Contents lists available at ScienceDirect

International Journal of Human-Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Using social interaction trace data and context to predict collaboration quality and creative fluency in collaborative design learning environments

Ninger Zhoua,⁎, Lorraine Kisselburghb, Senthil Chandrasegaranc, S. Karthik Badamd, Niklas Elmqvistd, Karthik Ramani

department of education, University of California, Irvine, CA, United States
bBurton Morgan Center for Entrepreneurship, Purdue University, West Lafayette, IN, United States
cDepartment of Computer Science, University of California, Davis, CA, United States
dDepartment of Computer Science, University of Maryland, College Park, MD, United States
eSchool of Mechanical Engineering, Purdue University, West Lafayette, IN, United States

ARTICLE INFO

Keywords:
Computer-supported collaborative design
Situative learning theory
Conversation dynamics
Material context
Spatial context
Wearable sensors

ABSTRACT

Engineering design typically occurs as a collaborative process situated in specific context such as computer-supported environments, however there is limited research examining the dynamics of design collaboration in specific contexts. In this study, drawing from situative learning theory, we developed two analytic lenses to broaden theoretical insights into collaborative design practices in computer-supported environments: (a) the role of spatial and material context, and (b) the role of social interactions. We randomly assigned participants to four conditions varying the material context (paper vs. tablet sketching tools) and spatial environment (private room vs. commons area) as they worked collaboratively to generate ideas for a toy design task. We used wearable sociometric badges to automatically and unobtrusively collect social interaction data. Using partial least squares regression, we generated two predictive models for collaboration quality and creative fluency. We found that context matters materially to perceptions of collaboration, where those using collaboration-support tools perceived higher quality collaboration. But context matters spatially to creativity, and those situated in private spaces are more fluent in generating ideas than those in commons areas. We also found that interaction dynamics differ: synchronous interaction is important to quality collaboration, but reciprocal interaction is important to creative fluency. These findings provide important insights into the processual factors in collaborative design in computer-supported environments, and the predictive role of context and conversation dynamics. We discuss the theoretical contributions to computer-supported collaborative design, the methodological contributions of wearable sensor tools, and the practical contributions to structuring computer-supported environments for engineering design practice.

One of the ultimate goals of engineering education is to prepare engineers to think and function effectively as part of a team, while achieving high levels of collaboration and creative fluency in collaborative design settings (ABET, 2014; Détienne, Baker, Vanhille, & Mounenot, 2017; Dym et al., 2005). High quality collaboration, defined as effective interaction in groups that foster interdependent action and equitable status (Lewis, 2006), and creative fluency, defined as the ability to generate a large number of novel ideas (Dumas, Schmidt, & Alexander, 2016; Guilford, 1967), are important goals for engineering learning but also crucial to the efficiency of design cycles in engineering practice (Charyton and Merrill, 2009). Despite its importance, learning to design both creatively and collaboratively has been particularly challenging due to the multimodal nature of collaborative engineering design, where engineers interact both verbally, as well as through visual and material cues embodied in design practices (Reid and Reed, 2005). These challenges stemming from the multimodality nature of collaborative design have been further complicated by recent advancements in computer-supported design tools (Cheng, Li, Sun, & Huang, 2016; Shen, Hao, & Li, 2008). Therefore, to promote positive outcomes in collaborative engineering design, it is imperative to understand social interaction behaviors in the design process as they are situated in particular spatial and material contexts. However, understanding interaction dynamics in computer-supported design environments has heretofore been undermined by a lack of effective methodological tools (Brisco, Whitfield, & Grierson, 2018; Fischer et al., 2016; Stahl et al., 2006; Vuletic et al., 2018).

⁎ Corresponding author.
E-mail address: znenancy@gmail.com (N. Zhou).

https://doi.org/10.1016/j.ijhcs.2019.102378
Received 16 January 2019; Received in revised form 9 September 2019; Accepted 20 November 2019
Available online 24 November 2019
1071-5819/ © 2019 Elsevier Ltd. All rights reserved.
In addition, the situative nature of collaborative engineering design adds to the complexity of studying interaction dynamics. Research has demonstrated that collaborative design practices are highly influenced by the environments in which they are embedded, including the spatial context within which they interact (e.g., rooms, furniture, walls, traffic patterns, noise, and lighting) as well as the material artifacts (i.e., design tools and medium) used during the design process (Dul and Ceylan, 2011; Gaver, 1996). Studies have indicated that specific characteristics of the physical environment can enhance creative performance (Dul and Ceylan, 2011; 2014), and that material artifacts play an important role in idea representation and collaboration (Johri and Olds, 2011). However, research has not fully addressed the impact of recent advancements in technologically-enhanced design tools such as interactive mobile tablet devices, which provide new material contexts and affordances for brainstorming, sharing, and visually representing ideas during collaborative design (Fischer et al., 2016; Martinez-Maldonado et al., 2017; Palou et al., 2012). Although the mobile tablet platform, characterized by portability, accessibility, and connectivity, is useful for the joint construction of new ideas (Looi et al., 2013), sketching collaboratively on tablets imposes new challenges to engineering design and the study of interaction processes during learning. Considering that researchers have identified strong associations between interaction patterns and collaborative engineering design outcomes (Bucciarelli, 1994; Terenzini et al., 2001), there is a critical need to examine the relationships between social interaction processes and collaborative design outcomes in different spatial and material contexts.

In light of the challenges to studying interaction dynamics in multimodal and context-rich engineering design settings, and the need to better understand the dynamic processes of collaborative design in computer-supported environments, researchers have looked to recent developments in wearable and sensor technologies. One of the promising tools that can generate real-time trace data on various social interaction dynamics are wearable sociometric sensors, which have been used to study the relationship between interaction dynamics and group intelligence, as well as performance in organizational and academic settings (Woodley et al., 2010). In this study, we adopt wearable sensor technologies to unobtrusively collect social interaction data and identify key factors that are predictive of two indicators of successful collaboration design outcomes: Collaboration Quality and Creative Fluency. In doing so, we contribute to the field of situative cognition and human behavior with computers by introducing a new method for data collection and analysis in collaborative design groups, and we extend theoretical understanding of the underlying relationship between social interaction dynamics and collaborative engineering design outcomes. Furthermore, our findings will have practical implications in revealing the interaction dynamics that are conducive to high quality creative collaborative design performance in computer-supported environments.

1. Theoretical background

1.1. Collaboration quality and creative fluency in engineering design

Creativity has become a critical factor in engineering design, and the need to nurture creativity in engineers has become more evident as both industry and academic settings increasingly demand innovation throughout the engineering design process (Détienne et al., 2017; Dumas et al., 2016; Howard et al., 2008). We define creativity in design groups as the generation of novel ideas by two or more interdependent members who can influence each other during group interaction (Amabile, 1996; Paulus, 2000). Classically, there are four key signatures of creativity: fluency, flexibility, originality, and elaboration of ideas generated by individuals involved in an activity. Fluency is the ability to generate a large number of ideas, flexibility is the ability to generate a wide variety of ideas, originality is the production of novel ideas, and elaboration is the process of building upon ideas proposed by others (Guilford, 1967; Shah et al., 2003). Specific to the field of engineering, creativity is viewed as the creation of novel and useful products, processes, or new artifacts and ideas (Thompson and Lordan, 1999).

In this study, we focus on the fluency dimension of creativity and engage students in a group task where they brainstorm toy design ideas in a process that encourages the generation of as many ideas as possible without reflecting on originality and flexibility. Previous studies on creativity in engineering education have used similar methods to examine creative fluency by enumerating the quantity of new sketches produced by students in design tasks (Charyton and Merrill, 2009). In most cases, creativity is studied as the production of solutions or artifacts while working independently (Charyton and Merrill, 2009). The current study differs from previous research in that we evaluate creative fluency in collaborative contexts in order to gain insight into influential factors for collaborative creative fluency.

1.2. Situative theories of collaborative design learning

Johri and Olds (2011) discuss the central construct of situativity, or learning as a situated activity, and its importance for learning in engineering design. The situative perspective views knowledge as socially constructed and constituted within a specific context (Clancey, 2009), with learning occurring through active participation in a community of practice (Lave, 1991; Lave and Wenger, 1991). Specifically, learning is theorized to arise through dynamic construction of creative work, within a specific context, and through active engagement and participation in meaningful practices (Sawyer and Greeno, 2009).

The situative perspective draws from theories of situated cognition (Brown et al., 1989; Greeno, 1989), situated action (Norman, 1993; Suchman, 1987, 2007), and situated interaction (Dourish, 2001). However, situative theories of learning differ from the behaviorist and cognitive approaches by viewing knowledge as “distributed among people and their environments, including objects, artifacts, tools, books, and the communities of which they are a part” (Greeno et al., 1996, p. 17). Within this perspective, learning is theorized to be constituted through sociomaterial practices that are constrained and enabled by the affordances of the material and spatial environments (situated learning theory; Sørensen, 2009).

To broaden theoretical insights into engineering and design learning, Johri & Olds (2011) introduced analytic lenses, including (a) the social and material context, and (b) the role of activities and interactions. In the following sections, we draw from these analytic lenses to frame our study and review the literature salient to collaborative design learning in computer-supported environments.

1.2.1. The material and spatial context for engineering design

Engineering design learning is situative and embedded within the material and spatial environment (Johri and Olds, 2011; de Vries and Masclet, 2013). In the material context of engineering design, the influence of material tools on human cognition is particularly salient, and design learning often requires students to develop a hybrid posture through their bodies’ interactions with a variety of material tools (Sørensen, 2009). For example, the emergence of mobile touch-based devices has enriched the materiality of engineering design learning by introducing touch-based sketch and design applications to improve the affordances provided by traditional pen and paper platforms (Shen et al., 2008). However, while engaging in collaborative design on mobile touch-based platforms, design students are expected to interact with and interpret digital material representations (e.g., design sketches), as well as the digital cues generated by other team members (Sørensen, 2009). In our current study, using the digital sketches created on the tablets as a point of departure, students engaged in social interactions to construct meaning and design ideas collaboratively. Such dependence of the social interaction dynamics on digital materials
and cues in engineering design settings invites investigation into the affordances and interaction patterns supported by digital platforms. Therefore, we examine the role of the sociomaterial context in collaborative design performance of engineering design teams.

Collaborative engineering design is also situated within a variety of spatial contexts (e.g., formal and informal learning spaces, structured or flexible physical layouts, private or public settings, and with few or many environmental distractions), each of which are capable of facilitating or inhibiting certain interactions or behaviors (Jordan and Henderson, 1995). Previous research has shown that in collaborative settings, interpretation of the spatial context (e.g., the perception of the space, the quality of lighting, the actions that are afforded) influences each student's behaviors, social interactions, learning, as well as collaborative outcomes (Baron, 2006; Leander, Phillips & Taylor, 2010). For example, the physical arrangements in learning spaces have been found to mediate students' level of participation in social interactions (Roth et al., 1999), and office layouts influence organizational culture and job satisfaction (Zerella, von Treuer, & Albrecht, 2017). However, research on the role of spatial contexts in collaborative engineering design has been limited. In this study, we explore whether spatial context is an important predictor of collaborative design performance.

1.2.2. Social interaction in collaborative engineering design

In the past decade, educators and researchers have strived to help engineering students gain social interaction skills in collaborative learning environments, which are transferrable to industry climates that rely on effective social interaction to produce desirable design outcomes (Bucciarelly, 1994; Pahl et al., 2007). Social interaction has a critical role in collaborative design learning because engineering students can provide scaffolding for each other to build design knowledge and enhance the quality of design outcomes. For example, research has found that students perform significantly better in engineering design and problem solving when they learn through collaborative tasks than through traditional lecture/discussion formats (Terenzini et al., 2001). Therefore, it is important to engage engineering students in collaborative design settings and help them develop social interaction patterns that are conducive to collaborative outcomes.

In efforts to engage students in collaborative design, advances in collaborative technologies, including applications, devices, and infrastructures, have created new affordances for social interaction. In comparison with the traditional medium of paper and pen for early stage design sketching, computer-based interfaces allow engineering students to dynamically represent design ideas (Stahl et al., 2006) and efficiently communicate their ideas in a tangible medium (Dillenbourg, 2005). Functions such as real-time synchronization of sketches across devices can also augment collaborative meaning construction by allowing students to access other team members' sketches as a scaffold in the construction of new ideas. For instance, sketching on tablets and sharing the screen with others can create a material space in which teams of engineers explicitly represent their design knowledge and ideas, and visualize them in a collaborative space that facilitates design processes. For example, in our earlier work, collaborative design systems enable learners to generate and share visual representations of design ideas through the use of collaborative design tablets and shared design walls (Chandrasegaran et al., 2014; Zhao et al., 2014; Martinez-Maldonado et al., 2017).

In both traditional paper-based and computer-supported collaborative environments, previous research has indicated that engineering students need to attend to both the visual cues such as design sketches, as well as social interaction dynamics among collaborators, which has created challenges to design outcomes (Reid & Reed, 2007). However, there is a gap in research in understanding parallel negotiations of verbal and visual design ideas, and specifically understanding the micro-level interaction dynamics in both paper-based and computer-supported design environments (Martinez-Maldonado et al., 2017). Understanding the dynamic processes of design practice can help to foster positive interaction dynamics that benefit group processes as well as quality outcomes in collaborative design (Olguin and Pentland, 2010; Pentland, 2012).

1.3. Sociometrics as predictors of collaborative outcomes

In collaborative engineering design tasks, interaction dynamics play a central role in group work (Breton et al., 1996). In the past, researchers have used conversation analysis of groups in order to identify how understanding and meaning is constructed through the talk of participants (Koschmann, 2013). Alternatively, discourse analysis has been used to analyze “both macro (conversational turns) and micro levels (statement units)” of discourse (Jeong, 2013, p. 176). However, these analytic methods are labor-intensive and often confined to small segments of text, requiring researchers to manually peruse transcripts, develop coding schemes, train coders, and assure inter-rater reliability among multiple coders. As a result, the time required for such methods has been a hindrance for researchers analyzing interaction discourse over longer time periods, or with larger sets of data. Furthermore, obtrusive conversation recording puts the pressure of social desirability on participants and can influence the validity of data when participants avoid or increase certain interactions due to social desirability (Guest et al., 2006). Finally, researchers have acknowledged the difficulty in studying social interaction in non-traditional settings (i.e., computer-supported) or long periods of time (Looi et al., 2013).

Recent advances in computational approaches have produced innovative methods to ameliorate the challenges in studying social interaction dynamics, including measuring brain waves, physiological indicators, and capturing data on body, postural, and speech activity (Delarche et al., 2012). One such approach uses wearable sociometric devices to unobtrusively collect real-time data on speech and behavioral patterns of groups (Olguin and Pentland, 2008). Using such devices, researchers can quantify interaction dynamics in collaborative teams using sociometric data, without recording conversations or conducting verbal analysis. In recent research, sociometric data have been found to be important indicators of collaborative performance in a variety of contexts (Kim et al., 2008). For example, successful teams in a business plan development task outperformed less successful teams on several sociometric measures, including speech participation and energetic body movement (Olguin and Pentland, 2010). Additionally, researchers have demonstrated that sociometric measures can predict creativity in teams. For example, Triparthi and Burleson (2012) found that body movement and face-to-face interaction measured by sociometric badges over the course of multiple days strongly predicted creative outcomes for teams working on software coding projects. While these empirical studies demonstrate the promise of using sociometric trace data to predict creative and collaborative outcomes in teams, none have yet examined the micro-level interactional dynamics of groups engaged in collaborative engineering design learning.

In summary, the importance of spatial and material context as well as social interaction dynamics, has been demonstrated in collaborative settings. However, there is a dearth of knowledge about the relationships between the context, interaction dynamics and collaborative design outcomes in design learning. Furthermore, there is little empirical evidence regarding the dynamic relationship between interaction processes and creative collaborative outcomes, an area that could benefit from the use of wearable data collection tools. Extending research in these domains provides important contributions to theoretical development in situative learning theory, particularly in the unique context of engineering design. Therefore, the research questions we investigate in this study include:

- What are the roles of spatial and material context and social interaction dynamics in predicting collaboration quality in engineering design teams?
interaction dynamics in predicting creative fluency in engineering design teams?

2. Methods

This study was conducted as part of a larger project that developed a tablet-based collaborative engineering design tool called skWiki (Chandrasegaran et al., 2014; Zhao et al., 2014), described below. In this study, we used a 2 × 2 design to examine whether material contexts (paper vs. skWiki), spatial contexts (Commons vs. Private room), and social interaction dynamics can predict collaborative quality and creative fluency in design teams.

2.1. Participants

Participants were sixteen graduate students (14 men and 2 women), ranging in age from 21 to 37 years (\(M = 25.25, SD = 3.92 \)), enrolled in a graduate level mechanical engineering design course. Because industry practices often involve engineers from a wide range of background and experience working on the same design tasks, we also engaged participants from diverse backgrounds in this study. All the participants are 1st to 3rd year graduate students in engineering majors, with an average of 2.19 years (SD = 0.83) in their program. The average rating of the participants’ self-report of communication skills is 3.44 (SD = 1.26) on a 5-point Likert scale. The participants were randomly assigned to the experiment conditions.

Prior to the study, participants learned fundamental techniques of engineering design, including ideation techniques such as brainstorming, brain sketching (van der Lugt, 2002), SCAMPER, “combining things” (Michalko, 2006), and how to understand the play value of products (Kudrowitz and Wallace, 2010). All participants were skilled in visualizing design ideas with prior training in sketching as a means for visual thinking (Taborda et al., 2012).

2.2. Design context

The design teams were assigned to work on collaborative design tasks in one of four types of environments that varied spatially and materially (see Fig. 1).

2.2.1. Spatial context

The design teams were assigned to work in one of the two spatial environments that simulated informal and formal contexts. Prior research has indicated that informal learning spaces may differently impact student outcomes compared to formal settings (Gross, 2011).

2.2.1.1. Commons area environment

Half of the teams were assigned to the commons area environment, which simulated informal working environments that are rich in ambient noise. Tables and chairs were arranged around a large open area of a building, near an elevator, offices, an atrium, and informal couch seating. This setting was selected to resemble open and informal learning spaces.

2.2.1.2. Private room environment

The remaining teams were assigned to work in a more formal setting—a private conference room furnished with a conference table and chairs. This setting was used to simulate working environments that are formal, private, and have less ambient noise.

2.2.2. Material context

Teams were assigned to use one of two sketching tools: paper or the skWiki sketching application on touch-based tablet devices.

2.2.2.1. Paper sketching tool

In the paper sketching context, participants created design sketches using paper and pen tools. Participants were given access to a stack of paper and various pens to use during sketching. During the design process, to share their sketches with team members, participants either held up the paper or passed the paper to others to visually communicate their idea. This paper sketching condition was set up to resemble the early-stage group engineering design practices that take place in many academic and industry engineering settings.

2.2.2.2. SkWiki sketching tool

In previous work, researchers have developed and studied the skWiki collaborative sketching environment, an open source application designed to facilitate sharing and elaboration of visually represented (i.e., sketched) ideas during collaborative design sessions. As shown in Fig. 2, the skWiki interface is a web-based application on touch-based tablets (i.e., iPads). Using capacitive-touch stylus, users can create design sketches on the skWiki interface and share the sketches with other team members through a shared space enabled by a back-end server, which stores and synchronizes the design sketches generated by all team members. This shared space is shown to the user via the Path Viewer, which records the progression of ideas and modifications made to shared sketches. Any team member can select from the shared sketches and modify or elaborate designs on their individual sketching tablet. For example, when a designer sees a design idea sketched by another team member, the designer can tap on the sketch through the Path Viewer and elaborate or edit the sketch in the Canvas window to converge to or diverge from specific design ideas. Thus, elaboration and manipulation

Fig. 1. Collaborative teams during a toy design session. Clockwise from top left: 1) students use skWiki design tablets in Private room; 2) students use skWiki design tablets in Commons area; 3) students use pen and paper in Commons area; 4) students use pen and paper in Private room.
of shared representations is readily accessible, and the affordances provided by the skWiki sketching tool have the potential of enhancing collaboration outcomes (Chandrasegaran et al., 2014).

2.3. Measures

2.3.1. Social interaction dynamics

In order to gauge participants interaction dynamics during the collaborative design sessions, we used wearable sociometric sensors to capture real-time data on a set of non-linguistic social signals (Olguín et al., 2009). The sensors are encased in a rectangular plastic badge, slightly smaller than an index card and about half an inch thick, and worn around the neck. The badges include a combination of sensors technologies including Bluetooth and infrared sensors, an accelerometer, and microphones, to capture a number of variables about speech and conversation dynamics, body movement and posture, and social proximity. The built-in algorithms allowed the sensors to calculate data on a series of sociometric measures that allow us to quantify social interaction dynamics. In this study, we focused on the four measures of conversation dynamics: Turn-Taking, Successful Interrupts, and Speech Overlaps (generated directly from the sociometric sensors), as well as Cyclic Index, a measure calculated from time series analysis of speech participation data. We define and operationalize these measures in Table 1.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Definitions</th>
<th>Operationalization</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-taking</td>
<td>The number of turns speaker A took after another speaker B; the italicized text is an instance of speaker A taking a turn in response to other speakers.</td>
<td>Speaker B: It is just like a board game. Speaker A: ‘Yes, and we can add real action figures in.’</td>
<td>Turn-taking is recorded as a total frequency number for each participant during the entire session</td>
</tr>
<tr>
<td>Successful interrupts</td>
<td>A successful interruption is defined as speaker A starting to speak while speaker B is speaking, resulting in B falling silent while A continues to speak; the italicized text is an example of speaker A successfully interrupted speaker B in the middle of speech.</td>
<td>Speaker B: ‘I think we can also add a ladder in the 3-D board game, so that…’ Speaker A: ‘Oh, then the action figures can climb up the ladders.’</td>
<td>Successful interrupts is recorded as a total frequency number for each participant during the entire session</td>
</tr>
<tr>
<td>Speech overlap</td>
<td>Overlap occurs when one participant speaks at the same time as another participant in the group. The duration of speech that speaker A and B uttered simultaneously.</td>
<td>Speaker A: ‘This looks great. So we choose this design as our final design.’ Speaker B: (simultaneously starting speaking just as A finished the word “This”) ‘I really like this idea a lot. The average amount of variance explained by the four largest and significant periodogram components in the four sets of 15-minute segments of each participant’s speech participation data.</td>
<td>Speech overlap is recorded as a total frequency number for each participant during the entire session</td>
</tr>
<tr>
<td>Cyclic index</td>
<td>Cyclic patterns of how speakers engage in entrained and synchronized social interaction rhythms. Larger cyclic indices imply higher levels of entrainment among speakers.</td>
<td></td>
<td>Cyclic index is obtained from time series analysis of the speech participation data, which is recorded as the average per second ratio of a participant’s speech activity to the total amount of speech in the group.</td>
</tr>
</tbody>
</table>

2.3.2. Collaboration quality

To assess the quality of collaboration perceived by team members, we used a 12-item Likert-type scale, with ratings ranging from 1 (inadequate) to 5 (excellent) for each item. The items were adapted from a scale for collaboration readiness in scientific teams (Mäße et al., 2008), and asked students about the ease of sharing ideas, communicating, accommodating different styles, resolving conflicts, and productivity during the session. This survey was administered at the end of the design session. The total score of the Collaboration Quality scale, with a range from 12 to 60 points, was used in the analysis. The reliability of the scale reached $\alpha = 0.90$.

2.3.3. Flow

An 8-item scale was created to assess task engagement, or creative flow, derived from Arici (2008), Csikszentmihalyi (1990) defines flow as an experience during the high-challenge and high-skill moments while performing autotelic or intrinsically-motivated tasks (Nakamura and Csikszentmihalyi, 2002). Drawing from extant literature on task engagement (Deater-Deckard et al., 2013; Skinner and Belmont, 1993), the flow scale included three dimensions: cognitive (e.g., whether the activity was challenging), behavioral (e.g., whether they were actively involved), and affective (e.g., whether participants enjoyed the task, found it exciting). Items were measured on a 5-point Likert scale ranging from 1 (not at all) to 5 (very much) and administered at two time points: once in the middle and once at the end of the design session. The average of the flow total scores collected at the two time points, which ranged from 8 to 40 points, was used in the analysis. The reliability of the scale reached $\alpha = 0.91$.

2.3.4. Creative fluency

Creativity in divergent and idea generation tasks is often defined as the fluency or the number of new ideas generated by individuals or teams, and higher fluency is associated with higher creativity outcomes (Charyton and Merril, 2009; Guilford, 1967; Paulus, 2000). In this study, we operationalized creative fluency as the total number of new sketches created by each participant. Based on previous work on creativity in engineering design (Charyton et al., 2008), a new sketch was counted towards an individual’s measure of creative fluency when it showed originality in design ideas. For example, a new sketch that adds two lines to elaborate the details of a toy car was not counted as a new sketch. In contrast, if a sketch changed the function of the toy car...
Participants were randomly assigned to work on design tasks in one of the four Material x Spatial conditions: skWiki + Commons, Paper + Commons, skWiki + Private, Paper + Private (The descriptions of the conditions are presented in Table 2), and wore sociometric badges throughout the session. During the design session, each team was instructed to select a toy and identify the play value of the toy using the play pyramid and scales of play method (Kudrowitz and Wallace, 2010). All teams participated at the same time, thereby controlling variability in the environment. The play value is a concept that helps designers to understand and envision how users may interact with toys. The participants learned about these concepts in lectures prior to the study and were given reference pages describing the play pyramid and scales of play during the task. After determining the play value, participants were instructed to redesign the toy to change its play value so that users could play with the toys in a different manner. The redesign process required participants to brainstorm in groups and use engineering design techniques such as SCAMPER as well as “crossing products” (see Michalko, 2006). Each participant was asked to sketch their design ideas and collaborate with the team to create a final design idea.

In the Paper teams, participants drew their sketches with pen and paper. Each participant was provided with sheets of numbered papers for identification, and a box of multicolored fine-tipped markers. To simulate paper-based collaborative design sessions in real settings, participants were instructed to collaboratively design the toy, but were not given explicit instructions regarding how to share their design sketches with one another. Thus, participants decided how they collaborated in the group.

In the skWiki teams, participants used styluses to sketch on the touch-based tablets using the skWiki application that allowed synchronization of design sketches across the team (More information about the skWiki tool is presented in Material Context under the Design Context section). Using the skWiki application interface, participants could view and also build upon or modify a teammate’s sketches and generate new design ideas. Due to the novelty of the skWiki application, participants in this condition were given a brief 10 min training session on the use of the skWiki tool prior to the study.

Finally, participants in all four conditions selected the most promising design idea through discussion. The process of generating multiple ideas and then selecting the most promising ideas combining both creative and analytical processes, known as Laseau’s funnel (Laseau, 1980), was previously introduced to the students through lectures. The design session lasted for approximately 60 min. At the end of the session, the participants completed the collaboration quality scale and the flow scale. The flow scale was also administered mid-session to capture fluctuations in the participants’ perception of flow.

Table 2
Description of the four design conditions.

<table>
<thead>
<tr>
<th>Material Context</th>
<th>Spatial Context</th>
<th>Private Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>skWiki</td>
<td>Participants worked in groups in an open commons area and each student used a stylus to sketch their design ideas or build on others’ ideas on the skWiki application.</td>
<td>Participants worked in groups in a closed conference room and each student used a stylus to sketch their design ideas or build on others’ ideas on the skWiki application.</td>
</tr>
<tr>
<td>Paper</td>
<td>Participants worked in groups in an open commons area and each student used pencils to sketch their design ideas or build on others’ ideas on paper.</td>
<td>Participants worked in groups in a closed conference room and each student used pencils to sketch their design ideas or build on others’ ideas on paper.</td>
</tr>
</tbody>
</table>

3. Data analysis

3.1. Processing social interaction dynamics data

Our research questions concern the roles of the social interaction dynamics in predicting collaboration quality and creative fluency. To obtain the social interaction dynamics data, we first extracted the total frequency count data on Turn-taking, Successful Interrupts, and Speech Overlaps from the sociometric sensors. We also extracted the second-by-second speech participation data for each participant from the sociometric sensors and conducted time series analysis to calculate the cyclic index.

3.1.1. Time series analysis and cyclic index

Previous research has found that speech participation in social interaction tends to show periodic rather than linear patterns, where speakers may coordinate and entrain each other’s vocal activity to achieve synchronized rhythms (Chapple, 1970; Warner, 1992). Such cyclicity has been suggested as a fundamental organizing principle of social interaction (Chapple & Lui, 1976). Using time series methods, a spectral analysis in the form of periodogram analysis can identify the cyclic tendencies in such time series data and reveal patterns in how speakers engage in entrained and synchronized social interaction rhythms.

Conducting spectral analysis on speech participation time series data has been used widely in social interaction research (McGarva & Warner, 2003; Warner, 1992). For example, Warner (1992) conducted periodogram analysis on the speech participation time series data during a 40-minute conversation session, and calculated an index of cyclic patterns. Warner found that the cyclic index in the later 10-minute segment was significantly higher than that of the early 10-minute segment, suggesting that the speakers’ interactions become more mutually entrained as interaction progresses. In this study, we draw on this literature on the cyclicity of social interaction and apply the periodogram analysis on speech participation time series data to identify synchronized processes in design teams’ social interaction patterns.

Recall that in our study, speech participation for each participant was recorded on the sociometric sensors as second-by-second time series data. Because previous research suggests that cyclicity in social interaction tends to occur between three to six minutes (Warner, 1992; Warner, Malloy, Schneider, Knoth, & Wilder, 1987), we aggregated the individual participation data into 10-second intervals. Then, following the method used in Warner (1992) for vocal activity time series analysis, we divided the time series data into four 15-minute segments, each consisting of 90 observations ten seconds in length, thus yielding four segments of \(n = 90 \) observations for each participant. Fig. 3 illustrates an example of the raw time series data for the first 15-minute segment of Team F, who used the Private meeting room with the skWiki tool.

Finally, we conducted spectral analysis, in the form of periodogram analysis on each 15-minute segment. The periodogram analysis functions by partitioning the variance in the time series and examining the amount of variance accounted for by each of the N/2 or 45 periodic components. As discussed above, in each 15-minute segment, there are
N = 90 observations, yielding 90/2 = 45 components (Box, Jenkins, & Reinsel, 2013). The 45 periodic components ranged in cycle lengths of 10*(90/i), where 10 is the 10 s interval and i = 1, 2, 3,...,45. Thus, the 45 periodic components corresponded to cycle lengths of 900 s, 450 s, 300 s, 250 s,..., and 20 s (Box et al., 2013). The percentage of variance explained by each periodic component can be calculated by dividing the periodogram value (the pdgm column in Table 3) by the total periodogram value of all periodic components. If the time series data are random or the "white noise" null hypothesis is true, then each periodic component would account for 1/45 or 2.22% of the overall variance of the time series. However, if there are one or more periodic components that account for much larger proportions of the variance, which is the case in this study, the time series can be considered approximately sinusoidal and demonstrating cyclic patterns (Warner, 1992).

To identify the most significant periodic components in the time series, we used Fisher's test (Russell, 1985). According to the Fisher's significance table, at the 0.05 significance level, in time series with 90 observations, the primary or the largest periodic component should account for more than 15% of the variance in the time series, the secondary or the second largest component more than 10%, the tertiary component more than 8%, and the quaternary component more than 7%. The recommended approach for analysis is to include only participants who have at least one significant periodogram component (Warner, 1992). In this study, all participants had at least one significant periodogram components, and therefore all participants were included. Table 3 shows an example of the output from the periodogram analysis for the first 15-minute speech participation data for participant F1. In this example, the periodic components at 70 s explains the highest percentage of variance (pctpdg=28%) and is significant at the 0.05 level, followed by periodic components at 30 s (pctpdg=15%), and 60 s (14%).

Using the methods described in Warner (1992), the Cyclic Index was obtained by first calculating the total amount of variance explained (the pctpdg value in Table 3) by the four largest and significant periodogram components.
To answer the research questions on the role of the material and spatial context, and social interaction dynamics in predicting collaboration quality and creative fluency, we built two models using Partial Least Squares Regression (PLSR). The PLSR method builds regression models to predict the dependent variables (Y) through extracting latent structures from a set of independent variables (X) which are best for explaining X and predicting Y (Abdi, 2010). This method has been found to be especially useful for building predictive models because it extracts (non-observable) latent structures that “collect most of the variation of the real X (observable) variables in such a way that they may also be used to model the Y response (dependent) variables.” (Mateos-Aparicio, 2011, p. 2308). PLSR was originally developed to address research questions during the early stages of theory development, where “low information” in theoretical specification and a limited number of available observations may result in multicollinearity among the independent variables (or more independent variables than observations) (Sosik, Kahai, & Piovoso, 2009; Wold, 2004). Compared to multilinear regression methods, the PLSR method has several advantages in that it values soft distributional assumptions, has lower requirements for sample size, and produces higher accuracy in parameter estimation in studies where large samples are difficult to obtain (Esposito Vinzi, Chin, Henseler, & Wang, 2010). The PLSR method allowed us to explore the relationships between predictors and response variables in our early stage of theory development and overcome the challenges of obtaining large sample sizes in collaborative engineering design settings.

In building the two predictive models for Collaboration Quality and Creative Fluency, we initially selected seven model predictors based upon the literature: Material Context, Spatial Context, Flow, and the four social interaction variables, Turn-taking, Successful Interrupts, Overlaps, and Cyclic Index (Dong et al., 2012; Gaver, 1996; Johri and Olds, 2011; Nakamura and Csikszentmihalyi, 2002; Sadler, Ethier, Gunn, Duong, & Woody, 2009; Warner, 1992). We next examined the distribution of the two response variables, and confirmed that the Collaboration Quality and Creative Fluency variables had symmetric distributions, eliminating the need for data transformation (Mateos-Aparicio, 2011). Regardless, the PLSR still performs scaling and centering for each predictor variable to ensure that the variables have an equal opportunity to influence the model (Sawatsky, Clyde, & Meek, 2015).

Table 4
Descriptive statistics of the predictor and response variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-Taking</td>
<td>1157.44</td>
<td>465.91</td>
</tr>
<tr>
<td>Successful Interrupts</td>
<td>545.00</td>
<td>292.02</td>
</tr>
<tr>
<td>Overlap</td>
<td>1065.78</td>
<td>372.71</td>
</tr>
<tr>
<td>Flow</td>
<td>31.53</td>
<td>6.24</td>
</tr>
<tr>
<td>Cyclic Index (%)</td>
<td>67.75</td>
<td>7.40</td>
</tr>
<tr>
<td>Response Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration Quality</td>
<td>50.06</td>
<td>4.58</td>
</tr>
<tr>
<td>Creative Fluency</td>
<td>3.88</td>
<td>2.28</td>
</tr>
</tbody>
</table>

Note: The predictor variables also include Material Context and Spatial Context, which are categorical and are thus not included in this descriptive statistics table.

components in each 15-minute segment. We then averaged the variance across the four 15-minute segments to generate the mean Cyclic Index. The mean Cyclic Index reveals the tendency of synchronized cycles among speakers, where larger cyclic indices imply higher levels of entrainment among speakers (McGarva & Warner, 2003; Warner, 1992).

3.2. Predictive models of collaboration quality and creative fluency

To answer the research questions on the roles of the material context, spatial context, and social interaction dynamics in predicting collaboration quality and creative fluency, we built two models using Partial Least Squares Regression (PLSR). The PLSR method builds regression models to predict the dependent variables (Y) through extracting latent structures from a set of independent variables (X) which are best for explaining X and predicting Y (Abdi, 2010). This method has been found to be especially useful for building predictive models because it extracts (non-observable) latent structures that “collect most of the variation of the real X (observable) variables in such a way that they may also be used to model the Y response (dependent) variables.” (Mateos-Aparicio, 2011, p. 2308). PLSR was originally developed to address research questions during the early stages of theory development, where “low information” in theoretical specification and a limited number of available observations may result in multicollinearity among the independent variables (or more independent variables than observations) (Sosik, Kahai, & Piovoso, 2009; Wold, 2004). Compared to multilinear regression methods, the PLSR method has several advantages in that it values soft distributional assumptions, has lower requirements for sample size, and produces higher accuracy in parameter estimation in studies where large samples are difficult to obtain (Esposito Vinzi, Chin, Henseler, & Wang, 2010). The PLSR method allowed us to explore the relationships between predictors and response variables in our early stage of theory development and overcome the challenges of obtaining large sample sizes in collaborative engineering design settings.

In building the two predictive models for Collaboration Quality and Creative Fluency, we initially selected seven model predictors based upon the literature: Material Context, Spatial Context, Flow, and the four social interaction variables, Turn-taking, Successful Interrupts, Overlaps, and Cyclic Index (Dong et al., 2012; Gaver, 1996; Johri and Olds, 2011; Nakamura and Csikszentmihalyi, 2002; Sadler, Ethier, Gunn, Duong, & Woody, 2009; Warner, 1992). We next examined the distribution of the two response variables, and confirmed that the Collaboration Quality and Creative Fluency variables had symmetric distributions, eliminating the need for data transformation (Mateos-Aparicio, 2011). Regardless, the PLSR still performs scaling and centering for each predictor variable to ensure that the variables have an equal opportunity to influence the model (Sawatsky, Clyde, & Meek, 2015).

We built two PLSR models using the NIPALS (Non-linear Iterative Partial Least Squares) algorithm (de Jong, 1993; Mevik & Wehrens, 2007), regressing the seven predictors on Collaboration Quality and Creative Fluency. In fitting the model, the two categorical variables were coded as dummy variables: Material Context (0 = skWiki, 1 = Paper) and Spatial Context (0 = Private room, 1 = Commons area). To identify the best fit model with the least number of factors to explain the maximum amount of variance in the predictors and responses variables, we then employed four additional steps to refine the specification of the model: a) First, we used the Leave One Out cross-validation method, which checks how well a model will generalize to new data by conducting n iterations of training and testing to fit the predictive model. In each iteration, all but one observation (i.e., n-1) is used as the training set to train the model, which is then used to predict the test set—the one left out observation. This training and testing process continues until each observation has served as the testing set once; b) next, we examined the VIP (variable importance for the projection) statistics, which is the weighted sum of squares of the weights (Wold, 1995), and adopted a criterion of 0.8 as a cutoff point for predictor selection (Wold, 1995); c) additionally, we examined the regression coefficients of the predictors and excluded those with both small VIP and small regression coefficients; d) finally, we examined the factor loadings of each variable and excluded those with low factor loadings.

4. Results

To answer the research questions on the role of the material and spatial context and social interaction dynamics in predicting collaboration quality and creative fluency, we built two predictive models using Partial Least Squares Regression with seven predictors. Table 4 shows the descriptive statistics of the variables in the predictive models.

4.1. Predicting collaboration quality

Our first research question asked whether spatial and material contexts and social interaction dynamics can predict collaboration quality in design teams. Regressing all seven predictors (Turn-Taking, Successful Interrupts, Overlap, Flow, Cyclic Index, Material Context, and Spatial Context) on Collaboration Quality, the Leave-one-out Cross Validation method of the PLSR model recommended six factors for inclusion in the model: according to the predicted residual sum of squares (root mean PRESS) statistics for each factor, the appropriate number of factors for the model is when the lowest PRESS value is achieved (Abdi, 2010; Roy & Roy, 2008). The model summary indicates that the best model fit is achieved using six factors (RM PRESS=0.99), where 94.69% of the variance is explained for the predictors and 61.97% of the variance is explained for the Collaboration Quality response variable (See Table 5). Note that the number of factors in PLSR refers to the latent factors extracted from the predictors. Therefore, six latent factors may represent the variation of multiple predictors in the model (Cox & Gaudard, 2013; Mateos-Aparicio, 2011).

To select the predictors that are important for the model, we examined the VIP statistics for each predictor, using a criterion value of 0.8 as a cutoff point for predictor selection (Wold, 1995). As shown in Fig. 4, Material Context, Cyclic Index, and Successful Interrupts have VIP values greater than 0.8, suggesting inclusion in the model. Additional evaluation of the standardized regression coefficients indicates other important contributors to the model. As suggested in previous research, during model specification it is important to consider both the VIP and standardized coefficient: predictors with VIP values lower than 0.8 can be retained if their coefficients are comparable to predictors with greater VIP values (Sawatsky et al., 2015). In Fig. 4, we graphed VIP values against the standardized coefficient values, and found the VIP values for the other four predictors (Turn-taking, Spatial Context, Flow, and Overlaps) were lower than 0.8, but their standardized
Table 5
Leave-one-out cross validation (using NIPALS algorithm) modeling collaboration quality.

<table>
<thead>
<tr>
<th># factors</th>
<th>Root Mean PRESS</th>
<th>vdVT²</th>
<th>Prob > vdV T²</th>
<th>R²X</th>
<th>Cum. R²X</th>
<th>R²Y</th>
<th>Cum. R²Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.07</td>
<td>0.26</td>
<td>0.66</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>1.02</td>
<td>0.08</td>
<td>0.80</td>
<td>0.2237</td>
<td>0.2237</td>
<td>0.4220</td>
<td>0.4220</td>
</tr>
<tr>
<td>2</td>
<td>1.08</td>
<td>0.53</td>
<td>0.54</td>
<td>0.2258</td>
<td>0.4495</td>
<td>0.7671</td>
<td>0.4981</td>
</tr>
<tr>
<td>3</td>
<td>1.11</td>
<td>1.78</td>
<td>0.21</td>
<td>0.1431</td>
<td>0.5926</td>
<td>0.656</td>
<td>0.5637</td>
</tr>
<tr>
<td>4</td>
<td>1.07</td>
<td>1.57</td>
<td>0.24</td>
<td>0.1199</td>
<td>0.7125</td>
<td>0.655</td>
<td>0.6092</td>
</tr>
<tr>
<td>5</td>
<td>1.02</td>
<td>0.87</td>
<td>0.40</td>
<td>0.0963</td>
<td>0.8088</td>
<td>0.0187</td>
<td>0.6279</td>
</tr>
<tr>
<td>6</td>
<td>0.99</td>
<td>1.00</td>
<td>0.87</td>
<td>0.1159</td>
<td>0.9247</td>
<td>0.0095</td>
<td>0.6324</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>0.26</td>
<td>0.64</td>
<td>0.0753</td>
<td>1.0000</td>
<td>0.0024</td>
<td>0.6348</td>
</tr>
</tbody>
</table>

Notes: vdVT² = van der Voet T²; Var. X = variation explained for cumulative X; Var. Y = variation explained for cumulative Y.

The results indicate a negative influence on Collaboration Quality, consistent with group creativity and flow theories (Csikszentmihalyi, 2014; Nakamura and Csikszentmihalyi, 2002; Sawyer, 2008), which predict the positive affect that emerges when teams are well engaged with their task and peers (Amabile, 1996; Amabile, Barsade, Mueller, & Staw, 2005). However, the model estimated a negative coefficient for turn-taking, a measure of verbal reciprocity during interaction (Kisselburgh et al., 2014), perhaps indicating that reciprocal conversations that elaborate or build upon the ideas of others may hinder perceived collaboration quality (Mckinlay, Procter, Masting, Woodburn, & Arnott, 1994). This finding suggests that reciprocity in collaborative design settings using collaborative tools may differ from traditional conversational dyads or groups and suggests that more frequent turn-taking in computer-supported collaborative design does not necessarily lead to enhanced perceptions of collaboration quality. In summary, synchronous conversation dynamics, but not reciprocal turn-taking are associated with positive collaboration quality.

4.1.2. Flow

The results indicate that Flow positively predicts Collaboration Quality, consistent with group creativity and flow theories (Csikszentmihalyi, 2014; Nakamura and Csikszentmihalyi, 2002; Sawyer, 2008), which predict the positive affect that emerges when teams are well engaged with their task and peers (Amabile, 1996; Amabile, Barsade, Mueller, & Staw, 2005).

4.1.3. Interaction dynamics

Successful Interrupts, Cyclic Index, and Speech Overlaps yielded positive coefficients, indicating that increased entrainment or synchrony of team members is associated with higher Collaboration Quality ratings, consistent with our earlier research (Kisselburgh et al., 2015; Kisselburgh et al., 2014). However, the model estimated a negative coefficient for turn-taking, a measure of verbal reciprocity during interaction (Kisselburgh et al., 2014), perhaps indicating that reciprocal conversations that elaborate or build upon the ideas of others may hinder perceived collaboration quality (Mckinlay, Procter, Masting, Woodburn, & Arnott, 1994). This finding suggests that reciprocity in collaborative design settings using collaborative tools may differ from traditional conversational dyads or groups and suggests that more frequent turn-taking in computer-supported collaborative design does not necessarily lead to enhanced perceptions of collaboration quality. In summary, synchronous conversation dynamics, but not reciprocal turn-taking are associated with positive collaboration quality.

4.2. Predicting creative fluency

Our second research question asked whether spatial and material contexts as well as social interaction dynamics are predictive of creative fluency in design teams. Using PLSR and the Leave-one-out cross validation method, we regressed Spatial Context, Material Context, Successful Interrupts, Overlap, Turn-taking, Flow, and Cyclic Index on Creative Fluency. According to the predicted residual sum of squares (PRESS) statistics, the appropriate number of latent factors corresponds to the lowest PRESS value (Abdi, 2010; Roy & Roy, 2008). As shown in Table 6, the smallest PRESS value is achieved for one latent factor, where 20.41% of the variance was explained for the predictors and 62.15% of the variance was explained for Creative Fluency. Note that the number of factors in PLSR refers to the latent factors extracted from the predictors. Therefore, one latent factor may represent the variation in creative fluency in design teams.
of multiple predictors in the model (Cox & Gaudard, 2013; Mateos-Aparicio, 2011). Next we referenced the VIP statistics to select the predictors important for the model, using 0.8 as a criterion (Sawatsky et al., 2015). The results indicated that Spatial Context and Turn-taking have VIP values greater than 0.8. Graphing the VIP values against the standardized regression coefficients (Fig. 6) revealed that while the VIP values of Overlap and Cyclic Index were lower, they have strong coefficients. In addition, because the NIPALS algorithm identified one latent factor for the model, we also examined the factor loadings (Table 7) of each predictor, which indicated that the Material Context factor carries important loading and may contribute to the model. Based on these three criteria (VIP, coefficient, and factor loading), we removed the Successful Interrupts factor from the model because it had the weakest set of VIP, coefficient, and factor loading values. Then we refit the model with the six remaining predictors. As shown in Table 8, the new model explained 24.00% of the variance in the predictors and 60.96% of variance in Creative Fluency. The VIP and standardized coefficients of the model with 6 predictors (Spatial Context, Material Context, Overlap, Turn-taking, Flow, and Cyclic Index) remained stable, and are visualized again in Fig. 7. Spatial Context and Turn-taking remain the strongest predictors in this model, with VIP values greater than 0.8 (Sawatsky et al., 2015).

As shown in Table 8, retaining 6 predictors, the percent of variance in the Y variable accounted for by the latent factors, or $R^2 = 66.82\%$, indicating good strength in predicting observed values for both creative fluency and collaboration quality (Hair et al., 2011; Henseler et al., 2009). After fitting the model, we generated a series of predicted response values for Creative Fluency from the model, and a visual examination and the fitted lines of the predicted and observed values are very similar, confirming the fit of the model (Fig. 8) (Cox & Gaudard, 2013; Sawatsky et al., 2015).

4.2.1. Context
The results indicate a strong negative influence on Creative Fluency from Spatial Context, suggesting that the private environment was more favorable for creative fluency. The contribution of the Material Context was slight, suggesting a positive advantage to using the skWiki collaborative tool compared to paper tools.

4.2.2. Flow
There was also a small negative relation between Flow and Creative Fluency in the design process. Considering that Flow was an average from two survey probes during the session, more frequent data collection intervals may be needed to capture fluctuations in flow throughout the design session.

4.2.3. Interaction dynamics
The positive association of Turn-taking with Creative Fluency supports earlier research that reciprocity is indicative of team members becoming more cooperative in their behaviors, which leads to better creative outcomes (Kisselburgh et al., 2014). More specifically, because reciprocity is indicative of team members building upon or elaborating on others’ ideas, these findings provide strong support for theoretical suggestions that elaboration is a process that directly enhances group creativity (Csikszentmihalyi, 2014; Sawyer, 2008). In contrast, the small negative association of Successful Interrupts and Cyclic Index with Creative Fluency suggests that synchronicity with other team members has less influence on creative idea fluency and may even have a slight inhibitory effect. This might be explained by the fact that

![Fig. 5. Predicted vs. observed Collaboration Quality values based on the fitted model. The vertical axis represents the Collaboration Quality ratings. Each mark on the horizontal axis corresponds to a participant. The orange dots represent the predicted Collaboration Quality rating using the predictive model. The blue dots represent the observed value—the actual collaboration rating of each participant.](image-url)

Table 6
Leave-one-out cross validation (using NIPALS algorithm) modeling creative fluency with 7 predictors.

<table>
<thead>
<tr>
<th># factors</th>
<th>Root Mean PRESS</th>
<th>$vdV T^2$</th>
<th>$Prob > vdV T^2$</th>
<th>R^2X</th>
<th>Cum. R^2X</th>
<th>R^2Y</th>
<th>Cum. R^2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.07</td>
<td>1.67</td>
<td>0.21</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.00</td>
<td>1.00</td>
<td>0.2163</td>
<td>0.2163</td>
<td>0.6197</td>
<td>0.6197</td>
</tr>
<tr>
<td>2</td>
<td>1.13</td>
<td>0.65</td>
<td>0.69</td>
<td>0.1611</td>
<td>0.3774</td>
<td>0.0448</td>
<td>0.6645</td>
</tr>
<tr>
<td>3</td>
<td>1.31</td>
<td>1.04</td>
<td>0.44</td>
<td>0.1822</td>
<td>0.5596</td>
<td>0.0131</td>
<td>0.6776</td>
</tr>
<tr>
<td>4</td>
<td>1.44</td>
<td>1.58</td>
<td>0.06</td>
<td>0.1466</td>
<td>0.7062</td>
<td>0.0075</td>
<td>0.6851</td>
</tr>
<tr>
<td>5</td>
<td>1.51</td>
<td>1.76</td>
<td>0.03*</td>
<td>0.1190</td>
<td>0.8252</td>
<td>0.0049</td>
<td>0.6900</td>
</tr>
<tr>
<td>6</td>
<td>1.52</td>
<td>1.85</td>
<td>0.01*</td>
<td>0.1430</td>
<td>0.9681</td>
<td>0.0005</td>
<td>0.6905</td>
</tr>
<tr>
<td>7</td>
<td>1.52</td>
<td>1.95</td>
<td>0.01*</td>
<td>0.0319</td>
<td>1.0000</td>
<td>0.0002</td>
<td>0.6907</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>N Factors</th>
<th>Var. X</th>
<th>Var. Y</th>
<th>VIP > 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>20.41</td>
<td>62.15</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: $vdV T^2$ = van der Voet T^2; Variation X = variation explained for cumulative X; Variation Y = variation explained for cumulative Y.
synchronicity creates stronger shared mental models and fewer independent ideas, thereby reducing the quantity of unique ideas generated.

5. Discussion

This study demonstrates that the material and spatial context of design and the social interaction dynamics during collaborative design are significant predictors of both creative fluency and collaboration quality in engineering design tasks. These findings provide evidence that the design environment has an important relationship to collaborative outcomes; the dynamics of interactions during the design process, as measured in turn-taking, cyclic index, and successful interrupts, are also significant predictors of creative and collaborative outcomes. Building on prior research, our study extends the understanding of computer-supported collaborative design by demonstrating that in collaborative engineering design settings where multiple modalities of information are present, and verbal interactions and visual representations of sketching activities permeate the design space, different spatial and material contexts interact with and must be considered in parallel with how social interaction dynamics facilitate collaborative design quality and fluency.

In addition to providing empirical evidence on the dynamics of collaborative processes in computer-supported environments, these findings provide important theoretical contributions to our understanding of the context and interaction elements of situative learning theory (Johri and Olds, 2011; Stahl et al., 2006), extend theorizing about the materiality of learning (Sørensen, 2009), introduce novel methodological approaches to studying collaborative learning processes, and offer practical contributions to understanding learning among high-level engineering designers and designing learning environments to facilitate collaborative creativity. In the following sections, we discuss the theoretical implications of context and interaction for situative learning theory, and then conclude with a discussion of the methodological and practical implications and future work.

5.1. The role of context and interaction dynamics in collaboration quality

5.1.1. Design context

The finding that the use of skWiki material tools and private spaces predicts higher ratings of collaboration quality highlights the important roles of the material and spatial context in the design setting. This finding is consistent with previous research in computer-supported learning environments, where the use of technology-enhanced tools and environmental factors lead to changes in collaboration outcomes (Martinez-Maldonado et al., 2017; Shen et al., 2008). In terms of material context, as situative learning theory suggests, while working in

Table 7

The factor loading of each predictor for creative fluency.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Factor loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Context</td>
<td>0.21</td>
</tr>
<tr>
<td>Spatial Context</td>
<td>0.78</td>
</tr>
<tr>
<td>Flow</td>
<td>0.17</td>
</tr>
<tr>
<td>Turn Taking</td>
<td>−0.50</td>
</tr>
<tr>
<td>Overlap</td>
<td>0.21</td>
</tr>
<tr>
<td>Successful Interrupt</td>
<td>0.10</td>
</tr>
<tr>
<td>Cyclic Index</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Table 8

Leave-one-out cross validation (using NIPALS algorithm) modeling creative fluency with 6 predictors.

<table>
<thead>
<tr>
<th># factors</th>
<th>Root Mean PRESS</th>
<th>vdv T²</th>
<th>Prob > vdv T²</th>
<th>R²X</th>
<th>Cum. R²X</th>
<th>R²Y</th>
<th>Cum. R²Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.07</td>
<td>2.86</td>
<td>0.10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0.84</td>
<td>0.97</td>
<td>0.51</td>
<td>0.1885</td>
<td>0.4404</td>
<td>0.6086</td>
<td>0.6086</td>
</tr>
<tr>
<td>2</td>
<td>1.31</td>
<td>1.31</td>
<td>0.30</td>
<td>0.1798</td>
<td>0.6203</td>
<td>0.6086</td>
<td>0.6086</td>
</tr>
<tr>
<td>3</td>
<td>1.41</td>
<td>1.41</td>
<td>0.30</td>
<td>0.1798</td>
<td>0.6203</td>
<td>0.6086</td>
<td>0.6086</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>1.50</td>
<td>0.30</td>
<td>0.1798</td>
<td>0.6203</td>
<td>0.6086</td>
<td>0.6086</td>
</tr>
<tr>
<td>5</td>
<td>1.45</td>
<td>1.52</td>
<td>0.20*</td>
<td>0.1798</td>
<td>0.6203</td>
<td>0.6086</td>
<td>0.6086</td>
</tr>
</tbody>
</table>

Model Summary

<table>
<thead>
<tr>
<th>N</th>
<th>Factors</th>
<th>Var. X</th>
<th>Var. Y</th>
<th>VIP >0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>24</td>
<td>60.96</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: vdv T² = van der Voet T²; Variation X = variation explained for cumulative X; Variation Y = variation explained for cumulative Y.
computer-supported design platforms designers not only interact with the digital material representations (e.g., sketches) created by oneself, but also interpret the digital cues and artifacts generated by others in the environment (Sørensen, 2009). Thus, a possible explanation for this finding is that while participants using paper tools had to sketch design ideas from scratch, participants using the skWiki tool could reference design ideas from their teammates in a shared electronic space and build upon these ideas. While one might argue that participants using paper sketching can examine each other’s sketches and elaborate these designson paper, when we examined the sketches from paper condition and the video tapes of the design sessions, we found that none of the participants in the paper condition shared or built upon others’ sketches. Furthermore, in the paper condition we did not specify how the participants were to collaborate. Therefore, the fact that none of the participants in the paper conditions chose to collaborate or build upon others’ ideas was noteworthy and may suggest the importance of computer-supported platforms to scaffold collaborative design.

In addition, the technological affordances of the skWiki tablets may encourage participants to examine others’ ideas and elaborate their sketches, thus promoting positive attitudes towards the collaborative design process. In contrast, participants in the paper conditions were more individually focused on generating and sketching their own ideas and paid less attention to collaborative meaning making and idea generation. Therefore, this finding extends situative learning theory in engineering design learning contexts by emphasizing the importance of the materiality of learning (Sørensen, 2009) and highlights the benefits of computer-supported tools for collaborative design outcomes.

Regarding the spatial context, the finding that collaborative design in private rooms, compared to commons areas, is more predictive of positive collaboration quality outcomes contradicts previous findings which suggest that open, flexible, and informal environments may be more conducive to collaborative outcomes (Becker & Sims, 2001; Horgen et al., 1999; Kim & de Dear, 2013; Lerdahl, 2001; Stryker, 2004). Considering that collaboration quality was measured as the ease of sharing ideas, resolving conflicts, and team productivity, it is possible that in design tasks requiring cognitive effort and contribution, the private space is more conducive to group cohesion and collaboration. For example, Mehta and colleagues (Mehta, Zhu, & Cheema, 2012) have demonstrated that high levels of ambient noise in open workspaces increases processing difficulty (See also Nagar & Pandey, 1987; Weinsteln, 1974) and can also impair creativity, even though moderate levels of noise can be beneficial for highly creative individuals (Toplyn & Maguire, 1991). Situative learning theory tells us that the physical arrangement of a design environment can facilitate or suppress certain interactions or behaviors depending on the participants’ interpretation of the environment (Jordan and Henderson, 1995; Leander, Phillips, & Taylor, 2010; Zerella et al., 2017). Thus, the simplicity of the private room environment may have provided fewer distractions or cues for the participants to interpret, compared to the more complex commons environment, thus lowering the cognitive demand on participant interactions and promoting collaborative outcomes.

Therefore, our finding contributes to literature on spatial contexts for collaborative design by showing that in environments involving computer-supported technology tools for engineering design, collaborative outcomes may be benefitted by more private spatial contexts. In addition, previous research has suggested that in collaboration
projects that span over long periods of time, team members rated open and informal spaces as more effective for collaborative communication and productivity (Mishra, Mishra, & Ostrovskia, 2012). However, this study suggests that when a collaborative design task is time-constrained, that is, an outcome is expected in a few hours rather than over a period of days, private spaces may be more beneficial.

5.1.2. Interaction dynamics

There were two important findings regarding how interactional processes of the design teams contribute to collaborative quality: a) that levels of synchronicity positively predict better ratings of collaboration quality, and b) that levels of reciprocity negatively predict such ratings. First, all three indicators of synchronicity (interrupts, overlaps, and cyclic index) were found to be positively associated with collaboration quality. Successful Interrupts occur when a participant interrupts another's speech and is allowed to proceed to express her ideas without the other finishing their speech. This form of interruption is viewed as a positive indicator of synchronisation in conversation, similar to two people finishing one another's conversations when they share common frames of mind (Giles et al., 1991, 1987; Tannen, 1989). Similarly, Cyclic Index is also indicative of synchronicity, or entrainment, among speakers in social interactions (Warner, 1992). Therefore, the findings from this study are consistent with research demonstrating the benefit of synchronicity among group members to perceptions of the collaboration process (McGarva & Warner, 2003; Warner et al., 1987). As shown in previous research, social interaction in computer mediated environments follows non-linear and cyclical patterns, which are deemed essential to the maintenance of group cohesion and collaborative quality (Sudweeks, 2004). However, the specific patterns of these speech dynamics, among multiple groups and over an extended time period in different technical and spatial contexts, have not yet been well studied. Our findings build on this research by providing micro-level evidence, at the process level, that synchronicity in conversational dynamics positively predicts perceived collaboration quality, an element theoretically important in collaboration theories.

In contrast, turn-taking, an indicator of reciprocity in social interaction, was found to be negatively associated with perceived collaboration quality. Turn-taking occurs when a participant follows another participant's conversational turn and is indicative of reciprocal interaction (Kisselburgh et al., 2015; Kisselburgh et al., 2014). This finding contradicts previous results from Curhan and Pentland (2007), where turn-taking dynamics were positively associated with collaboration outcomes. One possible explanation of this difference is that the use of collaborative support tools that allow designers to convey their ideas materially (i.e., sketching) as well as discursively (i.e., talking) may change the importance of discourse in idea generation and elaboration, and its relationship to collaboration quality. This result suggests the need to provide training for engineering designers in attending to, interpreting, and engaging with teammates verbally, even while interacting materially with multiple material and digital artifacts.

5.2. The role of design context and interaction dynamics in creative fluency

5.2.1. Design context

The spatial and material context variables were found to positively predict creative fluency, with the skWiki tool and private space contexts contributing to positive creative fluency. This finding is consistent with previous research where the use of collaborative support tools and environmental factors lead to better creative outcomes (Martinez-Maldonado et al., 2017). We believe the material affordances of the skWiki tool provide specific advantages by encouraging designers to examine and elaborate others’ ideas and sketches to generate new design ideas. Additionally, the skWiki platform supports parallel use of materials so that team members can view and edit multiple ideas simultaneously, thereby facilitating more fluent generation of design ideas. This is consistent with previous findings where the use of collaborative multi-touch tools helped designers to share digital representations and engage in the co-construction of design ideas (Martinez-Maldonado et al., 2017). In contrast, students using paper sketching tools may focus more individually on their own sketches, which may replicate ideas being sketched by others. Thus, the finding that the material context positively predicts creative fluency may arise from the fact that the skWiki tool provides a shared creative space where team members scaffold each other's ideation and design process.

Similarly, because of the differences in technological affordances of sketching and sharing, participants in the skWiki tool condition did not have to make additional efforts to present their ideas to others or check if their ideas were accepted by other members (Zhao et al., 2014), whereas participants sketching on paper relied upon verbal interaction to present and share their design ideas with the group. In addition, paper sketches were constrained in the ability to be shared and simultaneously edited by others, thereby creating a material bottleneck that could restrict elaboration and subsequent generation of ideas (Chandrasegaran et al., 2014).

Thus, the skWiki collaborative support tool facilitates a more parallel, versus sequential, processing and generation of design ideas. It is also possible that the skWiki tool facilitates creative fluency because the platform allows team members to easily share and build upon ideas created by all members without relying on their ability to verbally persuade the acceptance of their ideas (e.g., being an effective and persuasive communicator to help the team to see the value of the idea). Thus, technology-enhanced sketching environments may broaden opportunities for both implicit (visual) and explicit (verbal) sharing and adopting of ideas in design settings, thus promoting creative outcomes.

The private spatial context was more beneficial for creative fluency than the common area. This finding is consistent with previous research that identified physical arrangements in learning environments as influential for performance (Roth et al., 1999). Also important is that the participants in this study primarily remained seated during the design session, whereas students in previous studies were engaged in tasks that involved movement in spaces around focal stations (Roth et al., 1999; Leander et al., 2010). Despite the possibility that design processes with limited motion in space may restrict the impact of the physical arrangements and environment of collaborative design teams, spatial context was still an important predictive factor. Therefore, in future studies we will examine design spaces and tasks that involve broader movement around and interaction with different types of spatial environments to examine in more depth the influence of spatial contexts.

5.2.2. Interaction dynamics

Our results indicate that turn-taking, an indicator of reciprocity in social interaction, was significantly and positively associated with creative fluency. This finding is consistent with previous research indicating that turn-taking provides confirmation of response during interaction, leading to performance benefits (Olgun and Pentland, 2010).

However, levels of synchrony or entrainment (cyclic index and speech overlaps) were found to be negatively associated with creative fluency. This finding provides empirical evidence, at the process level, that synchronous interaction influences idea generation and elaboration, a construct theoretically important in both creativity and collaboration theories. However, that higher levels of synchrony were associated with less fluency in idea generation contradicts previous findings suggesting synchrony benefits performance (Olgun and Pentland, 2010).

The difference between our findings and those of previous studies can be attributed to the variations in design tasks. While previous studies investigated collaborative tasks that did not include material activities such as sketching (Olgun and Pentland, 2010), the design tasks in the current study required participants to transition between visual and verbal forms of discourse. We know that engineering design teams rely on both verbal and non-verbal discourses to construct and
share design ideas (Ariff et al., 2012; Purcell and Gero, 1998; Reid and Reed, 2005). As a result, participants who are more verbally engaged (and synchronous) may be less likely to be materially engaged in generating sketches. However, it is possible that creativity is enhanced through team synchronicity in ways other than fluency in idea generation. For example, positive social affect has been found to be positively related to creative thoughts in self-reported daily personal narratives (Amabile et al., 2005). Thus, it is possible that synchronicity may have led to changes in the participants’ internal creative thought processes rather than externalized creative productions. Therefore, we posit that this finding does not suggest that higher synchrony in conversation dynamics are negative factors in creative design performance. Rather, this finding implies the need to consider the challenges posed by multimodal information that are specific to collaborative design tasks, as well as the need to provide training for engineering students to adjust to the demands from both verbal and non-verbal information representations.

Another potential explanation for this difference in finding is that while previous studies focused on collaboration in traditional pen-and-paper settings, the current study included a collaborative design tablet for sketching. It is possible that while working on tablets, students’ attention to sketching on new technology platforms and attending to synchronize with others’ comments competes for cognitive load and impedes design sketching performance (Kreijns et al., 2002). For example, there are challenges in showing affirmative signals of openness to others’ ideas in face-to-face computer collaborative settings, which can lead to the suppression of innovative ideas (Thompson and Lordan, 1999). As a result, participants engaged in high verbal synchrony might have felt diverted rather than scaffolded in meaning construction and failed to execute the ideas through sketching, thereby lowering the quantity of sketched ideas. Researchers have proposed potential ways to address such challenges in computer-supported collaborative settings, including providing scripted interaction and other training strategies to promote social interaction quality (Fischer et al., 2007; Adamson et al., 2013). Our finding suggests the need to explicitly instruct designers in appropriate ways to exhibit supporting attitudes and provide effective scaffolding towards group members.

In summary, this study showed that social interaction dynamics are significant predictors of creative collaborative outcomes across different material and spatial contexts in engineering design. These findings highlight the important role of social interaction dynamics in collaborative engineering design settings, where students simultaneously engage with both verbal interaction and non-verbal interactions such as sketching to build design ideas.

At the same time, the differential findings regarding social interaction dynamics, such as reciprocity being positively associated with creative fluency but negatively associated with collaboration quality, and synchrony being positively associated with collaboration quality, cautions against a series of “whole part” notions that all social interaction dynamics are positive contributors to creative collaboration and that team members should be encouraged to be active participants in verbal interaction regardless of the purpose and context.

Findings from the current study are especially meaningful to learning in material-rich contexts such as engineering and technology, where meaning is embedded within and constructed through interaction with both human agents as well as material artifacts. Developing model interaction and collaborative learning practices within such hybrid multi-modal and technology rich environments requires a consideration of the impact of social interaction dynamics that are specific to engineering design settings. In these cases, rather than scripting interaction towards more frequent turn taking dynamics, the more beneficial interaction dynamics may be oriented towards fostering an optimal negotiation of balancing the verbal and visual elements of design, or simply talking and sketching behaviors.

6. Limitations

The study has limitations in sample size and population. The study was integrated as part of an engineering design class where the students were included as study participants. Although this sample is reflective of students who have prior knowledge in engineering design and sketching, the sample may pose challenges in regards to sample size and the generalizability of the results to other populations, such as design professionals. However, the use of partial least squares regression has been found to be effective in identifying predictive models where such traditional linear regression methods assumptions as sample size and collinearity are violated, which provides confidence that the findings from this study have practical significance in the real-world application. The implementation of the study also contributed to the limitations. In two of the four experiment conditions, students were asked to work on touch-based tablets to sketch design ideas. Considering that students are traditionally trained in paper sketching platforms, the digital platform may pose challenges for some students, despite the training they received prior to the experiment sessions. These limitations indicate that cautions must be taken while generalizing the findings.

7. Conclusion and future work

This study established two models for predicting collaboration quality and creative fluency outcomes based upon material and spatial context variables, as well as social interaction dynamics. The use of continuous real-time sociometric measures introduces an innovative approach to examine the interaction processes of engineering teams and their influence on collaborative learning outcomes. We see a natural extension of this study into future research efforts from at least three aspects, including: (1) designing technology-rich environments to facilitate creative collaborative design based on our findings of the key predictors of collaboration quality and creative fluency; (2) using controlled experiments to identify causal relations between the predictors and the collaborative design outcomes; and (3) studying the interaction of verbal and non-verbal interaction dynamics during collaborative design.

Regarding designing technology-rich environments that are suitable for collaborative design, the next step extending from the current study would be to involve professional designers in authentic spatial and material contexts to provide real-time feedback for design teams based on patterns in social interaction dynamics. For example, using wearable technology and mobile applications, we can collect real-time data on conversational turn taking dynamics, and generate visual feedback on mobile display platforms to periodically inform team members about adjusting their conversation dynamics to be more conducive to design collaboration outcomes. This kind of intervention has been previously suggested and examined for group dynamics in organizational settings (Pentland, 2012).

Based upon the findings from our predictive models in this study, we also intend to conduct experimental studies to identify causal relationships between conversation dynamics and collaborative design outcomes. Specifically, by manipulating the social dynamic frequencies in design teams using technology-enabled real-time interaction mediators (e.g., encourage or redirect students’ talk based on the interaction patterns), we can begin to identify causal relationships between the different types of social interaction dynamics and creative collaboration outcomes in design teams.

The findings of this study provide an important contribution to research in the field of computer-supported collaborative design, by focusing on process-level dynamics of collaborative teams, allowing us to extend understanding of the emergence and development of learning in engineering design learning teams situated in particular contexts. This finding has implications for understanding the predictive role of conversation dynamics in successful collaborative practices in engineering design learning, across spatial and material contexts. Specifically,
Acknowledgements

We thank Joran Booth, Bill Bernstein, Elizabeth Wilhoit, Jasmine Linabary, and Jeremy Foute for their assistance with data collection and processing. This work was partly supported by the U.S. National Science Foundation under grants IIS-1249222, IIS-1292739, IIS-1422341, and IIS-1539534, as well as the Purdue University Susan B. Butler Center for Leadership Excellence. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Abdi, H., 2010. Partial least squares regression and projection on latent structure re-

Arizzi, A., 2008. In: Meeting kids at their own game: A comparison of learning and en-
gagement in traditional and 3D move educational-gaming contexts. Bloomington, Indiana University.

Fischer, J.E., Porcheron, M., Lucero, A., Quigley, A., Scott, S.D., Ciolfi, L.,... Memarovic, N., 2016. Collocated interaction: New challenges in “same time, same place” re-

Henseler, J., Ringle, C.M., Sinkovics, R.R., 2009. The use of partial least squares path mo-

