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ABSTRACT
We present V.Ra, a visual and spatial programming system
for robot-IoT task authoring. In V.Ra, programmable mobile
robots serve as binding agents to link the stationary IoTs and
perform collaborative tasks. We establish an ecosystem that
coherently connects the three key elements of robot task plan-
ning , the human, robot and IoT, with one single mobile AR
device. Users can perform task authoring with the Augmented
Reality (AR) handheld interface, then placing the AR device
onto the mobile robot directly transfers the task plan in a what-
you-do-is-what-robot-does (WYDWRD) manner. The mobile
device mediates the interactions between the user, robot, and
the IoT oriented tasks, and guides the path planning execution
with the embedded simultaneous localization and mapping
(SLAM) capability. We demonstrate that V.Ra enables instant,
robust and intuitive room-scale navigatory and interactive task
authoring through various use cases and preliminary studies.

Author Keywords
Robotic task authoring, Human-robot interaction, Augmented
Reality, SLAM, Internet-of-Robotic-thing, Robot navigation.

CCS Concepts
•Computer systems organization→ Embedded and cyber-
physical systems; Robotics; •Information systems→ Infor-
mation systems applications; Multimedia content creation;

INTRODUCTION
The vision of ubiquitous computing has been emerging rapidly
as the Internet of Things (IoT) based electronics are getting
smaller, lower in cost, proliferating and being embedded in
our everyday environment. Typically, human-IoT interactions
take the form of transforming IoT data into informative knowl-
edge, augmenting human sensory capabilities, and assisting
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Figure 1. V.Ra workflow. Using an mobile AR mobile device, the user
first spatially plans the task with the AR interface, then places the device
onto the mobile robot for execution.

humans to make correct and efficient decisions [5]. However,
the IoT devices are mostly stationary and have limited physical
interactions particularly with each other. In conjunction, the
concept of Internet of Robotic Things (IoRT) has not been
widely explored in practice across the IoT and robotics com-
munities [39], and an authoring system for such robot-IoT
interactive task planning is underdeveloped [44]. We envision
the emergence of programmable mobile robots in a near future
to serve as key medium to conduct coordinated and collabo-
rative tasks with surrounding IoTs. In this vision, the mobile
robots are combined with the embedded multiple stationary
IoTs to create new types of workflows and in addition also
extend humans’ motor capabilities.

Current user interfaces are often designated to either IoT or
robots only, without considering the robot-IoT interactions.
Contemporary IoT devices allow access and control through
offloaded mobile interfaces. With additional web-based ser-
vices such as IFTTT [4], users can also coordinate multiple
devices working with other productivity tools or social medias
via active human-IoT communication [5, 10]. Even in these co-
ordinated works, the IoT tasks are rather spatially independent.
In these cases, conventional graphical user interfaces (GUI)
mostly suffice the IoT-only interactions which are insensitive
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to their spatial distributions. In contrast, to command mobile
robots to complete distributed tasks, the significance of spatial-
awareness for authoring interfaces becomes more relevant,
especially for ad-hoc tasks in less controlled environments.

The emerging augmented reality (AR) shows promise towards
bridging the gap and interfacing with the physical world. In
fact, AR interfaces have been introduced for IoT and robots
respectively. For example, Reality Editor allows users to visu-
ally program the stationary IoT devices which are affixed with
fiducial markers [24]. Similarly, robots have been attached
with tags and tracked through the users’ AR camera view [9,
27, 35]. However, the robots and the IoTs remain locally reg-
istered in the AR only, e.g., to resolve the spatial relationship
between a robot and an IoT, a user has to keep both of them in
the same AR camera view. To register multiple agents globally
and coordinate them spatially, some alternatives including ex-
ternal tracking systems (e.g., infrastructured cameras [19, 22,
46, 26]) and pre-scanned and manually tagged environment
maps [38, 31, 11] have been proposed. But these approaches
further constrain deploying robots to ad-hoc daily tasks.

On the other hand, we leverage the advancing mobile SLAM
techniques to globally associate the user, IoTs, and robots
together. Users first freely examine and explore the IoT envi-
ronment within a mobile AR scene, then utilize the embedded
SLAM capability to seamlessly transfer their insight about the
tasks to the mobile robot. These insights are tightly coupled
with the environmental factors such as the path planning, as
well as the semantic knowledge of the IoTs. Further, SLAM
also enables a novel embodied programming modality, namely,
users demonstrate a sequential tasks to the robots by physi-
cally walking the navigatory path. In addition, since both AR
authoring interface and the robots’ navigation share large com-
monalities of environmental spatial awareness, we support a
smooth exchange of human knowledge to the mobile robot
by simply placing the AR-SLAM device onto the robot, as
its ‘eyes’ and ‘brain’. The robot now has perceptive knowl-
edge of the physical environment, the interactive knowledge
for the IoTs, and is ready to execute the planned task from
the user. We envision our system be useful for in-situ robot
assistant programming in highly unstructured and ever chang-
ing situations, such as household environments, labs/offices,
and fabrication workshops. Our mobile phone based interface
allows for intuitive visual programming for novice user, thus
greatly lowers the cognitive load and encourages broader im-
pact. To this end, we present V.Ra (Virtual Robotic assistant),
an in-situ authoring interface for robot-IoT task planning using
one single mobile AR device. The key contributions of this
paper are as follows:

1. V.Ra workflow that uses one AR device for in-situ mobile
robot-IoT task authoring and execution with the on-the-fly
generated SLAM map, so that the human-robot-IoT interac-
tion is bonded together synergistically, without an external
tracking infrastructure or pre-scanned map information.

2. Authoring interface design that utilizes contextual visual
feedback and spatial awareness of AR, to enable intuitive
robot programming for path planning, logic driven event

scheduling, in-situ virtual simulation, as well as knowledge
transferring from human to the robots.

3. Use cases and evaluations demonstrating and verifying
that V.Ra supports robust room-scale household navigatory
and fluid interactive task authoring with our system.

RELATED WORK

Workflow of Human-Robot System
Due to the limited on-board perception capabilities and un-
derdeveloped artificial intelligence (AI), the ad-hoc tasks in
our daily environment which we take for granted are still chal-
lenging for robots [28]. Thus, before it comes to an era of
full autonomy and high level AI, a well-design functional
human-robot interface is the key to author the domestic robots
to accomplish any useful tasks. Within the authoring interface,
users need to be spatially aware of the physical environment
and the mobile robots. Previous works introduced an external
camera system to track the robots and fed the live view to
the interface [22, 34, 26, 19, 40]. However, this approach
limits the authoring scene to the perspective of the camera
only, which is usually fixed. In contrast, Magic Cards pro-
posed an implicit command authoring workflow with human
manually and spatially placing the task-representing paper
tags [46]. However, tracking from an overhanging infrastruc-
tured camera not only requires heavy external system setup
but also is prone to occlusion and lighting condition, espe-
cially in a cluttered scene such as a household environment. A
similar concept has been explored later using tangible blocks
to program robot behaviours with its intent projected onto the
physical environment [41, 42]. Still, robots’ perception of the
programming blocks relies on its on-board camera which lim-
its the working range to the area in front of the robot. Further,
recent researches employed mobile AR interfaces and associ-
ated the robots within the AR scene, e.g., with hand-held [35,
21, 17, 29, 8, 18] or head-mounted [9] devices. Although the
mobility allows users to move around and author distributed
tasks from different perspectives, the limited field-of-view con-
strains the human-robot interaction experience, i.e. the robot
must be kept within the device’s camera view to maintain the
tracking that guides its navigation and interaction.

Other works separated the authoring interface and navigation
by equipping robots with on-board SLAM capabilities. This
way, user referred to a scanned map of the real scene as au-
thoring context and the robot conducted tasks using the same
map [31, 11, 38]. However, the pre-scanned SLAM map, once
created, remains static and cannot adapt to the changes in
the environment. In fact, for an ever-changing scenario such
as user’s home, the system will be hampered with outdated
SLAM maps. Informed by these previous works, we propose
a mobile AR-SLAM authoring interface with which users can
spatially author the tasks by either explicitly defining naviga-
tion paths or implicitly visiting the IoTs by just walking to each
of them. Moreover, we emphasize a transparent knowledge
transfer between human and the robots by allowing robots to
use the same AR-SLAM device as ‘eyes’ and ‘brain’ directly.
We further increase the adaptability of the robots against en-
vironment changes as we rely only on on-the-fly created and
updated SLAM maps that enables in-situ task authoring.
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To summarize, the limitations of previous robot task authoring
system are listed as follows: (1) Requires external tracking
infrastructure for spatial/contextual aware programming; (2)
Requires visual focus of the interface to maintain tracking
during the execution; (3) Requires pre-acquired map infor-
mation to achieve synergistic authoring and execution. We
believe these limitations greatly constrain the accessibility
of the proposed system from the general population, espe-
cially the on-site and in-situ programming for novice users
in a new environment. Our system V.Ra, on the other hand,
aims to solve this issue by adopting a spatial and visual inter-
face within a mobile phone device, thus breaks the cognitive
barrier and is more likely to be accepted by the general popu-
lation. Moreover, we take the natural initiative of human user
and utilize the on-the-fly generated SLAM map to seamlessly
connect together user authoring and robot execution without
needing any external tracking system. This allows for broader
application for domestic usage as most of the daily scenarios
are unstructured and constantly changing.

Robot-IoT Ecology within AR
An AR interface is spatially and physically aware of the en-
vironment by its nature [7]. Previous works have explored
accessing and controlling IoTs through the digital representa-
tions superimposed in the AR scenes [36, 32]. But in these
works, the augmentation relies on keeping the IoTs in the AR
camera view, thus only allow for local interactions in a limited
volume. Further, leveraging the SLAM embedded in mobile
AR devices [1, 2, 3], researchers also investigated spatially
registered IoTs in the SLAM map to support embodied in-
teractions in a larger space [25]. In addition, AR has been
used to author and edit IoT programs in-situ [24]. Moreover,
recent works further emphasized on multiple IoTs in the same
environment [16], e.g., visualization of the data flow among
sensors, logic programming between devices [12], and visual
analytics of the fetched data [13].

For stationary industrial robot arm programming, AR motion
planning allows users to preview the generated trajectories and
examine potential discrepancies and collisions [14, 15]. In a
robot-IoT context, the mobility of the robots is a critical com-
plementary element, as researchers have explored using AR for
robot teleoperation as well [23, 22, 34, 30]. On the other hand,
we focus on authoring room scale navigatory tasks for visiting
distributed IoTs and assume that the local manipulation are
handled by robot itself. While simple graphical augmenta-
tion can be superimposed onto the video streamed from the
external camera system [22, 34, 26, 19, 40] or projected to
the physical environment [33, 43, 41], we follow a mobile AR
approach because a handheld [35, 27] or head-mounted AR
device [9] allow users to freely move in the environment and
inspect the augmentations from multiple perspectives. Besides
authoring tasks for robots, researchers further explored using
AR to debug robot behaviors [37, 20], passing knowledge to
robots through demonstrations [29, 8], and interacting with the
embedded AI decisions [45]. Although we don’t develop these
specific applications, our workflow shows potential to create
robust test-beds for a variety of human-robot-IoT studies.

DESIGN GOAL
We followed a user-centered design approach to derive the
design goals of our system and conducted conversational style
informative interviews for our study. We first explained the
context of a household robot-IoT ecology to the interviewees,
then asked them to think about a scenario where users author
multiple tasks to the robots and reveal their considerations and
requirements for the system. We interviewed 42 people totally,
including students, staff, and professors in the university with
various backgrounds. Each interview took 6-10 minutes with
the conversation recorded in audio. After analyzing the inter-
view records, we identified the requirements and preferences
from the participants. Combining the interview analysis with
our vision of robot-IoT ecology, we propose the following
four Design Goals (DG).

DG1: Easy and Instant Deployment. Less dependencies on
the environment is preferred so that the system can be used
instantly even for a new environment. Especially for the tasks
handling chores, if the preparation takes even longer than
finishing the chores by users themselves, the acceptability
of the robot would be severely decreased. Thus, our system
should be developed in a self-contained and plug-and-play
manner to avoid the environmental dependencies and allow
for in-situ authoring.

DG2: Physical and Spatial Awareness. We aim towards lever-
aging users’ innate knowledge of the environment to instruct
the robots to accomplish tasks in a household environment
which are unstructured and ever changing. A physical and spa-
tial aware authoring interface would allow users conveniently
and accurately express their intents and transfer them to the
robots.

DG3: Iterative Process with Feedback. Many participants
unanimously required the system to keep them informed about
its operating status during the entire process with active feed-
back. Further, our system should support users to visually
preview and iterate the authored actions so that the efficiency
of a sequence of distributed tasks can be improved.

DG4: Low learning curve. Participants suggested to develop
the system based on easy-to-access devices and tools so that
the basic interaction modalities remain familiar to novice users.
Compared to abstracted task planning tools for professionals,
the system should emphasize low cognitive load by closely
associating planning interactions with actions of the robots in
the physical world.

V.RA ECOSYSTEM WORKFLOW

V.Ra System Walk-Through
As illustrated in Figure 1, we walk through our workflow with
a typical use scenario. In a household environment, users first
select a robot for the desired tasks from the available nearby
ones. This allows an AR authoring interface to be specialized
based on the capabilities of this particular robot. The spread
IoTs can be registered into the SLAM map through a one-
time QR code scanning. Users then access the embedded
knowledge from the IoTs in AR view. Using our authoring
interface, users formulate a group of navigation paths, IoT
interactions, and other time and logic constructs to achieve
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Figure 2. V.Ra ecosystem design coherently connects the three key el-
ements of robot-IoT task planning with one AR mobile device (1), the
spatial information for robot navigation and IoT interaction are stored
in the on-the-fly generated SLAM map (2).

the desired robot-IoT coordination. After the authoring is
finished, users physically place the authoring device onto the
modular slot of the robot, and the AR system guides the robot
to execute the tasks. Because of the transparency between the
users’ intents and robots’ actions in the AR authoring phase,
we achieve programming a robot in a WYDWRD fashion.

Choice of Approach
We want to develop an ecology where robots and IoTs are
complementary to each other’s role. As illustrated in Fig-
ure 2, Our workflow supports users to coordinate robots and
IoTs temporally and spatially to accomplish multiple tasks
synergistically in our daily surroundings. We deploy our AR
authoring interface to a SLAM capable mobile device which
is easy to access using commercial AR SDKs such as ARCore
[1] and ARKit [2]. Within a mobile AR scene, users simply
register IoTs with the SLAM map. By referring to the spatial
distribution of the IoTs and the geometry of the environment,
users then plan, preview, and iterate the robot-IoT interactions
in-situ. Further, the same AR device can be employed as the
the ‘eyes’ and ‘brain’ of the robot to execute the authored task.
Such interchangeability between an authoring interface and
robot navigation module promotes an transparent knowledge
transfer from the users to the robots. As the SLAM map is
constructed on-the-fly, our workflow does not rely on exter-
nal tracking systems or an existing spatial map a priori, our
system is therefore easy-to-install in a new environment and
ready-to-use instantly.

Figure 3. User authored tasks are represented by TaskSequence in V.Ra
system, and they are formed by four types of Nodes. Logic driven event
is represented by multiple TaskSequences.

AUTHORING INTERFACE DESIGN

Task Planning Construct
To start designing the authoring interface for mobile robot task
planning, we first extract the basic elements of the task. The
nature of our work is robot planning for physical tasks that
involves interaction with different devices at various locations.
The planned task may take a long period of time to execute,
and it involves logic conditions that handle unexpected situ-
ations dynamically. By referring to previous programming
protocols for IoTs and robots [4, 6, 12] and catering them
to our system specifics, we develop the following Nodes to
represent task elements and construct a task sequence.

Navigation Node : represents the path for the robot to travel
through. It contains 3D coordinate information that can guide
the robot’s navigation during the Play mode.

Action Node : defines an action event that relates to the
robot and/or the IoT device. The most common Action Node
in our system is a robot-IoT interaction Node.

Time Node : contains information that allows the system
to perform time based behaviours. For example, keep doing
this for some time, or wait until that happens, etc.

Logic Node : contains a user defined check condition that
allows the system to perform logic driven tasks such as if
Condition A then Action B.

These Nodes are the basic abstractions that form any user
authored task in V.Ra, namely, a construct array in our system,
called TaskSequence. User can add new Nodes or manipulate
the existing Nodes in the TaskSequence. When executing
in the Play mode, the system guides the robot to run through
each Node sequentially thus accomplish the authored task. The
logic driven events are realized by multiple TaskSequences
with each one representing one task line. Figure 3 illustrates
a logic event with its corresponding TaskSequences. The
robot checks the condition at the Logic Node and decides
which path to take. If the battery is low, it will continue on
TaskSequence(1) and go to the Charging Station; otherwise
it will proceed on TaskSequence(2) and go pick up the 3D
printed part when it is finished. Note that the wait...until
function is realized by the blue Time Node.

V.Ra Interface and Interaction
The interface design of V.Ra system is shown in Figure 4.
We exercise simple and clean style for the UI design, while
exploiting the strength of AR and maintaining the accessibil-
ity of the primary features and functions. Users can create
TaskSequence and preview it in the AR view and also in the
EventLine, which is an interactive linear abstraction of the
task. To start a new task planning after selecting a robot, a user
first defines the basic robot action with AddPath and ScanIoT.
User then preview the authored task with EventLine, user can
Insert new function, or Edit existing tasks. The user has the op-
tion to create periodic robot tasks (i.e. repeat everyday) using
the Repeat function. When task authoring is finished, user can
activate the Play Mode and place the mobile device onto the
robot. The robot then starts the execution of the planned tasks
by sequentially running all the Nodes in the TaskSequence.
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Figure 4. Main interface design of V.Ra system (top). An icon reference
list for interactive functions in the system (bottom).

Basic Task Generation
Add robot path. Navigation Nodes are the majority Nodes
that form the TaskSequence in our system as it defines the
path for the robot to navigate in the environment. There are
two ways to add navigation nodes: 1) record spatial movement
(REC), or 2) hand-draw the path on the screen, as illustrated
in Figure 5. The hand-drawn method are suitable for path
planning in a smaller area, while the REC is designed for con-
veniently creating large room-level navigation paths through
embodied spatial movement. Each created path is broken into
a series of Navigation Nodes and are sequentially added to the
end of the TaskSequence. After a navigation node is added, a
green path will be displayed in the AR scene giving the user
active visual feedback.

Add IoT interaction. Robot-IoT interaction encompasses
the majority of the Action Node in the system. Other Action
Nodes include IoT-only and robot-only functions. To add a
new robot-IoT interaction Node, the user first needs to register
the IoT device into the AR scene, which is achieved through a
one-time scan of the IoT’s QR code (Figure 6 (1-2)). This not
only brings an interactive 3D virtual model into the AR scene
(Figure 6 (3)), but also imports semantic information into the
system, like IP address and interaction protocol. After the
IoT registration, user can touch on its virtual icon to access its
function list and select to add an Action Node (Figure 6 (4)),
to the end of the TaskSequence. When a robot-IoT interaction
Action Node is added, a green arrow path appears, pointing
towards the IoT device as a visual indicator (Figure 6 (5)).
Other types of Action Nodes can be added using the Insert
function, which will be described later.

Figure 5. Authoring Navigation Node with (1) spatial movement, (2)
hand-drawn segment line, and (3) hand-drawn curve.

Figure 6. The process to add IoT interaction Node. (1) First scan its QR
code to (2) register it into the AR scene. (3) Then touch on its virtual
icon (4) to access the function list. (5) When finished, a green arrow path
will appear for visual confirmation.

EventLine task visualization. While the AR view is good
for spatial task visualization, it is constrained by the view of
the display, which makes it difficult for user to perform global
monitoring and manipulation of the entire task, especially
when the task is authored in a large cross-room environment.
To compensate for this on a handheld device, we introduce
an abstract visualization of the task, called EventLine. The
design of EventLine is inspired by the timeline concept used
commonly in the animation industry. The difference being
that, in our case, the task is governed by events, such as robot
navigation and IoT interaction. As is illustrated in Figure 7
(1), the EventLine has all the non-navigation Nodes shown
on it as icons, and the user can tap on it to view its details,
edit it or delete it (Figure 7 (3)). By dragging the handle on
the EventLine, the user can preview the task with a virtual
robot (Figure 7 (2)). This is designed to help users simulate
the robot path execution to avoid unexpected errors. When
multiple task lines exist, only the currently selected task line
will show its EventLine on the screen, to keep the screen view
clean. User can switch the selected task line by tapping on it
in the AR view. The selected task line will be highlighted with
the white indicator flowing through it.

Task Manipulation
The use of EventLine not only helps one to visualize the task
in a linear abstract form, it also provides users with an editing
tool to access the task details visually and manipulate them.

Insert. By dragging the handle, users can insert new Nodes
into the designated position in the TaskSequence, which is
illustrated by the position of the virtual robot (Figure 8 (1)).

Figure 7. (1) EventLine represents the task in a linear and compact
format. (2) User can drag the handlebar to preview with a virtual robot.
(3) User can tap on the icon to review its detailed information, and to
edit or delete it.
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Figure 8. The Insert function. (1) User can drag the EventLine handle-
bar and choose insert location for (2) non-robotic IoT function Action
Node, (3) Time Node, or (5) Logic Node that represents logic driven
event with an alternative task line. (4) It’s trigger condition is defined
from the working and sensing status of the connected devices.

These Nodes are 1) non-robotic IoT Action Nodes, 2) Time
Nodes, and 3) Logic Nodes. To insert an IoT function, the
system provides the user with a list of all the IoT devices
that are connected to the system (Figure 8 (2)). Users then
select from the list, access the function of that IoT, and insert
it into the TaskSequence. To insert a Time Node, users either
set a fixed wait time (Figure 8 (3)), or define a wait...until
condition that is triggered by the IoT working status or sensing
values. User can repeat the process and create composite
AND/OR boolean conditions. In terms of the Logic Node,
upon selecting, an alternative TaskSequence will be created
and user will be asked to define the trigger condition, which is
the same condition definer interface for the Time Node (Figure
8 (4)). The newly created TaskSequence has all the Nodes
prior to the insert point copied from the original TaskSequence.
This allows users to define new task line that branches from
the Logic Node position (Figure 8 (5)). When executing a
task with multiple TaskSequences, the system will run from
the default TaskSequence (the first created TaskSequence) and
decides which TaskSequence to continue at an Logic Node,
based on the condition check.

Figure 9. The Edit function for partially loop, mirror, or delete the au-
thored task.

Figure 10. Post-play features of V.Ra system. (1) User can monitor the
robot execution during its Play mode using an external smartphone. (2)
Our system also creates video log that records the robot’s execution.

Edit. By utilizing the EventLine, V.Ra allows user to edit
their authored task by looping, mirroring, or deleting part of
the selected EventLine. The copy and mirror functions are
designed to increase the authoring efficiency for scenarios like
repeat this floor sweeping path 10 times (loop), or go back
to where you came from (mirror). When accessing the Edit
mode, two interactive markers will appear on the EventLine
with the middle part highlighted. Users can drag the markers
to define the edit range, and the corresponding part in the AR
view will also be highlighted (Figure 9).

Post-play Features
V.Ra’s system interaction does not end at the Play mode.
Guided by DG3, we want to keep the user in the loop during
the entire process. Even during and after the robot execution.
As illustrated in Figure 10 (1), our system allows users to live
monitor the task execution using an external smartphone, by
video streaming via the front camera of the authoring device
(the rear camera is used for SLAM tracking). User can stop
the whole operation via the STOP button if he notices some-
thing goes wrong or simply changes his mind. During the play
mode, our system will automatically record the video feed
from the front camera and generate an event-icon-embedded
video log and stores inside the device (Figure 10 (2)). User
can later access this video log to review what have happened
during the Play mode, for process analysis and debugging.

IMPLEMENTATION

Software Platform
Our software interface is implemented on ASUS Zenfone
AR mobile device. The AR SLAM feature is achieved using
Google’s software SDK (Tango Core [3]), and the application
is built with Unity3D engine. The live task monitor feature
is implemented with the WebRTC video stream service. It
is noted that Tango Core relies a built-in depth camera to
produce point cloud based user interaction. We chose this
device due to the technology availability at the time of our
initial development. However, our system is not limited to
depth camera based Tango device. V.Ra is fully compatible
with the latest AR platforms which use RGB-only cameras of
the regular smart phones (e.g., ARCore [1], ARKit [2]).

Hardware Prototyping
To showcase the concept of V.Ra system, we prototyped four
robots (Figure 11 (1-4)) and six different kinds of IoTs (Figure
11 (6-10)) for our use case demonstrations and preliminary
user studies. All the robots and IoTs are equipped with wifi
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Figure 11. Prototyped robots and IoTs. (1) TowerBot (2) GripperBot (3)
SweeperBot (4) WaterBot (5) Charging Station (6) Painting Machine (7)
3D printer (8) Sorting Box (9) Storage Station (10) Water Station

communication capability using UDP protocol, which is im-
plemented using ESP8266 and Arduino Mega microcontroller.
The motor functions of some robots and IoTs are provided
by the HerkuleX servo and Arduino Braccio robot arm. All
of our robots and IoTs are designed to prove the concept of
our proposed human-robot-IoT task authoring ecosystem, and
therefore they are mockup prototypes with fairly low fidelity.

Robot Navigation and IoT Interaction
During the play mode, the authoring device instructs the robot
to perform navigation and interaction activities. To navigate
the robot along a user-defined path, the device constantly
checks its current position and orientation in the SLAM map
coordinate system, and compares with the target Node’s co-
ordinate information to guide the robot’s movement. In other
words, the SLAM device is the ‘eyes’ for the robot to navigate.
To interact with an IoT, the robot first docks into the inter-
action position of the IoT by going through a short docking
path embedded within the interaction Node. All the IoTs have
similar docking target which is a red rounded object. At the
end of the docking path, the robot reaches close enough to
the docking target and it can finalize the docking process us-
ing the front color detection camera (Pixy CMUcam5). Once
the robot is docked with an IoT device, precise manipula-
tion (like grabbing an object from the Storage Station) can
be ensured and the interaction is proceeded via a three-way
communication among the authoring device, robots and IoTs.
For example, to grab from the storage station, after successful
docking, the robot first asks the Storage Station about how
many objects are currently stacking on it, and based on the
answer it grabs at different positions and then completes this
Robot-IoT interaction.

Figure 12. Communication among the robot, IoT, and the authoring
device during navigation and robot-IoT interaction.

USE CASES
In this section, we demonstrate three different use cases of
V.Ra system in household scenarios. For better visualization
of the use cases, please refer to our demo video.

Case 1: SweeperBot for Smart Floor Cleaning. Our first
use case features SweeperBot for user defined smart floor
sweeping. As opposed to commercial products that try to
survey the entire room, our system allows user to pinpoint
the area that needs cleaning, thus greatly increase the clean-
ing efficiency. Before the user starts, he notices the power
LED on the SweeperBot blinking, indicating a low battery
status. While trying to finish the task authoring without any
delay, the user programs the robot to go into the Charging
Station to charge for 20 mins using the Timer delay function
(Figure 13 (1)), then pinpoints the area for cleaning using
the SpotSweeping robot function (Figure 13 (2)). The user
also authors the curved sweeping route under the table and
uses Mirror and Loop functions to repeatedly clean that area.
Noted that the robot is able to successfully cruise under the ta-
ble with poor lighting conditions (Figure 13 (5)), which shows
the robustness of the system’s navigation capability.

Figure 13. Use case 1, SweeperBot for household floor cleaning chore.

Case 2: TowerBot for Automated Fabrication. Our second
use case features TowerBot in a large clustered room (Fig-
ure 14 (1)), helping makers with automated fabrication process.
In this demo, the user wants to fabricate a few parts through
the following process. Each part is 3D printed, surface coated
in the Painting Machine and then placed into the Sorting Box.
The entire process take several hours. To automate the above
task and fabricate three parts, he first uses a triggered Time
delay for the robot to wait until the 3D printer finishes printing
the current part, picks it up (Figure 14 (2)), then authors the
3D printer to start printing another part. After that, he plans

Figure 14. Use case 2, TowerBot for automated DIY fabrication.
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the path for the TowerBot to navigate in the room and interact
with the Painting Machine (Figure 14 (3)) and the Sorting Box
(Figure 14 (4)), then comes back to the rest area to charge the
battery. Before executing, the user authors a Repeat function
upon the entire task for three time with an interval of 1 hour
for battery charging.

Case 3: WaterBot for Daily Plant Watering. Our third use
case features WaterBot for automatic daily watering of home
plants (Figure 15). The Flower needs regular watering every-
day, while the Grass needs much less water. To cater to the two
plants with different watering frequency needs, the user first
authors the WaterBot to water the flower (Figure 15 (2)) and
then comes back to the Charging Station, then repeat the task
everyday (Figure 15 (5)). On the way back to the Charging
Station, he Insert(s) an alternate task line which is triggered
by the moisture sensor planted in the Grass , to water it when
needed (Figure 15 (3)). He also Insert(s) another alternate task
line triggered by the WaterBot water level sensor, to go to the
Watering Station and refill its tank when it’s running out of
water (Figure 15 (4)). This use case demonstrates the ability
to author flexible logic driven events and shows the potential
for home environment automatic plant and pet care taking.

Figure 15. Use case 3, WaterBot for daily plant watering.

PRELIMINARY EXPLORATORY STUDY
To evaluate the navigation and overall usability of our system,
we invited 10 users (7 male) from various backgrounds to
our two-session preliminary user study. None of them had
prior experiences with our system and their age ranged from
22 to 30. The two-session study was conducted in a 6.5x4.5
meter room using the GripperBot, and the entire process was
video recorded for further analysis. Each user was given a 15
min tutorial before proceeding to the task in session 1. After
each session, the user was given a survey to answer subjective
and objective Likert-type questions. Each Likert-type item is
graded by users from 1 to 5, on the usefulness of the feature
and the level of agreement. A standard SUS questionnaire was
also given to each user after all the study.

Session 1: Navigation Authoring Evaluation
Using a SLAM embedded AR interface, our system is capable
of fast and accurate in-situ navigation authoring, which is one
of the system’s core features. The first session of the study is
designed to evaluate this with novice users.

Procedure. As is illustrated in Figure 16 (1-2), we have drawn
an ‘S’ shaped track (40 cm wide, total length about 13.5 m)

Figure 16. (1) Illustration of the ground setup for session 1. (2) User
authors navigation paths for the robots to travel within the track. Result
of session 1 are shown as (3) authoring time, and (4) navigation accuracy.

on the floor and asked the participants to author navigation
path(s) for the robot (28 cm wide) to go through it while trying
to maintain within the track. The participants were asked to
use all three methods one by one (spatial RECord movement,
hand-draw segment, hand-draw curve) to author the path at
their normal speed. The navigation accuracy was measured
as distance the robot traveled within the track / its overall
traveled distance, this measurement is acquired from visual
analysis of the video record. If any part of the robot goes out of
the track, the condition was recorded as not met. Besides the
accuracy, authoring time for each approach was also recorded.

Result and Discussion. Before inviting the novice users, the
authors have run the process 3 times and chose the most fluid
one as the baseline for this exploratory study, shown as follow.
REC: 9s, 90%; Segment: 25s, 94%; Curve: 19s, 92%. When
analyzing the result from the users, we found that all users
were able to complete the authoring within 36 seconds using
any of the three methods. As is shown in Figure 16 (3-4), all
three methods were able to achieve high navigation accuracy
(> 87%) with stable performance (low SD). Among the three
methods, REC mode is the fastest to author navigation path
(avg = 15s, sd = 3.2), while still maintaining a good accuracy
(avg = 87%, sd = 1.4). Segment Line takes most time to author
a new path (avg = 32s, sd = 3.7), but has the highest accuracy
(avg = 93%, sd = 1.6). On the other hand, Curve takes less
time (avg = 27.5s, sd = 3.6) with a small sacrifice for accuracy
(avg = 91.5%, sd = 1.3). It is noted that the accuracy of the
off-the-shell SLAM tracking (Tango Core) is within a few mm.
However, the real navigation accuracy applied on a physical
robot in V.Ra is affected highly by the driving mechanism of
the robot itself. In fact, even a perfect trajectory (in the middle
of the track) still only has 90%-95% accuracy when applied
on the GripperBot. This study is to explore the navigation
authoring efficiency and interaction intuitiveness to provide a
reference preliminary accuracy test for our system.

According to the after-session interview, most participants
(6/10) stated that their most handy method to author robot path
is through using a Segment Line. This is because the segment
method is the easiest means for a small room-scale area. “The
segment method is my favorite, I can simply tap on the screen
and create a path without needing to move my body (P2).” “I
like the segment method, it is fast and intuitive, just touching
a few times on the screen (P8).” The second favorite (3/10)
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is the curve method, especially at a corner region. While its
feature is beneficial to create curved trajectory with ease, some
users found it hard to master. “I think drawing on the screen to
create a path is interesting, even though it needs steady hands
(P7).” It is noted that not many users (1/10) appreciate the
REC mode for this task, due to the relatively small area of the
study room, they preferred to avoid walking in the cluttered
scene setup. However, most users (9/10) admitted that REC
mode is more suitable for larger area cross-room navigation
authoring, where looking at and tapping on the screen along
the way would be very inconvenient.

Session 2: System Usability Evaluation
The second part of the study is to evaluate the overall usabil-
ity of our system by asking the participants to complete a
comprehensive task.

Procedure. The setup for this session of the study is illustrated
in Figure 17. Where the Storage Station 1 (S1) is stacked with
orange objects, while S2 and S3 are empty. The Painting
Machine (P) can paint one object at a time, into red color,
using 3 minutes. There is a Doorway (D) (represented using
a Red-Green traffic light LED) in the setup that periodically
opens and closes. The task is to stack two red objects onto
S3. To achieve this, participants need to author the robot to
navigate in the scene, first get the orange object from S1, paint
it to red in P, then place it onto S3. Each participant was given
30 mins for this task and they were encouraged to explore
as many different approaches as they like to complete the
task. Participants were given full access to all the functions
of the system, including the post-play features, to thoroughly
experience V.Ra system.

Results and Discussion. All participants were able to suc-
cessfully complete the tasks. The average authoring time for
each approach is 2 min 16 s. Figure 17 (1) illustrate the most
commonly used approach, which have been tried by 8 out of
10 participants. Though it is the most straightforward method,
it is not the most efficient authoring approach in terms of robot
travel distance and execution time for this task setup. Many
participants were interested in trying different approaches af-
ter the basic solution. Figure 17 (2-4) illustrates some of
the more exciting task authoring. P4 has created alternative

Figure 17. Results of study session 2 on a comprehensive task with dif-
ferent approaches from the users.

TaskSequence that allows the robot to take the shortcut if the
Doorway is open, otherwise take the detour (Figure 17 (2)).
While P7 determines to take the shortcut no matter what, if
the Doorway is closed, the user authored the robot to wait at
the entrance until it opens (Figure 17 (3)). Since this task re-
quires two objects to be stacked onto S3, most participant use
Loop and/or Repeat function to automate the authoring for the
second object. However, P11 had a different and interesting
approach. While the Painting Machine is processing the first
object, instead of waiting idly, the user programmed the robot
to go take the second object and put it onto S2 temporarily
(Figure 17 (4)). It is worth mentioning that this method takes
less time for robot to execute, but it did take more time for the
user to author (5 min 27 s).

Observation and Feedback: Meeting the Design Goals
The Likert-type result from the two-session preliminary user
study is shown in Figure 18. From our observation, partici-
pants could quickly learn the features and interactions of V.Ra,
the 15 min tutorial was more than enough to shake off the cold
feet for a novice user and they are excited to try V.Ra on their
own. The decision of using an app-based smartphone device
(Q1: avg = 4.8, sd = 0.4) greatly lowers the cognitive load for
a novice user because they feel they are already familiar with
the system. “I like the idea of using my own smartphone to
control the robots and IoTs, makes me feel more comfortable
about using the technology (P12).” The clean style of our UI
design (Q2: avg = 4.6, sd = 0.7) and the nature of physical
spatial authoring (Q4: avg = 4.8, sd = 0.6) also helps users
boost up a quick start by creating a basic robot task within a
minute (Q3: avg = 4.4, sd = 0.8). “It’s very easy to plan a
task, just walk around to the device and click a few buttons
(P3).” This indicated that our prototype system is accessible
and ready-to-use for a new user, with a fairly low skill floor to
get started, which meets our DG1 and DG4.

Participants were generally receptive to the features and func-
tions embedded within V.Ra. some of the task manipulation
functions were highly appreciated by the participants. “I re-
ally like the edit function, it’s so simple and effective to create
repetitive robot task. (P9)” On the other hand, the Insert func-
tion received mixed feedback from the user. While most users
(7/10) acknowledged that the feature of time and logic based
events has the potential to increase the level of task complexity
and real-life usefulness (Q7: avg = 4.1, sd = 1.3) “I think the
Insert-alternative-task function is very useful to create real-
life comprehensive robotic jobs (P7)”. Two users (P4, P6) felt
that the interaction flow of authoring the logic as well as the
capability of the programming can be further improved. “It
took me some moment to figure out how to make an if...else
task, I think the UI and interaction about this part can use
some more work (P6).” Overall, the participants agreed that
the features and function of V.Ra are well integrated (Q6: avg
= 4.4, sd = 0.8) and the system has a high skill ceiling that
allows users to evolve through iteration and produce complex
robot task authoring, therefore meeting our DG3 and DG4.

Survey responses were positive about the visual feedback of
the planned task provided by our system. The AR view of
planned robot path with IoT interaction was highly appreciated
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Figure 18. Likert-type result after the two-session study.

by all users (Q5: avg = 4.8, sd = 0.4), “I think it’s a really cool
idea to use augmented reality to visualize the robot task in
3D environment, helps me to simulate what’s going to happen
and remove my doubt (P2).” the same appreciation was re-
ceived for other task visualization features like the EventLine
(Q8: avg = 4.9, sd = 0.3) and post-play feature (Q9: avg =
4.7, sd = 0.5). “My favorite thing about V.Ra is that I can
know what’s going on through the entire process, even after
the programming (P11).” We believe these feedbacks have
confirmed that our system has engaged the user-in-the-loop
during the robot-IoT task planning lifecycle (DG2 and DG3).
The System Usability Scale (SUS) survey was also deployed
after the second session, and the response result is 85.25 with
a standard deviation of 6.6, which indicated high usability.

LIMITATION AND FUTURE WORK
SLAM tracking. The current system relies solely on SLAM
to navigate at room-scale level during the execution. Though
fairly robust, the tracking can be lost when the camera view
lacks sufficient features, i.e. facing towards a white wall.
Current system has no way of recovery in the event of lost
tracking, and is therefore handicapped. To deal with this issue,
a future system can embed a lost-tracking response protocol
that allows the robot to automatically restore the tracking.

Logic interaction. Current system allows users to create logic
driven events based on the boolean value from the robot’s
or IoT’s working status and sensing value. We believe this
limitation is partly due to the mobile platform, which is better
suited for touch-based toggle interaction. Future endeavors
should explore other interaction modalities, with different
platforms like head-mounted ones, to achieve high level of
complex programming with intuitive interactions.

Robotic system capability. The robots demonstrated in this
work are proof-of-concept prototypes and are very limited in
their functional capabilities (i.e. no auto obstacle avoidance or
fault detection and correction, etc). To develop robotic system
for practical real-world applications, multiple sensors can be
fused with the robot to improve its perception capability. This
can potentially enable the robots to automatically solve local
issues independently, such like the lost-tracking problem. With
more advanced robots, we can expect future robotic authoring
systems to focus more on high-level user intent authoring, and
less on the low-level execution process details.

IoT registration. Instead of using a QR code for IoT reg-
istration (current approach), future work can automate this
process by introducing other IoT localization methods and
cloud robot/IoT database. Further, our application is not lim-

ited to active IoT devices, but also passive objects, such as door
handle, light switch, trash cans, and more chores in kitchens
and living rooms.

Single smartphone approach. The nature of the current ap-
proach limits the task to only one mobile robot. However, our
system can easily adapt to multi-robot collaborative task flow.
In this case, each robot needs individual navigation capability
and their map needs to be synchronized. Any individual au-
thoring information can be shared through a cloud server and
visualized on other user’s handheld AR view, for collaborative
task authoring of multi-branched complex logic driven tasks.
The smartphone approach is used for our concept prototype.
In general, the authoring interface can be any specially de-
signed handheld devices. It does not need to be someone’s
smartphone when using in public location.

Human-Robot-IoT ecosystem. For future endeavor to enrich
the ecology, a cloud based data management system needs to
be setup with a new protocol created for the human-robot-IoT
communication. This enables better handling of more complex
tasks that requires coordinated scheduling among multiple
devices, through efficient distribution of available resource,
and intelligent control of information flow. The expandability
of the system also needs to be considered. For example, new
devices and can easily be developed to be connected into the
ecosystem in a plug-and-play manner.

CONCLUSION
This paper has presented V.Ra, a spatially situated visual pro-
gramming system for household robot task planning. We
have explained our design rationale and demonstrated our
user-oriented system design process. We adopted a workflow
approach of one single mobile AR device for task authoring
and robot execution, and developed our authoring interface
for robot-IoT in-situ visual programming. We have shown
three different use cases for household applications, featuring
floor cleaning chores, DIY maker fabrication, and daily plant
watering. Finally, the promising results from our 2-session
preliminary user study have validated the navigation robust-
ness and the system useability, showing that the prototype
system has reached our design goals. In V.Ra, humans and
smartthings enhance each other’s capability within the fluidly
connected ecology, such that spatially oriented collaborative
tasks can be operated with lightweight system requirements.
V.Ra highlights the initiative of human user and emphasize
its position in the human-robot-IoT ecology. By shifting the
design priority from automation to human interaction, Vra
has demonstrated a new direction for HRI with the promise
to deliver timely real-world solution to a broader population.
We believe that V.Ra opens an inspiring perspective for re-
searchers to reconsider human’s role in the coming era of
Internet-of-Robotic-Things.
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