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Abstract

The emerging simultaneous localization and mapping
(SLAM) techniques enable robots with spatial awareness of
the physical world. However, such awareness remains at a
geometric level. We propose an approach for quickly con-
structing a smart environment with semantic labels to en-
hance the robot with spatial intelligence. Essentially, we em-
bed UWB-based distance sensing IoT devices into regular
items and treat the robot as a dynamic node in the IoT net-
work. By leveraging the self-localization from the robot node,
we resolve the locations of IoT devices in the SLAM map.
We then exploit the semantic knowledge from the IoT to
enable the robot to navigate and interact within the smart
environment. With the IoT nodes deployed, the robot can
adapt to environments that are unknown or that have time-
varying configurations. Through our experiments, we demon-
strated that our method supports an object level of localiza-
tion accuracy (∼ 0.28m), a shorter discovery and localization
time (118.6s) compared to an exhaustive search, and an effec-
tive navigation strategy for a global approach and local ma-
nipulation. Further, we demonstrated two use case scenarios
where a service robot (i) executes a sequence of user-assigned
tasks in a smart home and (ii) explores multiple connected re-
gions using IoT landmarks.

Intruduction
Within our surrounding environment, the ad-hoc tasks which
we take for granted are often complex for robots because
of their limited perception capabilities and underdeveloped
intelligence algorithms (Kemp, Edsinger, and Torres-Jara
2007). Despite the commercial successes of mobile robots,
particularly in warehouses, they are mostly specialized in
handling simplified and pre-defined tasks within controlled
environments often with fixed navigation pathways. Further,
many of the AI advances in navigation are in simple settings
with many assumptions, and are not useful in realistic envi-
ronments (Savinov, Dosovitskiy, and Koltun 2018). On the
other hand, the rapidly emerging IoT ecologies bridge our
physical world with digital intelligence. In contrast to ongo-
ing advances in vision, we propose an integration of robots
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into the connected network, where they can leverage infor-
mation collected from the IoT, and thus gain stronger sit-
uational awareness (Simoens, Dragone, and Saffiotti 2018)
and spatial intelligence, which is especially useful in explo-
ration, planning, mapping and interacting with the environ-
ment without relying on AI/vision-based navigation only.

Recent advanced computer vision technologies, such as
SLAM algorithms and depth sensing, have empowered
mobile robots with the ability to self-localize and build
maps within indoor environments using on-board sensors
only (Cadena et al. 2016), (Newcombe et al. 2011). Al-
though these systems provide good maps under favorable
conditions, they are very sensitive to calibration and imag-
ing conditions, and are not suitable in changing dynamic en-
vironments. Therefore, to fully support navigation and inter-
action with the environment, we need to extend robots’ per-
ception from a vision-based geometric level to a semantic
level. Although researchers have made substantial progress
in scene understanding, object detection and pose estima-
tion (Salas-Moreno et al. 2013), vision-based approaches
largely rely on knowing the object representations a priori
(Wu, Lim, and Yang 2013) and keeping the objects of inter-
est in the camera’s view. That said, vision-only approaches
may be more suitable for local and specific tasks. Thus,
mapping key parts of the environment and identifying the
objects of interest, and especially finding means to interact
with them using vision-based methods, usually do not have
well-developed solutions.

In contrast, within a smart environment, wireless tech-
niques such as Bluetooth, Zigbee, and WiFi allow for in-
stant discovery of the connected objects via the network.
Further, the robots could naturally access the semantic in-
formation stored in the local IoT devices which contributes
towards understanding the environment and results in intel-
ligent user interactions. Still, resolving the spatial distribu-
tion of the IoT-tagged devices or objects remains challeng-
ing. Using the wireless communication opportunistically, re-
ceived signal strength indicator (RSSI)-based methods for
localization of the sensor node have been studied exten-
sively in the wireless sensor network (WSN) field (Heurte-
feux and Valois 2012). Yet, the low accuracy of the results (a
few meters) may prevent them from being employed for in-



door mobile robots. Other researchers have developed UHF
RFID-based object finding systems (Deyle, Reynolds, and
Kemp 2014). However, these systems introduce an extra
bulky and expensive UHF antenna, suffer from a limited de-
tection range (∼3m), and, using their approach, a robot must
perform a global search before navigating to and interacting
with the IoT tags.

Recently, researchers have been investigating distance-
based localization methods using an ultra-wide band-
width (UWB) wireless technique which provides accu-
rate time-of-flight distance measurements (Di Franco et al.
2017). Such techniques have been further applied to enable
users to interact with smart environments (Huo et al. 2018).
Inspired by these works, we propose a spatial mapping
for IoT devices by integrating UWB with SLAM-capable
robots. We build highly portable and self-contained UWB-
IoT devices that can be labeled and attached to ordinary
items. The SLAM-capable robots simply survey in a small
local region and collect distance measurements to the IoT
devices for a short time, and then our mapping method out-
puts the global locations of the devices relative to the SLAM
map. Our method supports navigation and planning in pre-
viously unseen environments. We leverage the discovered
IoTs as spatial landmarks which essentially work as bea-
cons that help the robot familiarize itself with a complex
environment quickly without accessing any pre-stored and
static databases. Centering upon this mapping method, our
contributions are three-fold as follows.

• A method to build a smart environment with spatial and
semantic information by deploying UWB-IoT devices.

• A navigation pipeline that drives a robot to a target glob-
ally and then refines the object localization, for example
with object handling and manipulations.

• Demonstration of our method with a prototype service
robot (i) working with users through a task-oriented and
spatially-aware user interface and (ii) exploring an un-
known environment referring to IoT landmarks.

Background
The Internet of Robotic Things
The concept of IoT has gained recent importance because
of connectivity and low-cost electronics for communication.
Mobile robots are being increasingly explored because of
their mobility given by computer vision and falling costs,
but vision alone is not reliable or scalable. However, the con-
cept of Internet of Robotic Things (IoRT) has been not been
that widely explored in practice across the IoT and robotics
communities (Simoens, Dragone, and Saffiotti 2018). As
we demonstrate, the intrinsic pervasive sensing from IoT
platforms could enhance robots’ perception by building
and referring to a comprehensive model of the smart en-
vironment (Sanfeliu, Hagita, and Saffiotti 2008). IoT-aided
robotics applications have been explored in health-care, in-
dustrial plants and rescue operations where heterogeneous
equipment and assets are closely monitored (Grieco et al.
2014). Prior work proposed to leverage perceived infor-
mation from the IoT for context-aware material handling

in smart factories (Wan et al. 2017). Moreover, the assis-
tive robots in human environments rely heavily on over-
seeing human-involved activities and/or medical conditions
from the IoT platform (Simoens et al. 2016). Essentially,
these extended perception and cognitive capabilities lead
to a larger degree of autonomy and adaptability, and thus
better facilitate human-robot interactions and collabora-
tions (Nguyen et al. 2013). On the other hand, compared to
stationary and simple actuators such as doors, coffee makers,
manufacturing machines, and elevators in an IoT ecosys-
tem, the mobility introduced by robots serves as an essen-
tial complementary-element in IoRT. From this perspective,
self-localization and mapping becomes fundamental to nav-
igate the robot to complete any spatially-aware tasks in in-
door environments such as factories, hospitals, and houses.
While on-board vision-based sensors support SLAM well
for navigation, semantic mapping remains challenging using
only on-board sensors (Cadena et al. 2016). In our paper, we
emphasize an IoT-facilitated mapping of the smart environ-
ment by employing an autonomous discovery and localiza-
tion of the IoT devices and associating them spatially on the
SLAM map.

Mapping of Smart Environments

To access locations of smart devices, researchers have de-
veloped environmental models which associate the metadata
and spatial information of the IoT with the geometric map
of the environment (Dietrich et al. 2014). However, these
models largely remain static, which indicates low flexibil-
ity against the environment changing, e.g., newly added or
moved assets. By equipping the robots with on-board active
sensors, researchers further investigated approaches towards
autonomous and dynamic discovery and mapping of IoT.
Utilizing UHF RFID technologies, a probabilistic model and
a filtering-based localization method have been proposed to
map the distributed passive tags (Hahnel et al. 2004), (Joho,
Plagemann, and Burgard 2009). Although RFID tags carry
some basic information, they are not connected to the net-
work or Internet. Therefore, the discovery of the tags often
requires the robots to traverse the entire environment (Deyle
et al. 2010). Further, previous works have investigated lever-
aging wireless communication techniques to localize the
nodes in a WSN, e.g., WiFi, Bluetooth, and Zigbee (Heurte-
feux and Valois 2012). Compared to the RSSI-based proba-
bilistic models, recent works started to employ direct dis-
tance measurements with a high accuracy (<0.1m) using
UWB technologies (Di Franco et al. 2017). Here, we adopt
a mobile anchor assisted approach which exploits the mo-
bility of the robots and immediate navigation capabilities
from the SLAM (Han et al. 2016), (Huo et al. 2018). Fur-
ther, our approach allows the robots to access the real-time
status from the surrounding IoT and therefore supports rich
interactability with the environment. Moreover, based on the
mapping of smart environments, we create a task-oriented
and spatially-aware assignment interface for users to easily
deploy robotic tasks.



Constructing a Smart Environment
To construct a smart environment with spatial and semantic
information, we develop an IoT module consisting of a WiFi
and a UWB communication component. A commonplace
use case scenario involves a set of IoT devices spanning
an indoor environment and a SLAM-capable robot with an
IoT module attached. The robot connects to the IoT through
a WiFi network and the UWB network then primarily pro-
vides distance measurement capabilities. When entering an
unknown environment, the robot surveys in a local small
region (1.5m × 1.5m) and collects the distance measure-
ments to the IoT devices. A distance-based method is then
used to estimate the multiple IoT locations simultaneously
and register them within the SLAM map, namely, mapping
the smart environment. Depending on this semantic map, the
robot navigates close to the targets and finishes tasks locally.

Mapping of UWB-IoT Devices
In a traditional WSN, all of the nodes are distributed to
designated locations. A typical distance-based localization
method involves two steps: (i) resolving relative positions
of the nodes in an arbitrary coordinate system, and (ii)
transforming the positions into the desired coordinate sys-
tem (Dokmanic et al. 2015). To resolve the relative positions,
an optimization problem is formulated to minimize the mis-
matches between the distance measurements and the calcu-
lated distances from the estimated positions. Then, referring
to a set of four non-planar anchor nodes, i.e., nodes with
known positions beforehand, a rigid body transformation be-
tween the arbitrary coordinate system and the absolute one
can be derived.

In our case, we introduce a robot which is capable of
self-localizing with respect to the environment as a dynamic
anchor. Consider we have n nodes to be localized, i.e., n
IoT devices, and m dynamic nodes, i.e., m samples along
the the surveying path. The on-board SLAM algorithm pro-
vides coordinates of the robot on the path. We denote the
unknown coordinates of the n nodes and the known ones
of the m anchors as Xu = [x1, . . . ,xn]

T ∈ Rn×3, and
Xa = [x1, . . . ,xm]

T ∈ Rm×3, respectively. We can further
estimate Xu by minimizing the following stress function:

min
Xu

S(Xu) = min
Xu

∑
i≤n,j≤m

ωij(d̂ij − dij(Xu,Xa))
2 (1)

where d̂ij is the distance measurement, dij = ‖xi − xj‖,
and the weight, ωij , is defined based on the quality of the
measurements. We choose ωij in Eq. 1 to be 1 in our pro-
totype. To this end, we formulate the localization as a non-
linear least-square problem which can be solved by exist-
ing methods, e.g., Levenberg-Marquardt algorithm (Ran-
ganathan 2004). It is worth noting that, in general, this
method is applicable to estimate the 3D locations as long
as the samples remain non-colinear on all three dimensions.
Yet, we degrade the formula to a 2D case since, in this work,
we focus on a grounded moving platform. Further, the esti-
mated positions from the optimization are already in the de-
sired coordinate system, i.e., the SLAM map frame, which
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Figure 1: The robot platform and UWB-IoT module.

is not the case with traditional WSN with only stationary
nodes.

Navigation and Interaction
To complete a manipulation task, our robot needs a naviga-
tion strategy through three phases: (i) surveying movements
to collect enough distance samples in a local region, (ii)
globally approaching into the proximity of the IoT object,
and (iii) locally adjusting poses for executing the manipula-
tion.

For the first phase, we design a static random walk trajec-
tory to guarantee the non-colinearity of the sample positions
during the surveying. Further, based on our preliminary ex-
periments and results from the previous work (Huo et al.
2018), we keep the footprint of the trajectory sufficiently
large (1.5m × 1.5m) to achieve accurate localization in a
large room (∼ 10m × 10m). In the second phase, we em-
ploy a path planner which integrates a global costmap and a
local costmap. Since we emphasize the exploration and nav-
igation in an unknown environment, as the robot marches
and the map updates, the planner re-plans the trajectory. The
planner utilizes the local costmap to avoid dynamic obsta-
cles during the exploration. Although the UWB-based local-
ization is accurate enough to drive the robot close to the tar-
gets, the manipulation task usually requires millimeter-level
accuracy. Thus, for the third phase, we employ vision-based
tracking for the granular pose adjustment. As the scope of
this paper is on phase one and two, we simply use fiducial
markers to perform the local manipulation. To handle the
transition between phases two and three, we use the distance
measurement as a threshold for proximity detection (e.g.,
less than 1 meter). Moreover, the IoT devices facilitate the
manipulation procedure by providing semantic information,
such as the offset from the marker and grasping directions.

Implementation
Hardware
Our prototype system consists of a mobile ground robot
platform (TurtleBot 2) and a set of UWB-embedded IoT
modules as shown in Fig. 1. We equip the robot with a
Microsoft Kinect camera for SLAM navigation. Further, a
5-degree-of-freedom robot arm (PhantomX) is affixed on
the top chassis to allow for interacting with objects within
40cm. An extra camera in front of the arm base is used to
track the fiducial markers in close range. We use a stan-
dalone PC (CPU i7-6500u, RAM 8G) to handle the com-



putation on the robot. The overall size of the robot platform
is ∼ 0.32m× 0.32m× 0.98m.

As for the IoT module, we develop a self-contained board
with off-the-shelf components. The board includes a micro-
controller (MCU), a UWB unit, and peripheral circuits. An
ESP32 chip (NodeMCU 32S) has been selected as our MCU
since it offers built-in WiFi communication. The MCU con-
nects with the UWB chip (DWM1000) through the SPI bus.
Based on the datasheet of DWM1000, we expect a distance
measurement with an accuracy of ∼ 5cm − 10cm and a
maximum measuring range of dozens of meters. In our ex-
periment and use case environments (≤ 10m × 10m), we
observed similar measurement accuracy.

Software
Our software system is composed of three major modules:
(i) a UWB-IoT firmware running on the IoT board for dis-
tance measurements and WiFi communications, (ii) a robot
control scheme based on ROS to handle the navigation and
manipulator movements, and (iii) a user interface on a mo-
bile phone for task-oriented programming of the robot. The
IoT devices, robot, and the user interface are connected to
the same local area network.

We employ a two-way asynchronous ranging method
which utilizes two round-trip messages for distance mea-
surements. With a one-to-n distance polling, we estimate the
update rate to be 1000/(80 + 21n)Hz based on the current
parameters, e.g., one-to-one ranging results in ∼ 9.9Hz and
one-to-two ranging results in ∼ 8.1Hz. The ranging results
are transmitted to a ROS node through UDP.

For the navigation and path planning, we adopt a RGB-
D based SLAM package from ROS, i.e., RTAB-Map1. We
configure the package to synthesize a laser scan from the
depth camera fused with the odometry. Further, the built-in
Dijkstra’s algorithm-based global planner and the dynamic
window approach-based local planner are used to navigate
the robot within the unknown environment. After the robot
reaches the proximity of the target, we apply vision-based
method to recognize and track the object which has an AR
tag2 attached to it.

We develop a mobile application on an Android device for
users to interact with the robot. Once the robot discovers and
localizes all of the available IoT devices, the interface is up-
dated based on the spatial relationship between the robot and
the devices. By referring to the revealed spatial relationship,
users can then schedule and command the robot to finish a
sequence of tasks related to the IoT devices.

Experiments
We designed three experiments to study the accuracy of the
distance based localization for mapping the IoT devices,
the efficiency of our approach compared with an exhaus-
tive search, and the effectiveness of our navigation pipeline
in guiding the robot globally and locally for manipulation
tasks. We conducted all the experiments in a controlled in-
door environment (10m× 8m) as shown in Fig. 2. Based on

1http://wiki.ros.org/rtabmap ros
2http://wiki.ros.org/ar track alvar

UWB-IoT
Devices

Surveying 
Region

Distance 
Measurements

a b

Figure 2: Experiment setup: IoT devices distributed in a
room with manually placed obstacles (a), and a pre-scanned
map of the environment (b).

our preliminary investigation, we set the sampling number at
200 to reach an accurate localization result. Also, to achieve
a uniform sampling, we kept drawing samples every 2cm
on the surveying path. The maximum speed of the robot has
been limited to 0.2m/s for safety concerns.

IoT Localization Accuracy
To evaluate the accuracy, we compared the localization re-
sults and the ground-truth result from a Vicon tracking sys-
tem. We attached IR reflective markers on the robots and
the IoT modules. From previous work (Huo et al. 2018), we
learned that the number of IoT devices does not significantly
affect the accuracy. Therefore, we decided to examine the
accuracy test with a constant number of IoT modules, e.g., 3
in this paper. We first identified 8 possible positions spread
within the Vicon tracking volume. For each trial, we ran-
domly selected a set of 3 out of the 8 positions to place the
IoT devices and started the robot roughly at the same loca-
tion. In total, we executed 10 trials, yielding a total of 30
localization results.

Results. We computed the absolute errors on the x and
y axes as well as the root mean square distances between
the localization results and the ground-truth (Fig. 3). We
observed two outliers with distance errors larger than 1m.
Since we conducted our experiment without referring to
an existing map of the environment, these outliers may be
caused by the unstable SLAM during the local surveying.
After removing those two outliers, the average errors yielded
0.20m (SD=0.19), 0.16m (SD=0.10), 0.28m (SD=0.17) for
the x, y, and distance, respectively (Fig. 3). We confirmed
the localization accuracy with our robot platform was sim-
ilar to previous work (Huo et al. 2018). We expect such a
sub-meter localization accuracy to support the global navi-
gation module to drive the robot within close proximity of
the target.

Localization Efficiency
Although previous works have used UHF RFID to find and
navigate to passive tags, the discovery of all of the tags still
requires traversing the environment (Deyle, Reynolds, and
Kemp 2014). To finish such a global search, a pre-built map
and search path of the environment have been used for the
path planning. As shown in Fig. 4, we simulated the search



Figure 3: Results of localization accuracy test.

Figure 4: Map with a global search setup where the robot tra-
verses the environment with a predefined path, compared to
a local surveying region that is only needed in the proposed
approach.

and defined a successful detection of one tag if the robot
passed by the tag position within a certain range, e.g., 1m.
The global search was terminated after all tags were de-
tected. Whereas in our case, UWB units are capable of mea-
suring distances within a large range. In our controlled en-
vironment, we did not observe any accuracy degradation for
the distance measurements. Using our approach, the robot
surveyed a small local region (1.5m × 1.5m) and localized
all of the IoT devices at once.

Results. We compared the completion times of detecting
and localizing 3 IoT devices with two different approaches:
the global search and our local surveying. Similar to the ac-
curacy test, we randomly chose 3 positions from the 8 pre-
defined locations to place the IoT devices. We conducted 5
trials for each approach. The results indicated that our local
surveying, which had an average cost of 118.6s (5 successful
trials), was significantly faster than the global search which
had a cost of 251.0s (4 successful trials). Additionally, to
perform a global search in practice, we need to take the time
to scan a full map of the environment into account that is not
included in the cost calculation in our result.

Navigation and Manipulation
Further, to validate the full workflow, we conducted a third
experiment, where the robot (i) localized the surrounding
IoT targets, (ii) navigated itself within close proximity, (iii)
searched for the fiducial marker and finished the manipula-
tion task. In each trial, we placed two IoT targets randomly
in the environment as shown in Fig. 5. We observed the ac-
complishments of the full workflow and timed each step. In
this experiment, we assumed an unknown environment and
did not use any pre-built maps.

Results. We conducted 6 experiments where the robot fin-
ished the entire task successfully 4 times, and failed on nav-

Figure 5: Setup for navigation and manipulation test: our
robot visited two IoT targets (a, b) according to the localiza-
tion results, then grabbed the target (c) and placed it to the
basket (d).

Figure 6: Time profiles for navigation and manipulation tri-
als.

igating to the second target in the other 2 trials. In general,
the robot was able to complete the whole task within 450s.
As illustrated in Fig. 6, the local searching for AR tags and
manipulation took similar time (68s) across all experiments,
whereas the navigation time varied depending on the loca-
tions of the targets (28s− 176s). In some extreme cases, the
navigation failed due to poor SLAM mapping.

Use Cases

Our workflow emphasizes autonomous mapping and inter-
acting with the smart environment. We envision that the
robot will be empowered with spatial awareness of the dis-
tributed IoT devices. Here, we selectively demonstrate two
use cases leveraging the enhanced spatial intelligence of the
robot.

Task-Oriented and Spatial-Aware Programming

Our approach in general contributes to a higher level au-
tonomy for robots to interact with a smart environment,
e.g., general purpose service robots interacting with a smart
home. As shown in Fig. 7, to command such a robot to con-
duct a sequence of tasks, a user simply uses a mobile user
interface to schedule the IoT-indicated tasks. Then, the robot
is capable of localizing the targets and accessing the back-
end knowledge from the IoT network. The real-time spatial
relationship between the robot and the IoT targets is updated
to the users for better task planning.



Figure 7: Through a spatial-aware programming inter-
face (a), a user schedules a robot to perform a sequence of
tasks: cleaning the kitchen table (c), delivering a book from
a bookshelf to a desk (d, e).

Figure 8: A robot explores an environment which includes
multiple rooms by referring to spatial tags on the doors.

Autonomous Exploration Using Spatial Tags
Although UWB-based localization suffers less in non-line-
of-sight (NLOS) scenarios compared to approaches using
computer vision, a heavy NLOS condition such as walls still
degrades the accuracy. To mitigate this issue, we propose
to use UWB-IoT as spatial landmarks and references for the
robot to navigate and explore multiple rooms in a continuous
manner. As illustrated in Fig. 8, we showcase a robot nav-
igating through three IoT-tagged doors and exploring three
rooms. Each tag on the doors provides spatial knowledge
about a local region. Finally, we localize all IoT devices in
the rooms and register them onto a single SLAM map. With
our autonomous exploration, we foresee greatly lowering the
barriers to deploy the robots in realistic environments.

Discussion and Future Work
Localization Accuracy. Our experimental results suggested
our SLAM + UWB mapping approach has strong potential
towards accurate and fast localization of smart objects. How-
ever, we still observed some unstable localization especially
in an unknown cluttered scene. We suspect some possible
causes for this to be non-robust SLAM tracking in an un-
known environment and inaccurate distance measurements
under NLOS conditions. In the future, we plan to employ a
visual-IMU fused SLAM alternative to examine the SLAM
tracking quality. Further, it will be interesting to develop a
data-driven model for the NLOS detection so that we can
better address the inaccurate samples.

Scalability. Since we adopted a two-way ranging scheme
between UWB modules, the update rate of the distance mea-
surements limited the number of IoT devices to be local-
ized. In addition, the slow update rate may compound the
synchronization between the distance measurements and the
SLAM tracking poses of the robots. To achieve a higher
sampling rate, it is helpful to investigate a Time-Difference-
of-Arrival (TDOA) method by introducing an extra UWB
unit for time synchronization across the network (Tiemann,
Eckermann, and Wietfeld 2016).

Sophisticated Tasks. Although we demonstrated a service
robot being assigned with some chores, the task actions were
largely hard-coded and pre-programmed. Instead of an AR
tag, we plan to take advantages of the advanced vision based
approaches and further closely integrate our global naviga-
tion with local tasks. Moreover, as smart devices are prolif-
erating rapidly, it is worthy studying robot-IoT interactions
to address more sophisticated and realistic tasks.

Conclusion
Our paper contributes towards the broad goal of empowering
robots with a higher level of autonomy and intelligence in a
smart environment. We develop a UWB+SLAM approach
enabling robots to autonomously explore an unknown smart
environment and map the IoT devices. We further verified
that our method provides localization of IoT-marked targets
with an object level accuracy (∼ 0.28m). With our method,
the robot is capable of navigating to the proximity of the tar-
gets without using any pre-scanned map. Through this work,
we bring robotics closer to our everyday life by leveraging
the rapidly growing IoT network.
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