VAE and AE, MSE (L2 loss) was used
or loss calculation. The network structure of VAE is defined
dentically to the encoder structure of the proposed GAN network,
s shown in Fig. 8(a). Unlike the network structure of VAE, the
etwork structure of AE creates a latent space without sampling,
s shown in Fig. 8(b).
Fig. 9 shows the results of the 3D voxel simplification experi-

ent for Test Case A (Model 1–Model 3) and Test Case B (Model
–Model 6) in VAE, AE and GAN. According to the experimental
esults, the reconstruction performance of the original model was
imilar, but the simplification performance of GAN was higher.
s shown in Fig. 9(a) and (b), VAE and AE performed worse than
AN in recognizing and removing the simplification target area.
n Fig. 9(c) and (d), the reconstruction performance of VAE and AE
9

was also worse than GAN. In particular, in the case of Fig. 9(d),
the voxels expressed as empty space in the original model were
reconstructed as occupied space.

4.1.3. Algorithm-based method
To compare simplification performances of the proposed

method and conventional algorithm-based simplification meth-
ods, a simplification experiment was performed using method
proposed by Kwon et al. [23]. They used B-rep model-based
simplification method using volume composition algorithm. For
the experiment, one test model was selected in Test Case A and
two test models were selected in Test Case B. These models were
remodeled in B-rep format for use in algorithm-based simplifica-
tion methods. As shown in Fig. 10, in the case of Model 1, when
the conventional method was used, the ellipse in the center and
the four shapes on the lower surface were simplified and showed
good performance, as shown in Fig. 10(a). However, in the case
of Model 2, simplification proceeded without preserving the ap-
pearance of the model as shown in Fig. 10(b). Furthermore, holes
were not removed. Similarly, in the case of Model 3, the same
problem as in Model 2 occurred when the simplification was
performed, as shown in Fig. 10(c). The reason for the limitation
of this conventional method is that the simplification results are
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Fig. 8. Network architecture ((a) variational autoencoder, (b) autoencoder).
Fig. 9. Results of 3D voxel simplification by the proposed method, VAE, and AE.
reatly affected by the characteristics of the algorithm designed
nd human intervention (level of detail input by a user). Contrary
o the conventional method, the proposed method has an issue
hat some of the target shapes were not clearly simplified, as
hown in Fig. 10(d) and (e). It is mainly caused by the use of
oxels as input. Therefore, this problem can be solved if the
roposed network is adapted to input a B-rep model directly.
The proposed learning-based shape simplification method can

e used in the following fields. First, it can be used in collab-
rative projects that share CAD models [81,82]. Second, it can
e used when generating virtual models from digital twins [83].
hird, it can be used for 3D CAD models that are used on mobile
evices. In addition, it can also be used in fields such as man-
facturing simulations, design reviews, visualization, and virtual
raining where it is necessary to process 3D CAD models.

. Conclusions

We have proposed a learning-based shape simplification
ethod for 3D CAD models of mechanical parts. The proposed
10
method uses adversarial learning to recognize the simplification
target shape in the original model and removes the recognized
shape. To implement the network, we defined a model archi-
tecture and an objective function. Then we constructed a 3D
CAD model dataset for training the network. Finally, the ef-
fectiveness of the proposed network was verified through 3D
voxel simplification experiments. The experiment results showed
that the proposed method exhibited excellent performance in
comparison to other networks, with an average error rate of 3.38%
for the part total area and an average error rate of 14.61% for the
simplification target area.

In this study, we confirmed the feasibility of a learning-based
shape simplification method. To the best of our knowledge, the
proposed method is the first study to use a GAN-based network
for shape simplification of 3D CAD models. However, the er-
ror rate for the simplification target area is still fairly high at
14.61%. Therefore, simplification performance will be improved
in the future by segmenting and separately labeling voxels that
correspond to the simplification target shape and developing a
network that uses the proposed simplification method.
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Fig. 10. Results of 3D voxel simplification using the proposed method (left) and conventional method (right).
In the future, it may be possible to increase the detail of 3D
odels by using training dataset consisting of pairs of original
odel and simplified model. If a deep learning network for model
etailing can be constructed based on our training dataset, it will
e more useful in terms of flexibly in adjusting the model detail.
he limitation of our research is that the 3D model generated
rom the network is in voxel form. One solution to this issue
s to convert the voxel model to a mesh and then convert this
odel back to the b-rep model [84]. In the future, as another
olution, we plan to use a graph neural network to use b-rep
odels directly.
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