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A B S T R A C T

Engineering design typically occurs as a collaborative process situated in specific context such as computer-
supported environments, however there is limited research examining the dynamics of design collaboration in
specific contexts. In this study, drawing from situative learning theory, we developed two analytic lenses to
broaden theoretical insights into collaborative design practices in computer-supported environments: (a) the role
of spatial and material context, and (b) the role of social interactions. We randomly assigned participants to four
conditions varying the material context (paper vs. tablet sketching tools) and spatial environment (private room
vs commons area) as they worked collaboratively to generate ideas for a toy design task. We used wearable
sociometric badges to automatically and unobtrusively collect social interaction data. Using partial least squares
regression, we generated two predictive models for collaboration quality and creative fluency. We found that
context matters materially to perceptions of collaboration, where those using collaboration-support tools per-
ceived higher quality collaboration. But context matters spatially to creativity, and those situated in private
spaces are more fluent in generating ideas than those in commons areas. We also found that interaction dynamics
differ: synchronous interaction is important to quality collaboration, but reciprocal interaction is important to
creative fluency. These findings provide important insights into the processual factors in collaborative design in
computer-supported environments, and the predictive role of context and conversation dynamics. We discuss the
theoretical contributions to computer-supported collaborative design, the methodological contributions of
wearable sensor tools, and the practical contributions to structuring computer-supported environments for en-
gineering design practice.

One of the ultimate goals of engineering education is to prepare
engineers to think and function effectively as part of a team, while
achieving high levels of collaboration and creative fluency in colla-
borative design settings (ABET, 2014; Détienne, Baker, Vanhille, &
Mougenot, 2017; Dym et al., 2005). High quality collaboration, defined
as effective interaction in groups that foster interdependent action and
equitable status (Lewis, 2006), and creative fluency, defined as the
ability to generate a large number of novel ideas (Dumas, Schmidt, &
Alexander, 2016; Guilford, 1967), are important goals for engineering
learning but also crucial to the efficiency of design cycles in engineering
practice (Charyton and Merrill, 2009). Despite its importance, learning
to design both creatively and collaboratively has been particularly
challenging due to the multimodal nature of collaborative engineering

design, where engineers interact both verbally, as well as through vi-
sual and material cues embodied in design practices (Reid and
Reed, 2005). These challenges stemming from the multimodality nature
of collaborative design have been further complicated by recent ad-
vancements in computer-supported design tools (Cheng, Li, Sun, &
Huang, 2016; Shen, Hao, & Li, 2008). Therefore, to promote positive
outcomes in collaborative engineering design, it is imperative to un-
derstand social interaction behaviors in the design process as they are
situated in particular spatial and material contexts. However, under-
standing interaction dynamics in computer-supported design environ-
ments has heretofore been undermined by a lack of effective metho-
dological tools (Brisco, Whitfield, & Grierson, 2018; Fischer et al., 2016;
Stahl et al., 2006; Vuletic et al., 2018).
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In addition, the situative nature of collaborative engineering design
adds to the complexity of studying interaction dynamics. Research has
demonstrated that collaborative design practices are highly influenced
by the environments in which they are embedded, including the spatial
context within which they interact (e.g., rooms, furniture, walls, traffic
patterns, noise, and lighting) as well as the material artifacts (i.e. design
tools and medium) used during the design process (Fayard, 2012;
Gaver, 1996). Studies have indicated that specific characteristics of the
physical environment can enhance creative performance (Dul and
Ceylan, 2011; 2014), and that material artifacts play an important role
in idea representation and collaboration (Johri and Olds, 2011).
However, research has not fully addressed the impact of recent ad-
vancements in technologically-enhanced design tools such as inter-
active mobile tablet devices, which provide new material contexts and
affordances for brainstorming, sharing, and visually representing ideas
during collaborative design (Fischer et al., 2016; Martinez-Maldonado
et al., 2017; Palou et al., 2012). Although the mobile tablet platform,
characterized by portability, accessibility, and connectivity, is useful for
the joint construction of new ideas (Looi et al., 2013), sketching col-
laboratively on tablets imposes new challenges to engineering design
and the study of interaction processes during learning. Considering that
researchers have identified strong associations between interaction
patterns and collaborative engineering design outcomes
(Bucciarelli, 1994; Terenzini et al., 2001), there is a critical need to
examine the relationships between social interaction processes and
collaborative design outcomes in different spatial and material con-
texts.

In light of the challenges to studying interaction dynamics in mul-
timodal and context-rich engineering design settings, and the need to
better understand the dynamic processes of collaborative design in
computer-supported environments, researchers have looked to recent
developments in wearable and sensor technologies. One of the pro-
mising tools that can generate real-time trace data on various social
interaction dynamics are wearable sociometric sensors, which have
been used to study the relationship between interaction dynamics and
group intelligence, as well as performance in organizational and aca-
demic settings (Woolley et al., 2010). In this study, we adopt wearable
sensor technologies to unobtrusively collect social interaction data and
identify key factors that are predictive of two indicators of successful
collaboration design outcomes: Collaboration Quality and Creative
Fluency. In doing so, we contribute to the field of situative cognition
and human behavior with computers by introducing a new method for
data collection and analysis in collaborative design groups, and we
extend theoretical understanding of the underlying relationship be-
tween social interaction dynamics and collaborative engineering design
outcomes. Furthermore, our findings will have practical implications in
revealing the interaction dynamics that are conducive to high quality
creative collaborative design performance in computer-supported en-
vironments.

1. Theoretical background

1.1. Collaboration quality and creative fluency in engineering design

Creativity has become a critical factor in engineering design, and
the need to nurture creativity in engineers has become more evident as
both industry and academic settings increasingly demand innovation
throughout the engineering design process (Détienne et al., 2017;
Dumas et al., 2016; Howard et al., 2008). We define creativity in design
groups as the generation of novel ideas by two or more interdependent
members who can influence each other during group interaction
(Amabile, 1996; Paulus, 2000). Classically, there are four key sig-
natures of creativity: fluency, flexibility, originality, and elaboration of
ideas generated by individuals involved in an activity. Fluency is the
ability to generate a large number of ideas, flexibility is the ability to
generate a wide variety of ideas, originality is the production of novel

ideas, and elaboration is the process of building upon ideas proposed by
others (Guilford, 1967; Shah et al., 2003). Specific to the field of en-
gineering, creativity is viewed as the creation of novel and useful pro-
ducts, processes, or new artifacts and ideas (Thompson and
Lordan, 1999).

In this study, we focus on the fluency dimension of creativity and
engage students in a group task where they brainstorm toy design ideas
in a process that encourages the generation of as many ideas as possible
without reflecting on originality and flexibility. Previous studies on
creativity in engineering education have used similar methods to ex-
amine creative fluency by enumerating the quantity of new sketches
produced by students in design tasks (Charyton and Merrill, 2009). In
most cases, creativity is studied as the production of solutions or arti-
facts while working independently (Charyton and Merrill, 2009). The
current study differs from previous research in that we situate creative
fluency in collaborative contexts in order to gain insight into influential
factors for collaborative creative fluency.

1.2. Situative theories of collaborative design learning

Johri and Olds (2011) discuss the central construct of situativity, or
learning as a situated activity, and its importance for learning in en-
gineering design. The situative perspective views knowledge as socially
constructed and constituted within a specific context (Clancey, 2009),
with learning occurring through active participation in a community of
practice (Lave, 1991; Lave and Wenger, 1991). Specifically, learning is
theorized to arise through dynamic construction of creative work,
within a specific context, and through active engagement and partici-
pation in meaningful practices (Sawyer and Greeno, 2009).

The situative perspective draws from theories of situated cognition
(Brown et al., 1989; Greeno, 1989), situated action (Norman, 1993;
Suchman, 1987, 2007), and situated interaction (Dourish, 2001).
However, situative theories of learning differ from the behaviorist and
cognitive approaches by viewing knowledge as “distributed among
people and their environments, including objects, artifacts, tools,
books, and the communities of which they are a part” (Greeno et al.,
1996, p. 17). Within this perspective, learning is theorized to be con-
stituted through sociomaterial practices that are constrained and en-
abled by the affordances of the material and spatial environments (si-
tuated learning theory; Sørensen, 2009).

To broaden theoretical insights into engineering and design
learning, Johri & Olds (2011) introduced analytic lenses, including (a)
the social and material context, and (b) the role of activities and in-
teractions. In the following sections, we draw from these analytic lenses
to frame our study and review the literature salient to collaborative
design learning in computer-supported environments.

1.2.1. The material and spatial context for engineering design
Engineering design learning is situative and embedded within the

material and spatial environment (Johri and Olds, 2011; de Vries and
Masclet, 2013). In the material context of engineering design, the in-
fluence of material tools on human cognition is particularly salient, and
design learning often requires students to develop a hybrid posture
through their bodies’ interactions with a variety of material tools
(Sørensen, 2009). For example, the emergence of mobile touch-based
devices has enriched the materiality of engineering design learning by
introducing touch-based sketch and design applications to improve the
affordances provided by traditional pen and paper platforms (Shen
et al., 2008). However, while engaging in collaborative design on mo-
bile touch-based platforms, design students are expected to interact
with and interpret digital material representations (e.g., design sket-
ches), as well as the digital cues generated by other team members
(Sørensen, 2009). In our current study, using the digital sketches cre-
ated on the tablets as a point of departure, students engaged in social
interactions to construct meaning and design ideas collaboratively.
Such dependence of the social interaction dynamics on digital materials
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and cues in engineering design settings invites investigation into the
affordances and interaction patterns supported by digital platforms.
Therefore, we examine the role of the sociomaterial context in colla-
borative design performance of engineering design teams.

Collaborative engineering design is also situated within a variety of
spatial contexts (e.g., formal and informal learning spaces, structured or
flexible physical layouts, private or public settings, and with few or
many environmental distractions), each of which are capable of facil-
itating or inhibiting certain interactions or behaviors (Jordan and
Henderson, 1995). Previous research has shown that in collaborative
settings interpretation of the spatial context (e.g., the perception of the
space, the quality of lighting, the actions that are afforded) influences
each student's behaviors, social interactions, learning, as well as col-
laborative outcomes (Baron, 2006; Leander, Phillips & Taylor, 2010).
For example, the physical arrangements in learning spaces have been
found to mediate students’ level of participation in social interactions
(Roth et al., 1999), and office layouts influence organizational culture
and job satisfaction (Zerella, von Treuer, & Albrecht, 2017). However,
research on the role of spatial contexts in collaborative engineering
design has been limited. In this study, we explore whether spatial
context is an important predictor of collaborative design performance.

1.2.2. Social interaction in collaborative engineering design
In the past decade, educators and researchers have strived to help

engineering students gain social interaction skills in collaborative
learning environments, which are transferrable to industry climates
that rely on effective social interaction to produce desirable design
outcomes (Bucciarelli, 1994; Pahl et al., 2007). Social interaction has a
critical role in collaborative design learning because engineering stu-
dents can provide scaffolding for each other to build design knowledge
and enhance the quality of design outcomes. For example, research has
found that students perform significantly better in engineering design
and problem solving when they learn through collaborative tasks than
through traditional lecture/discussion formats (Terenzini et al., 2001).
Therefore, it is important to engage engineering students in collabora-
tive design settings and help them develop social interaction patterns
that are conducive to collaborative outcomes.

In efforts to engage students in collaborative design, advances in
collaborative technologies, including applications, devices, and infra-
structures, have created new affordances for social interaction. In
comparison with the traditional medium of paper and pen for early
stage design sketching, computer-based interfaces allow engineering
students to dynamically represent design ideas (Stahl et al., 2006) and
efficiently communicate their ideas in a tangible medium
(Dillenbourg, 2005). Functions such as real-time synchronization of
sketches across devices can also augment collaborative meaning con-
struction by allowing students to access other team members’ sketches
as a scaffold in the construction of new ideas. For instance, sketching on
tablets and sharing the screen with others can create a material space in
which teams of engineers explicitly represent their design knowledge
and ideas, and visualize them in a collaborative space that facilitates
design processes. For example, in our earlier work, collaborative design
systems enable learners to generate and share visual representations of
design ideas through the use of collaborative design tablets and shared
design walls (Chandrasegaran et al., 2014; Zhao et al., 2014; Martinez-
Maldonado et al., 2017).

In both traditional paper-based and computer-supported collabora-
tive environments, previous research has indicated that engineering
students need to attend to both the visual cues such as design sketches,
as well as social interaction dynamics among collaborators, which has
created challenges to design outcomes (Reid & Reed, 2007). However,
there is a gap in research in understanding parallel negotiations of
verbal and visual design ideas, and specifically understanding the
micro-level interaction dynamics in both paper-based and computer-
supported design environments (Martinez-Maldonado et al., 2017).
Understanding the dynamic processes of design practice can help to

foster positive interaction dynamics that benefit group processes as well
as quality outcomes in collaborative design (Olguin and
Pentland, 2010; Pentland, 2012).

1.3. Sociometrics as predictors of collaborative outcomes

In collaborative engineering design tasks, interaction dynamics play
a central role in group work (Brereton et al., 1996). In the past, re-
searchers have used conversation analysis of groups in order to identify
how understanding and meaning is constructed through the talk of
participants (Koschmann, 2013). Alternatively, discourse analysis has
been used to analyze “both macro (conversational turns) and micro
levels (statement units)” of discourse (Jeong, 2013, p. 176). However,
these analytic methods are labor-intensive and often confined to small
segments of text, requiring researchers to manually peruse transcripts,
develop coding schemes, train coders, and assure inter-rater reliability
among multiple coders. As a result, the time required for such methods
has been a hindrance for researchers analyzing interaction discourse
over longer time periods, or with larger sets of data. Furthermore, ob-
trusive conversation recording puts the pressure of social desirability on
participants and can influence the validity of data when participants
avoid or increase certain interactions due to social desirability
(Guest et al., 2006). Finally, researchers have acknowledged the diffi-
culty in studying social interaction in non-traditional settings (i.e.,
computer-supported) or long periods of time (Looi et al., 2013).

Recent advances in computational approaches have produced in-
novative methods to ameliorate the challenges in studying social in-
teraction dynamics, including measuring brain waves, physiological
indicators, and capturing data on body, postural, and speech activity
(Delaherche et al., 2012). One such approach uses wearable sociometric
devices to unobtrusively collect real-time data on speech and beha-
vioral patterns of groups (Olguin and Pentland, 2008). Using such de-
vices, researchers can quantify interaction dynamics in collaborative
teams using sociometric data, without recording conversations or con-
ducting verbal analysis. In recent research, sociometric data have been
found to be important indicators of collaborative performance in a
variety of contexts (Kim et al., 2008). For example, successful teams in a
business plan development task outperformed less successful teams on
several sociometric measures, including speech participation and en-
ergetic body movement (Olguín and Pentland, 2010). Additionally,
researchers have demonstrated that sociometric measures can predict
creativity in teams. For example, Triparthi and Burleson (2012) found
that body movement and face-to-face interaction measured by socio-
metric badges over the course of multiple days strongly predicted
creative outcomes for teams working on software coding projects.
While these empirical studies demonstrate the promise of using socio-
metric trace data to predict creative and collaborative outcomes in
teams, none have yet examined the micro-level interactional dynamics
of groups engaged in collaborative engineering design learning.

In summary, the importance of spatial and material context as well
as social interaction dynamics, has been demonstrated in collaborative
settings. However, there is a dearth of knowledge about the relation-
ships between the context, interaction dynamics and collaborative de-
sign outcomes in design learning. Furthermore, there is little empirical
evidence regarding the dynamic relationship between interaction pro-
cesses and creative collaborative outcomes, an area that could benefit
from the use of wearable data collection tools. Extending research in
these domains provides important contributions to theoretical devel-
opment in situative learning theory, particularly in the unique context
of engineering design. Therefore, the research questions we investigate
in this study include:

a What are the roles of spatial and material context and social inter-
action dynamics in predicting collaboration quality in engineering
design teams?

b What are the roles of spatial and material context and social
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interaction dynamics in predicting creative fluency in engineering
design teams?

2. Methods

This study was conducted as part of a larger project that developed a
tablet-based collaborative engineering design tool called skWiki
(Chandrasegaran et al., 2014; Zhao et al., 2014), described below. In
this study, we used a 2 × 2 design to examine whether material con-
texts (paper vs. skWiki), spatial contexts (Commons vs. Private room), and
social interaction dynamics can predict collaborative quality and
creative fluency in design teams.

2.1. Participants

Participants were sixteen graduate students (14 men and 2 women),
ranging in age from 21 to 37 years (M= 25.25, SD=3.92), enrolled in
a graduate level mechanical engineering design course. Because in-
dustry practices often involve engineers from a wide range of back-
ground and experience working on the same design tasks, we also en-
gaged participants from diverse backgrounds in this study. All the
participants are 1st to 3rd year graduate students in engineering ma-
jors, with an average of 2.19 years (SD=0.83) in their program. The
average rating of the participants’ self-report of communication skills is
3.44 (SD=1.26) on a 5-point Likert scale. The participants were ran-
domly assigned to the experiment conditions.

Prior to the study, participants learned fundamental techniques of
engineering design, including ideation techniques such as brain-
storming, brainsketching (van der Lugt, 2002), SCAMPER, "combining
things" (Michalko, 2006), and how to understand the play value of
products (Kudrowitz and Wallace, 2010). All participants were skilled
in visualizing design ideas with prior training in sketching as a means
for visual thinking (Taborda et al., 2012).

2.2. Design context

The design teams were assigned to work on collaborative design
tasks in one of four types of environments that varied spatially and
materially (see Fig. 1).

2.2.1. Spatial context
The design teams were assigned to work in one of the two spatial

environments that simulated informal and formal contexts. Prior re-
search has indicated that informal learning spaces may differently im-
pact student outcomes compared to formal settings (Cross, 2011).

2.2.1.1. Commons area environment. Half of the teams were assigned to
the commons area environment, which simulated informal working
environments that are rich in ambient noise. Tables and chairs were
arranged around a large open area of a building, near an elevator,
offices, an atrium, and informal couch seating. This setting was selected
to resemble open and informal learning spaces.

2.2.1.2. Private room environment. The remaining teams were assigned
to work in a more formal setting–a private conference room furnished
with a conference table and chairs. This setting was used to simulate
working environments that are formal, private, and have less ambient
noise.

2.2.2. Material context
Teams were assigned to use one of two sketching tools: paper or the

skWiki sketching application on touch-based tablet devices.

2.2.2.1. Paper sketching tool. In the paper sketching context,
participants created design sketches using paper and pen tools.
Participants were given access to a stack of paper and various pens to
use during sketching. During the design process, to share their sketches
with team members, participants either held up the paper or passed the
paper to others to visually communicate their idea. This paper
sketching condition was set up to resemble the early-stage group
engineering design practices that take place in many academic and
industry engineering settings.

2.2.2.2. SkWiki sketching tool. In previous work, researchers have
developed and studied the skWiki collaborative sketching
environment, an open source application designed to facilitate
sharing and elaboration of visually represented (i.e., sketched) ideas
during collaborative design sessions. As shown in Fig. 2, the skWiki
interface is a web-based application on touch-based tablets (i.e., iPads).
Using capacitive-touch styli, users can create design sketches on the
skWiki interface and share the sketches with other team members
through a shared space enabled by a back-end server, which stores and
synchronizes the design sketches generated by all team members. This
shared space is shown to the user via the Path Viewer, which records
the progression of ideas and modifications made to shared sketches.
Any team member can select from the shared sketches and modify or
elaborate designs on their individual sketching tablet. For example,
when a designer sees a design idea sketched by another team member,
the designer can tap on the sketch through the Path Viewer and
elaborate or edit the sketch in the Canvas window to converge to or
diverge from specific design ideas. Thus, elaboration and manipulation

Fig. 1. Collaborative teams during a toy design session. Clockwise from top left: 1) students use skWiki design tablets in Private room; 2) students use skWiki design
tablets in Commons area; 3) students use pen and paper in Commons area; 4) students use pen and paper in Private room.
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of shared representations is readily accessible, and the affordances
provided by the skWiki sketching tool have the potential of enhancing
collaboration outcomes (Chandrasegaran et al., 2014).

2.3. Measures

2.3.1. Social interaction dynamics
In order to gauge participants interaction dynamics during the

collaborative design sessions, we used wearable sociometric sensors to
capture real-time data on a set of non-linguistic social signals (Olguín
et al., 2009). The sensors are encased in a rectangular plastic badge,
slightly smaller than an index card and about half an inch thick, and
worn around the neck. The badges include a combination of sensors
technologies including Bluetooth and infrared sensors, an accel-
erometer, and microphones, to capture a number of variables about
speech and conversation dynamics, body movement and posture, and
social proximity. The built-in algorithms allowed the sensors to calcu-
late data on a series of sociometric measures that allow us to quantify
social interaction dynamics. In this study, we focused on the four
measures of conversation dynamics: Turn-Taking, Successful Interrupts,
and Speech Overlaps (generated directly from the sociometric sensors),
as well as Cyclic Index, a measure calculated from time series analysis

of speech participation data. We define and operationalize these mea-
sures in Table 1.

2.3.2. Collaboration quality
= To assess the quality of collaboration perceived by team mem-

bers, we used a 12-item Likert-type scale, with ratings ranging from 1
(inadequate) to 5 (excellent) for each item. The items were adapted from
a scale for collaboration readiness in scientific teams (Mâsse et al.,
2008), and asked students about the ease of sharing ideas, commu-
nicating, accommodating different styles, resolving conflicts, and pro-
ductivity during the session. This survey was administered at the end of
the design session. The total score of the Collaboration Quality scale,
with a range from 12 to 60 points, was used in the analysis. The re-
liability of the scale reached α = 0.90.

2.3.3. Flow
= An 8-item scale was created to assess task engagement, or crea-

tive flow, derived from Arici (2008). Csikszentmihalyi (1990) defines
flow as an experience during the high-challenge and high-skill moments
while performing autotelic or intrinsically-motivated tasks
(Nakamura and Csikszentmihalyi, 2002). Drawing from extant litera-
ture on task engagement (Deater-Deckard et al., 2013; Skinner and
Belmont, 1993), the flow scale included three dimensions: cognitive
(e.g., whether the activity was challenging), behavioral (e.g., whether
they were actively involved), and affective (e.g., whether participants
enjoyed the task, found it exciting). Items were measured on a 5-point
Likert scale ranging from 1 (not at all) to 5 (very much) and administered
at two time points: once in the middle and once at the end of the design
session. The average of the flow total scores collected at the two time
points, which ranged from 8 to 40 points, was used in the analysis. The
reliability of the scale reached α = 0.91.

2.3.4. Creative fluency
Creativity in divergent and idea generation tasks is often defined as

the fluency or the number of new ideas generated by individuals or
teams, and higher fluency is associated with higher creativity outcomes
(Charyton and Merrill, 2009; Guilford, 1967; Paulus, 2000). In this
study, we operationalized creative fluency as the total number of new
sketches created by each participant. Based on previous work on
creativity in engineering design (Charyton et al., 2008), a new sketch
was counted towards an individual's measure of creative fluency when
it showed originality in design ideas. For example, a new sketch that
adds two lines to elaborate the details of a toy car was not counted as a
new sketch. In contrast, if a sketch changed the function of the toy car

Fig. 2. The skWiki sketching interface on a multi-touch tablet platform.
Students use a stylus to sketch design ideas and then can share the sketches with
the team through a shared space enabled by a back-end server. This shared
space is shown to the user via the Path Viewer, a representation of the pro-
gression of ideas and additions made to shared sketches. Any team member can
select from the shared sketches and then modify or elaborate designs on their
individual sketching tablet.

Table 1
Sociometric measures of conversation dynamics.

Measures Definitions Operationalization Data

Turn-taking The number of turns speaker A took after another
speaker B; the italicized text is an instance of
speaker A taking a turn in response to other
speakers.

Speaker B: It is just like a board game. Turn-taking is recorded as a total frequency
number for each participant during the entire
session

Speaker A: Yes, and we can add real action figures in.

Successful
interrupts

A successful interruption is defined as speaker A
starting to speak while speaker B is speaking,
resulting in B falling silent while A continues to
speak; the italicized text is an example of speaker
A successfully interrupted speaker B in the middle
of speech.

Speaker B: I think we can also add a ladder in the 3-D
board game, so that…

Successful interrupts is recorded as a total
frequency number for each participant during
the entire sessionSpeaker A: oh, then the action figures can climb up the

ladders.

Speech overlap Overlap occurs when one participant speaks at the
same time as another participant in the group. The
duration of speech that speaker A and B uttered
simultaneously.

Speaker A: This looks great. So we choose this design
as our final design.

Speech overlap is recorded as a total frequency
number for each participant during the entire
sessionSpeaker B: (simultaneously starts speaking just as A

finished the word “This”) I really like this idea a lot.
Cyclic index Cyclic patterns of how speakers engage in

entrained and synchronized social interaction
rhythms. Larger cyclic indices imply higher levels
of entrainment among speakers.

The average amount of variance explained by the
four largest and significant periodogram components
in the four sets of 15-minute segments of each
participant's speech participation data.

Cyclic index is obtained from time series
analysis of the speech participation data, which
is recorded as the average per second ratio of a
participant's speech activity to the total amount
of speech in the group.
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and made it into a wearable and inflatable car shaped toy, then it was
counted as a new sketch. The identification of new design sketches for
creative fluency was coded by two people with a background in en-
gineering design research. The reviewers first marked the new design
sketches individually and compared the ratings at the end. Consensus
was reached through discussion.

2.4. Procedures

Participants were randomly assigned to work on design tasks in one
of the four Material x Spatial conditions: skWiki+Commons, Paper
+Commons, skWiki+Private, Paper+Private (The descriptions of the
conditions are presented in Table 2), and wore sociometric badges
throughout the session. During the design session, each team was in-
structed to select a toy and identify the play value of the toy using the
play pyramid and scales of play method (Kudrowitz and
Wallace, 2010). All teams participated at the same time, thereby con-
trolling variability in the environment. The play value is a concept that
helps designers to understand and envision how users may interact with
toys. The participants learned about these concepts in lectures prior to
the study and were given reference pages describing the play pyramid
and scales of play during the task. After determining the play value,
participants were instructed to redesign the toy to change its play value
so that users could play with the toys in a different manner. The re-
design process required participants to brainstorm in groups and use
engineering design techniques such as SCAMPER as well as “crossing
products” (see Michalko, 2006). Each participant was asked to sketch
their design ideas and collaborate with the team to create a final design
idea.

In the Paper teams, participants drew their sketches with pen and
paper. Each participant was provided with sheets of numbered papers
for identification, and a box of multicolored fine-tipped markers. To
simulate paper-based collaborative design sessions in real settings,
participants were instructed to collaboratively design the toy, but were
not given explicit instructions regarding how to share their design
sketches with one another. Thus, participants decided how they colla-
borated in the group.

In the skWiki teams, participants used styluses to sketch on the
touch-based tablets using the skWiki application that allowed syn-
chronization of design sketches across the team (More information
about the skWiki tool is presented in Material Context under the Design
Context section). Using the skWiki application interface, participants
could view and also build upon or modify a teammate's sketches and
generate new design ideas. Due to the novelty of the skWiki application,
participants in this condition were given a brief 10 min training session
on the use of the skWiki tool prior to the study.

Finally, participants in all four conditions selected the most pro-
mising design idea through discussion. The process of generating mul-
tiple ideas and then selecting the most promising ideas combining both
creative and analytical processes, known as Laseau's funnel
(Laseau, 1980), was previously introduced to the students through
lectures. The design session lasted for approximately 60 min. At the end
of the session, the participants completed the collaboration quality
scale and the flow scale. The flow scale was also administered mid-
session to capture fluctuations in the participants’ perception of flow.

3. Data analysis

3.1. Processing social interaction dynamics data

Our research questions concern the roles of the social interaction
dynamics in predicting collaboration quality and creative fluency. To
obtain the social interaction dynamics data, we first extracted the total
frequency count data on Turn-taking, Successful Interrupts, and Speech
Overlaps from the sociometric sensors. We also extracted the second-
by-second speech participation data for each participant from the so-
ciometric sensors and conducted time series analysis to calculate the
cyclic index.

3.1.1. Time series analysis and cyclic index
Previous research has found that speech participation in social in-

teraction tends to show periodic rather than linear patterns, where
speakers may coordinate and entrain each other's vocal activity to
achieve synchronized rhythms (Chapple, 1970; Warner, 1992). Such
cyclicity has been suggested as a fundamental organizing principle of
social interaction (Chapple & Lui, 1976). Using time series methods, a
spectral analysis in the form of periodogram analysis can identify the
cyclic tendencies in such time series data and reveal patterns in how
speakers engage in entrained and synchronized social interaction
rhythms.

Conducting spectral analysis on speech participation time series
data has been used widely in social interaction research (McGarva &
Warner, 2003; Warner, 1992). For example, Warner (1992) conducted
periodogram analysis on the speech participation time series data
during a 40-minute conversation session, and calculated an index of
cyclic patterns. Warner found that the cyclic index in the later 10-
minute segment was significantly higher than that of the early 10-
minute segment, suggesting that the speakers’ interactions become
more mutually entrained as interaction progresses. In this study, we
draw on this literature on the cyclicity of social interaction and apply
the periodogram analysis on speech participation time series data to
identify synchronized processes in design teams’ social interaction
patterns.

Recall that in our study, speech participation for each participant
was recorded on the sociometric sensors as second-by-second time
series data. Because previous research suggests that cyclicity in social
interaction tends to occur between three to six minutes (Warner, 1992;
Warner, Malloy, Schneider, Knoth, & Wilder, 1987), we aggregated the
individual participation data into 10-second intervals. Then, following
the method used in Warner (1992) for vocal activity time series ana-
lysis, we divided the time series data into four 15-minute segments,
each consisting of 90 observations ten seconds in length, thus yielding
four segments of n = 90 observations for each participant. Fig. 3 il-
lustrates an example of the raw time series data for the first 15-minute
segment of Team F, who used the Private meeting room with the skWiki
tool.

Finally, we conducted spectral analysis, in the form of periodogram
analysis on each 15-minute segment. The periodogram analysis func-
tions by partitioning the variance in the time series and examining the
amount of variance accounted for by each of the N/2 or 45 periodic
components. As discussed above, in each 15-minute segment, there are

Table 2
Description of the four design conditions.

Material
Context

Spatial Context
Commons area Private Room

skWiki Participants worked in groups in an open commons area and each student
used a stylus to sketch their design ideas or build on others’ ideas on the
skWiki application.

Participants worked in groups in a closed conference room and each student
used a stylus to sketch their design ideas or build on others’ ideas on the skWiki
application.

Paper Participants worked in groups in an open commons area and each student
used pencils to sketch their design ideas or build on others’ ideas on paper.

Participants worked in groups in a closed conference room and each student
used pencils to sketch their design ideas or build on others’ ideas on paper.
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N= 90 observations, yielding 90/2 = 45 components (Box, Jenkins, &
Reinsel, 2013). The 45 periodic components ranged in cycle lengths of
10*(90/i), where 10 is the 10 s interval and i= 1, 2, 3,…45. Thus, the
45 periodic components corresponded to cycle lengths of 900 s, 450 s,
300 s, 250 s,…, and 20 s (Box et al., 2013). The percentage of variance
explained by each periodic component can be calculated by dividing

the periodogram value (the pdgm column in Table 3) by the total
periodogram value of all periodic components. If the time series data
are random or the “white noise” null hypothesis is true, then each
periodic component would account for 1/45 or 2.22% of the overall
variance of the time series. However, if there are one or more periodic
components that account for much larger proportions of the variance,
which is the case in this study, the time series can be considered ap-
proximately sinusoidal and demonstrating cyclic patterns (Warner,
1992).

To identify the most significant periodic components in the time
series, we used Fisher's test (Russell, 1985). According to the Fisher's
significance table, at the 0.05 significance level, in time series with 90
observations, the primary or the largest periodic component should
account for more than 15% of the variance in the time series, the sec-
ondary or the second largest component more than 10%, the tertiary
component more than 8%, and the quaternary component more than
7%. The recommended approach for analysis is to include only parti-
cipants who have at least one significant periodogram component
(Warner, 1992). In this study, all participants had at least one sig-
nificant periodogram components, and therefore all participants were
included. Table 3 shows an example of the output from the period-
ogram analysis for the first 15-minute speech participation data for
participant F1. In this example, the periodic components at 70 s ex-
plains the highest percentage of variance (pctpdg=28%) and is sig-
nificant at the 0.05 level, followed by periodic components at 30 s
(pctpdg=20%), 40 s (pctpdg=15%), and 60 s (14%).

Using the methods described in Warner (1992), the Cyclic Index was
obtained by first calculating the total amount of variance explained (the
pctpdg value in Table 3) by the four largest and significant periodogram

Fig. 3. The time-series of the first 15-minute speech participation data of participants F1, F2, F3, and F4 from Team F (Private meeting room with skWiki tool).
Speech participation was measured once every second by the sociometric sensor and aggregated as an average for every 10 s in the analysis. N = 940 observations.

Table 3
Excerpt of the periodogram analysis output for participant F1’s first 15-minute
speech participation data.

Seconds Speech
Participation

Frequency Period pdgm pctpdg* spectral

10 0.47245 0 0 0 0.20067
20 0.37255 0.01053 95.00 0.01608 0.04 0.18055
30 0.37255 0.02105 47.50 0.08426 0.20 0.16761
40 0.32140 0.03158 31.67 0.06413 0.15 0.22443
50 0.23644 0.04211 23.75 0.00314 0.01 0.32673
60 0.22178 0.05263 19.00 0.05683 0.14 0.24475
70 0.13041 0.06316 15.83 0.11838 0.28 0.18087
80 0.12047 0.07368 13.57 0.00228 0.01 0.18345
90 0.13078 0.08421 11.87 0.00025 0 0.13483
100 0.15960 0.09474 10.56 0.00572 0.01 0.02203
110 0.18431 0.10526 9.50 0.0082 0.02 0.04007
120 0.18575 0.11579 8.63 0.00558 0.01 0.04547

Note:
⁎ pctpdg represents the percentage of variance explained by the corre-

sponding frequency or periodic components in the time series. This table shows
an excerpt of the original output for participant F1. Due to space limit, the data
between 130 s and 450 s are omitted in this table but are included in the cal-
culations for cyclic index.
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components in each 15-minute segment. We then averaged the variance
across the four 15-minute segments to generate the mean Cyclic Index
for each participant (Table 4 shows the descriptive statistics of Cyclic
Index). The mean Cyclic Index reveals the tendency of synchronized
cycles among speakers, where larger cyclic indices imply higher levels
of entrainment among speakers (McGarva & Warner, 2003; Warner,
1992).

3.2. Predictive models of collaboration quality and creative fluency

To answer the research questions on the roles of the material con-
text, spatial context, and social interaction dynamics in predicting
collaboration quality and creative fluency, we built two models using
Partial Least Squares Regression (PLSR). The PLSR method builds re-
gression models to predict the dependent variables (Y) through ex-
tracting latent structures from a set of independent variables (X) which
are best for explaining X and predicting Y (Abdi, 2010). This method
has been found to be especially useful for building predictive models
because it extracts (non-observable) latent structures that “collect most
of the variation of the real X (observable) variables in such a way that
they may also be used to model the Y response (dependent) variables.”
(Mateos-Aparicio, 2011, p. 2308). PLSR was originally developed to
address research questions during the early stages of theory develop-
ment, where “low information” in theoretical specification and a lim-
ited number of available observations may result in multicollinearity
among the independent variables (or more independent variables than
observations) (Sosik, Kahai, & Piovoso, 2009; Wold, 2004). Compared
to multilinear regression methods, the PLSR method has several ad-
vantages in that it values soft distributional assumptions, has lower
requirements for sample size, and produces higher accuracy in para-
meter estimation in studies where large samples are difficult to obtain
(Esposito Vinzi, Chin, Henseler, & Wang, 2010). The PLSR method al-
lowed us to explore the relationships between predictors and response
variables in our early stage of theory development and overcome the
challenges of obtaining large sample sizes in collaborative engineering
design settings.

In building the two predictive models for Collaboration Quality and
Creative Fluency, we initially selected seven model predictors based
upon the literature: Material Context, Spatial Context, Flow, and the
four social interaction variables, Turn-taking, Successful Interrupts,
Overlaps, and Cyclic Index (Dong et al., 2012; Gaver, 1996; Johri and
Olds, 2011; Nakamura and Csikszentmihalyi, 2002; Sadler, Ethier,
Gunn, Duong, & Woody, 2009; Warner, 1992). We next examined the
distribution of the two response variables, and confirmed that the
Collaboration Quality and Creative Fluency variables had symmetric
distributions, eliminating the need for data transformation (Mateos-
Aparicio, 2011). Regardless, the PLSR still performs scaling and cen-
tering for each predictor variable to ensure that the variables have an
equal opportunity to influence the model (Sawatsky, Clyde, & Meek,
2015).

We built two PLSR models using the NIPALS (Non-linear Iterative
Partial Least Squares) algorithm (de Jong, 1993; Mevik & Wehrens,
2007), regressing the seven predictors on Collaboration Quality and
Creative Fluency. In fitting the model, the two categorical variables
were coded as dummy variables: Material Context (0=skWiki,
1=Paper) and Spatial Context (0=Private room, 1=Commons area).
To identify the best fit model with the least number of factors to explain
the maximum amount of variance in the predictors and responses
variables, we then employed four additional steps to refine the speci-
fication of the model: a) First, we used the Leave One Out cross-vali-
dation method, which checks how well a model will generalize to new
data by conducting n iterations of training and testing to fit the pre-
dictive model. In each iteration, all but one observation (i.e., n-1) is
used as the training set to train the model, which is then used to predict
the test set—the one left out observation. This training and testing
process continues until each observation has served as the testing set
once; b) next, we examined the VIP (variable importance for the pro-
jection) statistics, which is the weighted sum of squares of the weights
(Wold, 1995), and adopted a criterion of 0.8 as a cutoff point for pre-
dictor selection (Wold, 1995); c) additionally, we examined the re-
gression coefficients of the predictors and excluded those with both
small VIP and small regression coefficients; d) finally, we examined the
factor loadings of each variable and excluded those with low factor
loadings.

4. Results

To answer the research questions on the role of the material and
spatial context and social interaction dynamics in predicting colla-
boration quality and creative fluency, we built two predictive models
using Partial Least Squares Regression with seven predictors. Table 4
shows the descriptive statistics of the variables in the predictive models.

4.1. Predicting collaboration quality

Our first research question asked whether spatial and material
contexts and social interaction dynamics can predict collaboration
quality in design teams. Regressing all seven predictors (Turn-Taking,
Successful Interrupts, Overlap, Flow, Cyclic Index, Material Context,
and Spatial Context) on Collaboration Quality, the Leave-one-out Cross
Validation method of the PLSR model recommended six factors for in-
clusion in the model: according to the predicted residual sum of squares
(root mean PRESS) statistics for each factor, the appropriate number of
factors for the model is when the lowest PRESS value is achieved (Abdi,
2010; Roy & Roy, 2008). The model summary indicates that the best
model fit is achieved using six factors (RM PRESS=0.99), where
94.69% of the variance is explained for the predictors and 61.97% of
the variance is explained for the Collaboration Quality response vari-
able (See Table 5). Note that the number of factors in PLSR refers to the
latent factors extracted from the predictors. Therefore, six latent factors
may represent the variation of multiple predictors in the model (Cox &
Gaudard, 2013; Mateos-Aparicio, 2011).

To select the predictors that are important for the model, we ex-
amined the VIP statistics for each predictor, using a criterion value of
0.8 as a cutoff point for predictor selection (Wold, 1995). As shown in
Fig. 4, Material Context, Cyclic Index, and Successful Interrupts have
VIP values greater than 0.8, suggesting inclusion in the model. Addi-
tional evaluation of the standardized regression coefficients indicates
other important contributors to the model. As suggested in previous
research, during model specification it is important to consider both the
VIP and standardized coefficient: predictors with VIP values lower than
0.8 can be retained if their coefficients are comparable to predictors
with greater VIP values (Sawatsky et al., 2015). In Fig. 4, we graphed
VIP values against the standardized coefficient values, and found the
VIP values for the other four predictors (Turn-taking, Spatial Context,
Flow, and Overlaps) were lower than 0.8, but their standardized

Table 4
Descriptive statistics of the predictor and response variables.

Variables M SD

Predictor Variables
Turn-Taking 1157.44 465.91
Successful Interrupts 545.00 292.02
Overlap 1065.78 372.71
Flow 31.53 6.24
Cyclic Index (%) 67.75 7.40

Response Variables
Collaboration Quality 50.06 4.58
Creative Fluency 3.88 2.28

Note: The predictor variables also include Material Context and Spatial Context,
which are categorical and are thus not included in this descriptive statistics
table.
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coefficients are comparable to those with higher VIP values. Therefore,
all seven predictors were retained as predictors in the model. As shown
in Table 5, retaining 7 predictors, the percent of variance in the Y
variable accounted for by the latent factors, or R2 =63.48%, indicating
good strength in predicting observed values for both creative fluency
and collaboration quality (Hair et al., 2011; Henseler et al., 2009).

From Fig. 4, we can see that Material Context, Successful Interrupts,
and Cyclic Index are the strongest predictors of perceived Collaboration
Quality. To verify the predictive power of the model, we generated a
series of predicted response values for Collaboration Quality using the
fitted model. Using methods recommended in previous research, we
conducted a visual examination of the predicted score and the observed
score, and confirmed that the model has a good fit and has high level of
accuracy for predicting the data (see Fig. 5) (Cox & Gaudard, 2013;
Sawatsky et al., 2015).

4.1.1. Context
The results indicate a negative influence on Collaboration Quality

for the Material and Spatial Context variables, indicating that the
skWiki tool and the private space were more favorable for
Collaboration Quality ratings. That the skWiki tool provided positive
support for sketching during the design process is consistent with pre-
vious research indicating the advantages of computer-supported colla-
borative tools during design and brainstorming processes (Martínez,
Collins, Kay, & Yacef, 2011). That the private spatial context was a
more positive influence compared to the commons area context, was an

unexpected finding and counters emerging research suggesting that
open, informal spaces are more conducive to creative collaboration
(Becker & Sims, 2001; Horgen et al., 1999; Kim & de Dear, 2013;
Lerdahl, 2001; Stryker, 2004).

4.1.2. Flow
The results indicate that Flow positively predicts Collaboration

Quality, consistent with group creativity and flow theories
(Csikszentmihalyi, 2014; Nakamura and Csikszentmihalyi, 2002;
Sawyer, 2008), which predict the positive affect that emerges when
teams are well engaged with their task and peers (Amabile, 1996;
Amabile, Barsade, Mueller, & Staw, 2005).

4.1.3. Interaction dynamics
Successful Interrupts, Cyclic Index, and Speech Overlaps yielded

positive coefficients, indicating that increased entrainment or syn-
chrony of team members is associated with higher Collaboration
Quality ratings, consistent with our earlier research (Kisselburgh et al.,
2015; Kisselburgh et al., 2014). However, the model estimated a ne-
gative coefficient for turn-taking, a measure of verbal reciprocity during
interaction (Kisselburgh et al., 2014), perhaps indicating that reciprocal
conversations that elaborate or build upon the ideas of others may
hinder perceived collaboration quality (Mckinlay, Procter, Masting,
Woodburn, & Arnott, 1994). This finding suggests that reciprocity in
collaborative design settings using collaborative tools may differ from
traditional conversational dyads or groups and suggests that more fre-
quent turn-taking in computer-supported collaborative design does not
necessarily lead to enhanced perceptions of collaboration quality. In
summary, synchronous conversation dynamics, but not reciprocal turn-
taking are associated with positive collaboration quality.

4.2. Predicting creative fluency

Our second research question asked whether spatial and material
contexts as well as social interaction dynamics, are predictive of crea-
tive fluency in design teams. Using PLSR and the Leave-one-out cross
validation method, we regressed Spatial Context, Material Context,
Successful Interrupts, Overlap, Turn-taking, Flow, and Cyclic Index on
Creative Fluency. According to the predicted residual sum of squares
(PRESS) statistics, the appropriate number of latent factors corresponds
to the lowest PRESS value (Abdi, 2010; Roy & Roy, 2008). As shown in
Table 6, the smallest PRESS value is achieved for one latent factor,
where 20.41% of the variance was explained for the predictors and
62.15% of the variance was explained for Creative Fluency. Note that
the number of factors in PLSR refers to the latent factors extracted from
the predictors. Therefore, one latent factor may represent the variation

Table 5
Leave-one-out cross validation (using NIPALS algorithm) modeling collabora-
tion quality.

# factors Root
Mean
PRESS

vdVT² Prob
> vdV
T²

R²X Cum. R²X R²Y Cum. R²Y

0 1.07 0.26 0.66 0.0000 0.0000 0.0000 0.0000
1 1.02 0.08 0.80 0.2237 0.2237 0.4220 0.4220
2 1.08 0.53 0.54 0.2258 0.4495 0.0761 0.4981
3 1.11 1.78 0.21 0.1431 0.5926 0.0656 0.5637
4 1.07 1.57 0.24 0.1199 0.7125 0.0455 0.6092
5 1.02 0.87 0.40 0.0963 0.8088 0.0187 0.6279
6 0.99 0.00 1.00 0.1159 0.9247 0.0045 0.6324
7 1.00 0.26 0.64 0.0753 1.0000 0.0024 0.6348

Model Summary
N Factors Var. X Var. Y VIP >0.8
16 6 94.69 61.97 3

Notes: vdV T²=van der Voet T²; Var. X = variation explained for cumulative X;
Var. Y = variation explained for cumulative Y.

Fig. 4. The Variable Importance for the Projection (VIP) and Standardized Regression Coefficient for centered and scaled data for each predictor of Collaboration
Quality.
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of multiple predictors in the model (Cox & Gaudard, 2013; Mateos-
Aparicio, 2011).

Next we referenced the VIP statistics to select the predictors im-
portant for the model, using 0.8 as a criterion (Sawatsky et al., 2015).
The results indicated that Spatial Context and Turn-taking have VIP
values greater than 0.8. Graphing the VIP values against the standar-
dized regression coefficients (Fig. 6) revealed that while the VIP values
of Overlap and Cyclic Index were lower, they have strong coefficients.
In addition, because the NIPALS algorithm identified one latent factor
for the model, we also examined the factor loadings (Table 7) of each
predictor, which indicated that the Material Context factor carries im-
portant loading and may contribute to the model.

Based on these three criteria (VIP, coefficient, and factor loading),
we removed the Successful Interrupts factor from the model because it
had the weakest set of VIP, coefficient, and factor loading values. Then
we refit the model with the six remaining predictors. As shown in
Table 8, the new model explained 24.00% of the variance in the pre-
dictors and 60.96% of variance in Creative Fluency. The VIP and
standardized coefficients of the model with 6 predictors (Spatial Con-
text, Material Context, Overlap, Turn-taking, Flow, and Cyclic Index)
remained stable, and are visualized again in Fig. 7. Spatial Context and
Turn-taking remain the strongest predictors in this model, with VIP
values greater than 0.8 (Sawatsky et al., 2015).

As shown in Table 8, retaining 6 predictors, the percent of variance
in the Y variable accounted for by the latent factors, or R2 =66.82%,
indicating good strength in predicting observed values for both creative
fluency and collaboration quality (Hair et al., 2011; Henseler et al.,
2009). After fitting the model, we generated a series of predicted re-
sponse values for Creative Fluency from the model, and a visual ex-
amination and the fitted lines of the predicted and observed values are

very similar, confirming the fit of the model (Fig. 8) (Cox & Gaudard,
2013; Sawatsky et al., 2015).

4.2.1. Context
The results indicate a strong negative influence on Creative Fluency

from Spatial Context, suggesting that the private environment was more
favorable for creative fluency. The contribution of the Material Context
was slight, suggesting a positive advantage to using the skWiki colla-
borative tool compared to paper tools.

4.2.2. Flow
There was also a small negative relation between Flow and Creative

Fluency in the design process. Considering that Flow was an average
from two survey probes during the session, more frequent data collec-
tion intervals may be needed to capture fluctuations in flow throughout
the design session.

4.2.3. Interaction dynamics
The positive association of Turn-taking with Creative Fluency sup-

ports earlier research that reciprocity is indicative of team members
becoming more cooperative in their behaviors, which leads to better
creative outcomes (Kisselburgh et al., 2014). More specifically, because
reciprocity is indicative of team members building upon or elaborating
on others’ ideas, these findings provide strong support for theoretical
suggestions that elaboration is a process that directly enhances group
creativity (Csikszentmihalyi, 2014; Sawyer, 2008). In contrast, the
small negative association of Successful Interrupts and Cyclic Index
with Creative Fluency suggests that synchronicity with other team
members has less influence on creative idea fluency and may even have
a slight inhibitory effect. This might be explained by the fact that

Fig. 5. Predicted vs. observed Collaboration Quality values based on
the fitted model. The vertical axis represents the Collaboration
Quality ratings. Each mark on the horizontal axis corresponds to a
participant. The orange dots represent the predicted Collaboration
Quality rating using the predictive model. The blue dots represent the
observed value—the actual collaboration rating of each participant.

Table 6
Leave-one-out cross validation (using NIPALS algorithm) modeling creative fluency with 7 predictors.

# factors Root Mean PRESS vdV T² Prob > vdV T² R²X Cum. R²X R²Y Cum. R²Y

0 1.07 1.67 0.21 0.0000 0.0000 0.0000 0.0000
1 0.90 0.00 1.00 0.2163 0.2163 0.6197 0.6197
2 1.13 0.65 0.69 0.1611 0.3774 0.0448 0.6645
3 1.31 1.04 0.44 0.1822 0.5596 0.0131 0.6776
4 1.44 1.58 0.06 0.1466 0.7062 0.0075 0.6851
5 1.51 1.76 0.03* 0.1190 0.8252 0.0049 0.6900
6 1.52 1.85 0.01* 0.1430 0.9681 0.0005 0.6905
7 1.52 1.95 0.01* 0.0319 1.0000 0.0002 0.6907

Model Summary
N Factors Var. X Var. Y VIP >0.8
16 1 20.41 62.15 2

Notes: vdV T²=van der Voet T²; Variation X = variation explained for cumulative X;
Variation Y = variation explained for cumulative Y.
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synchronicity creates stronger shared mental models and fewer in-
dependent ideas, thereby reducing the quantity of unique ideas gener-
ated.

5. Discussion

This study demonstrates that the material and spatial context of
design and the social interaction dynamics during collaborative design
are significant predictors of both creative fluency and collaboration
quality in engineering design tasks. These findings provide evidence
that the design environment has an important relationship to colla-
borative outcomes; the dynamics of interactions during the design
process, as measured in turn-taking, cyclic index, and successful inter-
rupts, are also significant predictors of creative and collaborative out-
comes. Building on prior research, our study extends the understanding
of computer-supported collaborative design by demonstrating that in
collaborative engineering design settings where multiple modalities of
information are present, and verbal interactions and visual

representations of sketching activities permeate the design space, dif-
ferent spatial and material contexts interact with and must be con-
sidered in parallel with how social interaction dynamics facilitate col-
laborative design quality and fluency.

In addition to providing empirical evidence on the dynamics of
collaborative processes in computer-supported environments, these
findings provide important theoretical contributions to our under-
standing of the context and interaction elements of situative learning
theory (Johri and Olds, 2011; Stahl et al., 2006), extend theorizing
about the materiality of learning (Sørensen, 2009), introduce novel
methodological approaches to studying collaborative learning pro-
cesses, and offer practical contributions to understanding learning
among high-level engineering designers and designing learning en-
vironments to facilitate collaborative creativity. In the following sec-
tions, we discuss the theoretical implications of context and interaction
for situative learning theory, and then conclude with a discussion of the
methodological and practical implications and future work.

5.1. The role of context and interaction dynamics in collaboration quality

5.1.1. Design context
The finding that the use of skWiki material tools and private spaces

predicts higher ratings of collaboration quality highlights the important
roles of the material and spatial context in the design setting. This
finding is consistent with previous research in computer-supported
learning environments, where the use of technology-enhanced tools and
environmental factors lead to changes in collaboration outcomes
(Martinez-Maldonado et al., 2017; Shen et al., 2008). In terms of ma-
terial context, as situative learning theory suggests, while working in

Fig. 6. VIP and standardized coefficients for centered and scaled data for 7 predictors for Creative Fluency.

Table 7
The factor loading of each predictor for creative fluency.

Predictor Factor loading

Material Context 0.21
Spatial Context 0.78
Flow 0.17
Turn Taking −0.50
Overlap 0.21
Successful Interrupt 0.10
Cyclic Index 0.30

Table 8
Leave-one-out cross validation (using NIPALS algorithm) modeling creative fluency with 6 predictors.

# factors Root Mean PRESS vdV T² Prob >
vdV T²

R²X Cum.
R²X

R²Y Cum.
R²Y

0 1.07 2.86 0.10 0.0000 0.0000 0.0000 0.0000
1 0.84 0.00 1.00 0.2519 0.2519 0.6086 0.6086
2 1.20 0.97 0.51 0.1885 0.4404 0.0432 0.6518
3 1.31 1.14 0.30 0.1798 0.6203 0.0109 0.6628
4 1.41 1.31 0.14 0.1278 0.7482 0.0035 0.6664
5 1.50 1.48 0.03* 0.1190 0.8672 0.0015 0.6680
6 1.45 1.52 0.02* 0.1327 1.0000 0.0002 0.6682

Model Summary
N Factors Var. X Var. Y VIP >0.8
16 1 24 60.96 2

Notes: vdV T²=van der Voet T²; Variation X = variation explained for cumulative X;
Variation Y = variation explained for cumulative Y.
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computer-supported design platforms designers not only interact with
the digital material representations (e.g., sketches) created by oneself,
but also interpret the digital cues and artifacts generated by others in
the environment (Sørensen, 2009). Thus, a possible explanation for this
finding is that while participants using paper tools had to sketch design
ideas from scratch, participants using the skWiki tool could reference
design ideas from their teammates in a shared electronic space and
build upon these ideas. While one might argue that participants using
paper sketching can examine each other's sketches and elaborate these
designs on paper, when we examined the sketches from paper condition
and the video tapes of the design sessions, we found that none of the
participants in the paper condition shared or built upon others’ sket-
ches. Furthermore, in the paper condition we did not specify how the
participants were to collaborate. Therefore, the fact that none of the
participants in the paper conditions chose to collaborate or build upon
others’ ideas was noteworthy and may suggest the importance of
computer-supported platforms to scaffold collaborative design.

In addition, the technological affordances of the skWiki tablets may
encourage participants to examine others’ ideas and elaborate their
sketches, thus promoting positive attitudes towards the collaborative
design process. In contrast, participants in the paper conditions were
more individually focused on generating and sketching their own ideas
and paid less attention to collaborative meaning making and idea
generation. Therefore, this finding extends situative learning theory in
engineering design learning contexts by emphasizing the importance of
the materiality of learning (Sørensen, 2009) and highlights the benefits
of computer-supported tools for collaborative design outcomes.

Regarding the spatial context, the finding that collaborative design

in private rooms, compared to commons areas, is more predictive of
positive collaboration quality outcomes contradicts previous findings
which suggest that open, flexible, and informal environments may be
more conducive to collaborative outcomes (Becker & Sims, 2001;
Horgen et al., 1999; Kim & de Dear, 2013; Lerdahl, 2001; Stryker,
2004). Considering that collaboration quality was measured as the ease
of sharing ideas, resolving conflicts, and team productivity, it is possible
that in design tasks requiring cognitive effort and contribution, the
private space is more conducive to group cohesion and collaboration.
For example, Mehta and colleagues (Mehta, Zhu, & Cheema, 2012) have
demonstrated that high levels of ambient noise in open workspaces
increases processing difficulty (See also Nagar & Pandey, 1987;
Weinsteln, 1974) and can also impair creativity, even though moderate
levels of noise can be beneficial for highly creative individuals (Toplyn
& Maguire, 1991). Situative learning theory tells us that the physical
arrangement of a design environment can facilitate or suppress certain
interactions or behaviors depending on the participants’ interpretation
of the environment (Jordan and Henderson, 1995; Leander, Phillips, &
Taylor, 2010; Zerella et al., 2017). Thus, the simplicity of the private
room environment may have provided fewer distractions or cues for the
participants to interpret, compared to the more complex commons
environment, thus lowering the cognitive demand on participant in-
teractions and promoting collaborative outcomes.

Therefore, our finding contributes to literature on spatial contexts
for collaborative design by showing that in environments involving
computer-supported technology tools for engineering design, colla-
borative outcomes may be benefitted by more private spatial contexts.
In addition, previous research has suggested that in collaboration

Fig. 7. VIP vs coefficients for centered and scaled data with 6 predictors for Creative Fluency.

Fig. 8. Predicted vs. observed Creative Fluency values based on the fitted model. The horizontal axis shows the 16 observations; the vertical axis shows the Creative
Fluency count. The blue dots represent the predicted values generated from the model; the orange dots show the observed values of Creative Fluency.
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projects that span over long periods of time, team members rated open
and informal spaces as more effective for collaborative communication
and productivity (Mishra, Mishra, & Ostrovska, 2012). However, this
study suggests that when a collaborative design task is time-con-
strained, that is, an outcome is expected in a few hours rather than over
a period of days, private spaces may be more beneficial.

5.1.2. Interaction dynamics
There were two important findings regarding how interactional

processes of the design teams contribute to collaborative quality: a) that
levels of synchronicity positively predict better ratings of collaboration
quality, and b) that levels of reciproity negatively predict such ratings.
First, all three indicators of synchronicity (interrupts, overlaps, and
cyclic index) were found to be positively associated with collaboration
quality. Successful Interrupts occur when a participant interrupts an-
other's speech and is allowed to proceed to express her ideas without
the other finishing their speech. This form of interruption is viewed as a
positive indicator of synchronization in conversation, similar to two
people finishing one another's conversations when they share common
frames of mind (Giles et al., 1991, 1987; Tannen, 1989). Similarly,
Cyclic Index is also indicative of synchronicity, or entrainment, among
speakers in social interactions (Warner, 1992). Therefore, the findings
from this study are consistent with research demonstrating the benefit
of synchronicity among group members to perceptions of the colla-
boration process (McGarva & Warner, 2003; Warner et al., 1987). As
shown in previous research, social interaction in computer mediated
environments follows non-linear and cyclical patterns, which are
deemed essential to the maintenance of group cohesion and colla-
borative quality (Sudweeks, 2004). However, the specific patterns of
these speech dynamics, among multiple groups and over an extended
time period in different technical and spatial contexts, have not yet
been well studied. Our findings build on this research by providing
micro-level evidence, at the process level, that synchronicity in con-
versational dynamics positively predicts perceived collaboration
quality, an element theoretically important in collaboration theories.

In contrast, turn-taking, an indicator of reciprocity in social inter-
action, was found to be negatively associated with perceived colla-
boration quality. Turn-taking occurs when a participant follows another
participant's conversational turn and is indicative of reciprocal inter-
action (Kisselburgh et al., 2015; Kisselburgh et al., 2014). This finding
contradicts previous results from Curhan and Pentland (2007), where
turn-taking dynamics were positively associated with collaboration
outcomes. One possible explanation of this difference is that the use of
collaborative support tools that allow designers to convey their ideas
materially (i.e., sketching) as well as discursively (i.e., talking) may
change the importance of discourse in idea generation and elaboration,
and its relationship to collaboration quality. This result suggests the
need to provide training for engineering designers in attending to, in-
terpreting, and engaging with teammates verbally, even while inter-
acting materially with multiple material and digital artifacts.

5.2. The role of design context and interaction dynamics in creative fluency

5.2.1. Design context
The spatial and material context variables were found to positively

predict creative fluency, with the skWiki tool and private space contexts
contributing to positive creative fluency. This finding is consistent with
previous research where the use of collaborative support tools and
environmental factors lead to better creative outcomes (Martinez-
Maldonado et al., 2017). We believe the material affordances of the
skWiki tool provide specific advantages by encouraging designers to
examine and elaborate others’ ideas and sketches to generate new de-
sign ideas. Additionally, the skWiki platform supports parallel use of
materials so that team members can view and edit multiple ideas si-
multaneously, thereby facilitating more fluent generation of design
ideas. This is consistent with previous findings where the use of

collaborative multi-touch tools helped designers to share digital re-
presentations and engage in the co-construction of design ideas
(Martinez-Maldonado et al., 2017). In contrast, students using paper
sketching tools may focus more individually on their own sketches,
which may replicate ideas being sketched by others. Thus, the finding
that the material context positively predicts creative fluency may arise
from the fact that the skWiki tool provides a shared creative space
where team members scaffold each other's ideation and design process.

Similarly, because of the differences in technological affordances of
sketching and sharing, participants in the skWiki tool condition did not
have to make additional efforts to present their ideas to others or check
if their ideas were accepted by other members (Zhao et al., 2014),
whereas participants sketching on paper relied upon verbal interaction
to present and share their design ideas with the group. In addition,
paper sketches were constrained in the ability to be shared and si-
multaneously edited by others, thereby creating a material bottleneck
that could restrict elaboration and subsequent generation of ideas
(Chandrasegaran et al., 2014).

Thus, the skWiki collaborative support tool facilitates a more par-
allel, versus sequential, processing and generation of design ideas. It is
also possible that the skWiki tool facilitates creative fluency because the
platform allows team members to easily share and build upon ideas
created by all members without relying on their ability to verbally
persuade the acceptance of their ideas (e.g., being an effective and
persuasive communicator to help the team to see the value of the idea).
Thus, technology-enhanced sketching environments may broaden op-
portunities for both implicit (visual) and explicit (verbal) sharing and
adopting of ideas in design settings, thus promoting creative outcomes.

The private spatial context was more beneficial for creative fluency
than the commons area. This finding is consistent with previous re-
search that identified physical arrangements in learning environments
as influential for performance (Roth et al., 1999). Also important is that
the participants in this study primarily remained seated during the
design session, whereas students in previous studies were engaged in
tasks that involved movement in spaces around focal stations
(Roth et al., 1999; Leander et al., 2010). Despite the possibility that
design processes with limited motion in space may restrict the impact of
the physical arrangements and environment of collaborative design
teams, spatial context was still an important predictive factor. There-
fore, in future studies we will examine design spaces and tasks that
involve broader movement around and interaction with different types
of spatial environments to examine in more depth the influence of
spatial contexts.

5.2.2. Interaction dynamics
Our results indicate that turn-taking, an indicator of reciprocity in

social interaction, was significantly and positively associated with
creative fluency. This finding is consistent with previous research in-
dicating that turn-taking provides confirmation of response during in-
teraction, leading to performance benefits (Olguin and Pentland, 2010).

However, levels of synchrony or entrainment (cyclic index and
speech overlaps) were found to be negatively associated with creative
fluency. This finding provides empirical evidence, at the process level,
that synchronous interaction influences idea generation and elabora-
tion, a construct theoretically important in both creativity and colla-
boration theories. However, that higher levels of synchrony were as-
sociated with less fluency in idea generation contradicts previous
findings suggesting synchrony benefits performance (Olguin and
Pentland, 2010).

The difference between our findings and those of previous studies
can be attributed to the variations in design tasks. While previous
studies investigated collaborative tasks that did not include material
activities such as sketching (Olguin and Pentland, 2010), the design
tasks in the current study required participants to transition between
visual and verbal forms of discourse. We know that engineering design
teams rely on both verbal and non-verbal discourses to construct and
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share design ideas (Ariff et al., 2012; Purcell and Gero, 1998; Reid and
Reed, 2005). As a result, participants who are more verbally engaged
(and synchronous) may be less likely to be materially engaged in gen-
erating sketches. However, it is possible that creativity is enhanced
through team synchronicity in ways other than fluency in idea gen-
eration. For example, positive social affect has been found to be posi-
tively related to creative thoughts in self-reported daily personal nar-
ratives (Amabile et al., 2005). Thus, it is possible that synchronicity
may have led to changes in the participants’ internal creative thought
processes rather than externalized creative productions. Therefore, we
posit that this finding does not suggest that higher synchrony in con-
versation dynamics are negative factors in creative design performance.
Rather, this finding implies the need to consider the challenges posed
by multimodal information that are specific to collaborative design
tasks, as well as the need to provide training for engineering students to
adjust to the demands from both verbal and non-verbal information
representations.

Another potential explanation for this difference in finding is that
while previous studies focused on collaboration in traditional pen-and-
paper settings, the current study included a collaborative design tablet
for sketching. It is possible that while working on tablets, students’
attention to sketching on new technology platforms and attending to
synchronize with others’ comments competes for cognitive load and
impedes design sketching performance (Kreijns et al., 2002). For ex-
ample, there are challenges in showing affirmative signals of openness
to others’ ideas in face-to-face computer collaborative settings, which
can lead to the suppression of innovative ideas (Thompson and
Lordan, 1999). As a result, participants engaged in high verbal syn-
chrony might have felt diverted rather than scaffolded in meaning
construction and failed to execute the ideas through sketching, thereby
lowering the quantity of sketched ideas. Researchers have proposed
potential ways to address such challenges in computer-supported col-
laborative settings, including providing scripted interaction and other
training strategies to promote social interaction quality (Fischer et al.,
2007; Adamson et al., 2013). Our finding suggests the need to explicitly
instruct designers in appropriate ways to exhibit supporting attitudes
and provide effective scaffolding towards group members.

In summary, this study showed that social interaction dynamics are
significant predictors of creative collaborative outcomes across dif-
ferent material and spatial contexts in engineering design. These find-
ings highlight the important role of social interaction dynamics in
collaborative engineering design settings, where students simulta-
neously engage with both verbal interaction and non-verbal interac-
tions such as sketching to build design ideas.

At the same time, the differential findings regarding social inter-
action dynamics, such as reciprocity being positively associated with
creative fluency but negatively associated with collaboration quality,
and synchrony being positively associated with collaboration quality,
cautions against a series of “whole part” notions that all social inter-
action dynamics are positive contributors to creative collaboration and
that team members should be encouraged to be active participants in
verbal interaction regardless of the purpose and context.

Findings from the current study are especially meaningful to
learning in material-rich contexts such as engineering and technology,
where meaning is embedded within and constructed through interac-
tion with both human agents as well as material artifacts. Developing
model interaction and collaborative learning practices within such
hybrid multi-modal and technology rich environments requires a con-
sideration of the impact of social interaction dynamics that are specific
to engineering design settings. In these cases, rather than scripting in-
teraction towards more frequent turn taking dynamics, the more ben-
eficial interaction dynamics may be oriented towards fostering an op-
timal negotiation of balancing the verbal and visual elements of design,
or simply talking and sketching behaviors.

6. Limitations

The study has limitations in sample size and population. The study
was integrated as part of an engineering design class where the students
were included as study participants. Although this sample is reflective
of students who have prior knowledge in engineering design and
sketching, the sample may pose challenges in regards to sample size and
the generalizability of the results to other populations, such as design
professionals. However, the use of partial least squares regression has
been found to be effective in identifying predictive models where such
traditional linear regression methods assumptions as sample size and
collinearity are violated, which provides confidence that the findings
from this study have practical significance in the real-world application.
The implementation of the study also contributed to the limitations. In
two of the four experiment conditions, students were asked to work on
touch-based tablets to sketch design ideas. Considering that students
are traditionally trained in paper sketching platforms, the digital plat-
form may pose challenges for some students, despite the training they
received prior to the experiment sessions. These limitations indicate
that cautions must be taken while generalizing the findings.

7. Conclusion and future work

This study established two models for predicting collaboration
quality and creative fluency outcomes based upon material and spatial
context variables, as well as social interaction dynamics. The use of
continuous real-time sociometric measures introduces an innovative
approach to examine the interaction processes of engineering teams and
their influence on collaborative learning outcomes. We see a natural
extension of this study into future research efforts from at least three
aspects, including: (1) designing technology-rich environments to fa-
cilitate creative collaborative design based on our findings of the key
predictors of collaboration quality and creative fluency; (2) using
controlled experiments to identify causal relations between the pre-
dictors and the collaborative design outcomes; and (3) studying the
interaction of verbal and non-verbal interaction dynamics during col-
laborative design.

Regarding designing technology-rich environments that are suitable
for collaborative design, the next step extending from the current study
would be to involve professional designers in authentic spatial and
material contexts to provide real-time feedback for design teams based
on patterns in social interaction dynamics. For example, using wearable
technology and mobile applications, we can collect real-time data on
conversational turn taking dynamics, and generate visual feedback on
mobile display platforms to periodically inform team members about
adjusting their conversation dynamics to be more conducive to design
collaboration outcomes. This kind of intervention has been previously
suggested and examined for group dynamics in organizational settings
(Pentland, 2012).

Based upon the findings from our predictive models in this study,
we also intend to conduct experimental studies to identify causal re-
lationships between conversation dynamics and collaborative design
outcomes. Specifically, by manipulating the social dynamic frequencies
in design teams using technology-enabled real-time interaction med-
iators (e.g., encourage or redirect students’ talk based on the interaction
patterns), we can begin to identify causal relationships between the
different types of social interaction dynamics and creative collaboration
outcomes in design teams.

The findings of this study provide an important contribution to re-
search in the field of computer-supported collaborative design, by fo-
cusing on process-level dynamics of collaborative teams, allowing us to
extend understanding of the emergence and development of learning in
engineering design learning teams situated in particular contexts. This
finding has implications for understanding the predictive role of con-
versation dynamics in successful collaborative practices in engineering
design learning, across spatial and material contexts. Specifically,
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computer-supported collaborative environments in engineering design
contexts demand special consideration of the unique interaction pat-
terns required during design collaboration, where participants must
contend with sharing design knowledge both verbally and visually.
Understanding how to balance and negotiate the multiple demands of
collaborative sharing modes in order to maximize collaboration quality
or creative fluency outcomes, extends our theoretical and practical
understanding of group creativity and collaborative design. Ultimately,
these findings can lead researchers to identify optimal balance in col-
laborative dynamics that are conducive to engineering design out-
comes.
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