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ABSTRACT

The ground-breaking performance obtained by deep convolutional neural net-
works (CNNs) for image processing tasks is inspiring research efforts attempt-
ing to extend it for 3D geometric tasks. One of the main challenge in applying
CNNs to 3D shape analysis is how to define a natural convolution operator on non-
euclidean surfaces. In this paper, we present a method for applying deep learning
to 3D surfaces using their spherical descriptors and alt-az anisotropic convolution
on 2-sphere. A cascade set of geodesic disk filters rotate on the 2-sphere and col-
lect spherical patterns and so to extract geometric features for various 3D shape
analysis tasks. We demonstrate theoretically and experimentally that our proposed
method has the possibility to bridge the gap between 2D images and 3D shapes
with the desired rotation equivariance/invariance, and its effectiveness is evaluated
in applications of non-rigid/ rigid shape classification and shape retrieval.

1 INTRODUCTION

A recent research effort in computer vision and geometric processing communities is towards repli-
cating the incredible success of deep convolutional neural networks (CNNs) from the image analysis
to 3D shape analysis. A straightforward extension is to treat a 3D shape as a voxel grid (Wu et al.
(2015)); Maturana & Scherer (2015));|Song & Xiao|(2016); Wang et al.[(2017); Riegler et al.[(2016)).)
Alternative methods include encoding a 3D shape as a collection of 2D renderings from multiple
cameras (Qi et al|(2016); [Su et al.| (2015); Bai et al.[(2016),) or projecting a 3D object onto geo-
metric entities which can be flattened as 2D images (Shi et al.|(2015));|Cao et al.|(2017); |Sfikas et al.
(2018)).) All these methods convert a 3D shape into an Euclidean grid structure which supports shift
(translational) equivariance/invariance, such that conventional CNNs can work out-of-the box.

Although embedded in R?, 3D shapes are typically represented as manifold surfaces. Recent re-
search has particularly focused on convolutional networks for non-Euclidean domains such as man-
ifolds or graphs. One of the main difficulties of adopting CNNs and similar methods in these non-
Euclidean domains is the lack of shift-invariance on surfaces or graphs (Masci et al.| (2015).) Our
motivation comes from the representation of 3D shapes as functions on spheres. We transfer the
problem of manifold surface convolution into spherical convolution with the primary benefit of ro-
tation invariance. Although shift-invariance is hard to achieve on general surfaces, by replacing
filter translations with filter rotations, rotation equivariance/invariance can be obtained on the 2-
sphere. Furthermore, spherical descriptors of 3D shapes are compact and require a network of lower
capacity, compared to voxel or multi-view representations. In this work, we are primarily interested
in analyzing 3D geometric data using a specific type of spherical convolution either for classification
or retrieval tasks.
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Figure 1: An example of our alt-az anisotropic spherical convolution neural network (a®S-CNN)
applied for a non-rigid shape classification problem.

2 RELATED WORK

Surface convolution One approach to shift-invariance on surfaces is using re-parameterization
methods. Geodesic CNN (Masci et al.| (2013)); Bronstein et al.| (2017); Monti et al.| (2017)) uses
local geodesic polar coordinates to parameterize a surface patch locally around a point. An angular
max-pooling layer or local coordinate frame alignment are proposed to account for the filter’s local
rotational degree of freedom. Spherical parameterization methods (Peng & Timalsenal (2016); [Praun
& Hoppe|(2003);Gu et al.|(2004)) map a genus-0 3D shape onto a sphere bijectively which provides
a global framework for the spherical convolution. [Sinha et al| (2016} 2017) transfer a genus-0 3D
shape into a parameterized spherical image, and then flatten it into a planar geometry image. Data
augmentation is necessary for geometry images in order to account for inconsistent cut positions
and orientations. Toric covers (Maron et al| (2017)) is a seamless representation which stitches
four copies of a genus-0 surface and globally maps them onto a planar flat torus. Spectral methods
perform convolution on the spectral domain using the graph Laplacian and its eigen space decompo-
sition (Y1 et al.| (2016); [Bruna et al.| (2013))). This method can efficiently address the shift-invariance
problem, however, it suffers the difficulty with cross-shape learning since the spectral decomposition
of each shape can be inconsistent.

Spherical convolution Spherical representation of 3D shapes have been used for shape matching
(Kazhdan et al (2003)); [Frome et al.| (2004); Makadia & Daniilidis| (2010)), remeshing
Hoppel (2003)), medical imaging (Shen & Makedon| (2006)) and other tasks before the deep learn-
ing era. Recently, researchers have started to explore deep spherical convolutional neural networks
for tasks such as molecular modeling (Boomsma & Frellsen| (2017)), ominidirectional vision (Sul
& Grauman| (2017)) and 3D shape recognition (Cohen et al.| (2018)); [Esteves et al.| (2018)). [Su &
Grauman discretized a spherical image using a lat-lon grid (see Fig[3(a)) and flattened it
through equirectangular projection. A variable filter size is proposed to compensate for the imbal-
anced sampling along longitudinal direction. In[Boomsma & Frellsen| (2017)), a cubed-sphere grid
(see Fig[3[b)) is investigated in addition to a lat-lon grid, to achieve relatively more uniform grid
on spheres. The work of [Cohen et al| (2018)) generalizes the spherical convolution with the full
three rotational degrees of freedom in the 3D space, and it maps a spherical image to features on
SO(3) using generalized Fourier transform. A similar work is done in [Esteves et al.| (2018) with
azimuthally symmetric filters.

In this paper, we propose an alt-az anisotropic spherical convolutional neural network (or a>SCNN
for short) for various rigid and non-rigid shape analysis tasks. Fig. [I] gives an overview of our
method. A 3D shape is represented as a set of spherical images using spherical parameterization (for
non-rigid shapes) or spherical projection (for rigid shapes, not shown in the figure). An icosahedron
based spherical grid is used as the discrete representation of the spherical images. The convolution
is applied directly on the spherical representation of the shape using a geodesic disc shape of filter.
The proposed deep a>SCNN has multiple sequential convolutions followed by a nonlinearity such
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as ReLU and Spherical (max or average) Pooling, all conducted on the spherical domain. Output is
a set of spherical images which capture high-level shape feature descriptors. Following are the main
contributions of our paper:

(1) theoretical analysis of the relationship between various definition of convolutions for
functions defined on the 2-sphere and a novel convolutional neural network using alt-az
anisotropic spherical convolutions that emulates most aspects of standard convolutional
networks in R2;

(2) an efficient geodesic grid data structure to support fast computation of the spherical convo-
lution with locally-supported geodesic disc filters;

(3) an empirical demonstration of the utility of a>SCNN with 3D shape learning problems.

3 ALT-AZ CONVOLUTION ON 2-SPHERE

3.1 NOTATIONS AND PRELIMINARIES

2-sphere or unit sphere S? can be regarded as the set of points © € R® with norm one. The 2-
sphere is a 2-manifold on which any point 1 is a unit vector. The @ can be parametrized by spherical
coordinates (6, ¢) € [0, 7] x [0, 27] such that u(6, ¢) = (sin 6 cos ¢, sin O sin ¢, cos ). A regular
region r on S has a positive area A = [ ds(i1), where ds(@t) = sin fdfd¢.

A special region on the 2-sphere is called polar cap region Rp,, around the north pole, 7(0,0, 1),
which is azimuthally symmetric and is parameterized by a maximum colatitude angle 60:

Rg, £ {(0,0) : 0 <0 < 6,0 < ¢ < 2} M

3D Rotations The set of rotations in three dimensions is called “special orthogonal group” SO(3).
SO(3) is a 3-manifold on which any rotation R € SO(3) can be represented as a 3 x 3 matrix. Each
rotation R is associated with three independent parameters, we use the right hand rule zyz-Euler
angles ¢ € [0, 27],9 € [0, 7], and w € [0, 27], i.e.

R=R2 2 RORYRY 2)

If we fix the third rotation angle w to zero, SO(3) is reduced into a subset 2 with two independent
parameters. Any rotation R € 2{ can be described as an alt-az rotation[ﬂ

R=R 2 RORY 3)

An alt-az rotation can be considered as a composition of an altitude rotation Rl(gy) € SO(2) and a
azimuth rotation REPZ ) e SO(2).

Rotation operator We define the effect of general rotation on spherical functions as an opera-
tor Dr(, ¥, w) which corresponds to the rotation matrix R defined in Eqn. (2). The effect of
Dr(p,9,w) on the spherical image f can be realized through an inverse rotation R~ of the coor-
dinate system. That is,

(Dr(p,9,w)f)(0) = f(R™0). )

3.2 CONVOLUTION ON THE 2-SPHERE

The convolution operator in n dimensional Euclidean space R™ is given by:

(he f)x) 2 / hx—y)f(y)dy, xcR" )

n

The above equation is used as a reference to develop different notions of convolution on the 2-sphere.

!"To avoid the ill definition at the two poles, when applied for spherical convolution, we constrain the alt-az
rotation by imposing the following condition: if ¥ = 0 or ¥ = 7, then ¢ = 0.



Published as a conference paper at ICLR 2019

Unlike conventional Euclidean domain signal, for spherical functions there is no standard convolu-
tion operators defined. Two competing definitions exist in literature:

Type I: General anisotropic convolution: This convolution operator on 2-sphere tries to emulate
the convolution in Euclidean spaces by replacing translations with full rotation in SO(3) and inte-
grating over all possible rotations. This gives the most general definition of spherical convolution.
Given a spherical filter i and spherical image f evaluated at a point t € S?, general anisotropic
convolution on S? is defined:

R F(R) = glp,0,w) 2 /SZDR . 0,w)h) (8) f (&) ds(8) ©)

k=1

Note that the output function ¢ is not defined on the original S2. Instead, it is a function of three
Euler angles (¢, ¥, w) and is therefore defined on the 3-manifold SO(3) (please see |Cohen et al.
(2018)) for detail.)

Type II: Azimuthally isotropic convolution: This spherical convolution outputs a function defined
on S? using an azimuthally symmetric filter ho (1) (Esteves et al.| (2018)); Driscoll & Healy| (1994)):

@) 2 [ 5 (Dr ()@ )
ho fR) = gle0) 2 [ 3 (Dre(9) 0 Dy (9)ho) (@1 )ds(8) ®)
k=1

Referring to Eqn. (9), we see that an arbitrary filter h is essentially transformed into a rotationally
symmetric filter hg through circular “averaging”. Type II spherical convolution zeros the contri-
bution of angular variations from a filter, and hence, is considered restrictive for pattern matching
purpose in spherical image processing.

Towards developing a spherical convolution which respects some important properties of standard
convolutions defined in R?, we propose to use alt-az spherical convolution. In R2, the two spatial
translations are isometric mappings and are directly convolved, whereas the isometry corresponding
to a rotation in SO(2) is generally not convolved. Several works on the rotation equivariant/invariant
CNN s have been proposed (Weiler et al.| (2018)); |Qiu et al.| (2018)); [Kondor & Trivedi| (2018)),) and
are proven to be effective; but they typically incur a significant increase in the number of parameters
and computational load. Similarly, in the spherical domain, the two degrees of freedom in alt-
az rotation are the direct analogs of two spatial translations in R? (“shifting on the sphere”), and

the third rotation R((f), emulating the non-rotatable filters in R2, can be fixed and treated with data

augmentation. Intuitively, we want to shift a spherical disc filter on the 2-sphere without self rotating
the filter. We now formally define our alt-az spherical convolutional operator.

Type III: alt-az anisotropic spherical convolution (a3>SConv): Constraining the rotation of filter
within alt-az rotation set 2, a filter i spans the altitude change by ©J and azimuth change by ¢, and
is convolved with the spherical signal f. Mathematically, a3SConv is defined as:

(h+ F)(R) / Z Dilie, 0, 0)h) (@) (@) ds(a). ©)

a3SConv operator has the following desirable properties:

e Domain consistency: It takes two functions in L?(S?) and generates a function back in
L?(S?), such that cascaded layers of spherical convolutions can be utilized to extract hier-
archical spherical patterns;

o Azimuth rotation equivariance: An map / is rotation equivariant if £ o Dy = Dg o L.
In general cases, a®>SConv is not equ1var1ant to an arbitrar yé rotation in SO(3). If @ is an

azimuth rotation, a>SConv has the equivariance property’l IL.e. for an azimuth rotation
Dg(0,0,w),

2With two poles as the singular points. Please see the proof in appendix A.
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(hx Do f)(R) = Do(h* f)(R) (10)

(a) (b) () (d)

Figure 2: Rotation operators applied on a locally-supported kernel function. (a) An anisotropic ker-
nel function h defined on a polar cap; (b) applying an alt-az rotation Dg (7 /4,7/3,0) to h; (c) apply-
ing a general rotation Dg(7/4,7/3,7/2) to h; (d) applying a general rotation Dg(w/4,7/3,7/2)
to an azimuthally symmetric filter hg.

Convolution with locally-supported filters Traditional CNNs are efficient due to the use of
locally-supported filters and weight sharing. On the 2-sphere, we propose to use locally-supported
geodesic disc filters in the form of polar caps. Mathematically, a locally-supported filter is defined
as a space limited spherical function belonging to the follow subspace:

Hp (S*) 2 {h € L*(S?) : h(0, ¢) = 0,Y0 > r0}, (1)

where R, is the polar cap region on which the geodesic disc filter is defined, and r0 defines the
size of a filter. Fig. 2] shows a locally-supported geodesic disc filter undergoing different types of
rotation.

4 SPHERICAL CONVOLUTIONAL NEURAL NETWORK

Our a®SCNN consists of several layers that are applied subsequently (see Fig. 1). Besides the
a3SConv layer described above, we further discuss the following two specific types of layers defined
on the 2-sphere.

A local max pooling (LMP) layer replaces a spherical image £ at any point ug(6y, o) with the
maximum function value in its geodesic disc neighborhood, i.e.,

fo o) = maz {f"™(a)}, (12)

[i—up | <70
where u(6, ¢) is a neighboring point of up, and |.| denotes the geodesic distance between them.

A global spherical max pooling (GMP) layer operates on a spherical image ™ with k channels
and outputs a k dimensional vector in R*. For each channel fi" (i = 1,2,...,k), a GMP layer
outputs a single value represent the most salient feature. Le.,

F ) = maz{f"} (13)

Notice a GMP layer is invariant to any rotation Dg(p,¥,w) of the input spherical image f:
GMP(Dgrf) = GMP(f).

Data augmentation After going through a set of a3SConv layers, the global azimuth rotation of
an input spherical image f will be transformed into the same rotation of the extracted spherical
descriptors (see Eqn. (10)). With a GMP layer followed, the extract feature vector will be invariant
to the azimuth rotation of f. For arbitrary rotation of f in SO(3), our a3SConv layer does not
have the equivariance property. This means data rotation augmentation is theoretically required to
recognize f in random orientations. In appendix B, we show that, an a>SCNN network constructed
by several a3SConv layers together with a GMP layer can generalize to arbitrary unseen orientations
with SO(2) rotation augmentation about any axis which is not parallel to y or z axis.
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5 NUMERICAL COMPUTATION OF ALT-AZ ANISOTROPIC CONVOLUTION

From a computational point of view, implementing the spherical convolution defined above in Eqns.
(8-10) is difficult because it is not possible to uniformly discretize the surface of the sphere such
that each sample point shares the same neighborhood. Therefore, a popular method of performing
spherical convolution is to project the discretized spherical functions and filters onto the span of
Wigner D functions for type I spherical convolution (see|Cohen et al.[(2018)),) or spherical harmonics
for type II spherical convolution (see Esteves et al.|(2018)).) They then perform the convolution in the
Fourier domain via point-wise multiplications. The lack of locality support in the spherical Fourier
transform inhibits us from using this method. Locally-supported filters belong to a subspace of space
limited signals which is by nature infinite-dimensional. No non-trivial local filters can have a finite
representation in the spectral domain. [Esteves et al.| (2018)) use spectral smoothness to enforce a
spatial decay in filters, and hence, achieve locality. However, the filters are still defined on the whole
spherical domain which is memory inefficient. In this paper, we propose an alternate method which
performs direct spherical convolution using geodesic grid discretization.

f=1

(a) (b)

Figure 3: Different geodesic grids on the sphere. (a) a lat-lon grid, (b) a cubed-sphere grid and
(c) icosahedron-sphere grid: from left to right,: one-frequency, two-frequency, four-frequency and
eight-frequency subdivisions.

Geodesic grid discretization Uniform geodesic grid cannot be achieved on the sphere except for
the projections of five platonic polyhedra - tetrahedron, cube, octahedron, dodecahedon and icosa-
hedron. These polyhedra can be further subdivided into different frequencies to obtain finer approx-
imation of a sphere (Fig. [(b) shows a subdivision of the projection of a cube on a sphere.) Among
the five platonic polyhedra, the icosahedron is most similar to the sphere (Schroder & Sweldens
(1995)). After the subdivision, the resulting triangulation has the least imbalance in area between its
constituent triangle (Fig[3|c)). Most of the vertices have six direct neighbors except for the original
12 vertices of the icosahedron. This makes the icosahedron-based geodesic grid discretization most
suitable for the discrete spherical convolution. We call this type of geodesic grid an icosahedron-
sphere grid.

The total number of grid vertices are N = f2 x 10 + 2, where f is the subdivision frequency.
Considering the structure of the icosahedron-sphere grid, in order to obtain a multi-level spherical
feature map, the stride of a convolution or pooling layer has to be a multiple of 2”. The stride is
applied accordingly to the subdivision frequency f. Fig. [3[c) shows the icosahedron in different
subdivision frequencies 1, 2, 4 and 8. A natural shape of the locally-supported filter correlating
with the icosahedron-sphere grid, is a geodesic disc which can be discretized as a hexagonal grid of
different ring sizes. Fig. ffc) shows two examples of such filters. The same shape of geodesic disc
and discretized hexagonal grid is used for local spherical max pooling LMP layers.

Efficient data structure The icosahedron-sphere grid data structure is self-sufficient to support
spherical convolution, pooling and other CNN operators. However the linked data structure (vertex-
edge-face and link data for topology) is not space efficient and is time consuming, in order to find
the neighbors of a vertex and shift a filter on the sphere during the convolution. In this work, we use
a rectilinear data structure to enable efficient spherical convolution and pooling. The icosahedron-
based spherical mesh can be opened into 2D plane and represented as a grid structure as shown in
Figl] The cut is along eleven edges of the icosahedron as shown in Fig. f{a) and (b). By rotating
the u and v axes in Fig. f[b) into orthogonal axes, we obtain five rectangular 2D patches to store
all the vertices of the icosahedron-sphere grid, as illustrated in Fig. f(c). This construction has two
main advances: (1) within each patch, shifting filters on the 2-sphere is approximately equivariant to
translation in u and v and (2) features on the geodesic grid can naturally be expressed using tensors,
which means that the spherical convolution can be efficiently implemented on a GPU.
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Figure 4: 2D rectilinear data structure for icosahedron-sphere grid. (a) The original spherical mesh
of 8-frequency; (b) an icosahedron-sphere grid is opened onto a 2D plane, and the colored edges in
the top and bottom indicate the locations along which the spherical grid is opened. (c) By rotating
the two axes u and v, the flattened icosahedron in (b) can be stretched into a rectilinear grid structure
represented by five 2D matrices.

When implementing spherical convolutions and pooling operations for the icosahedron-sphere grid,
one has to be careful in padding each patch with the contents of the other two neighboring patches.
If a point is on the colored cut-lines as shown in Fig. @{c), then its k-ring hexagon neighbors are
retrieved across the boundary of matrix. Notice here that by using the cross-boundary neighborhood
padding strategy, the rectilinear data structure realizes a seamless geodesic grid representation of the
2-sphere.

S04
"X EK.

HKS-1

@O

NDF
Functions from spherical projection Functions from spherical parameterization

Figure 5: Spherical functions for non-rigid shapes using spherical projection method (left) and
spherical parametrization and function mapping method (right). Here HKS-1 shows the first HKS
channel.

6 EXPERIMENTS

6.1 SPHERICAL DESCRIPTORS OF 3D SHAPES

As a pre-processing step for all experiments, we first need to convert 3D shapes to functions on the
2-sphere. Two different methods were employed to do this conversion: spherical projection for rigid
shapes and spherical parameterization for non-rigid shapes.

Spherical projection For rigid shapes, we project a 3D shape onto an enclosing sphere using a
straightforward ray casting scheme and we collect the following two types of spherical descriptors.
(1) Spherical Extent Function (SEF): This function describes a surface by associating each ray from
the origin to the distance of the last point of intersection of the model with the ray. (2) Normal De-
viation Function (NDF): This function describes the surface using the cosine angle between surface
normal at the last intersection point and the ray direction (see Fig. [5]left for example). Ignoring high
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Table 1: SHREC’11 classification result using different rotation modes with respect to three types
of shape descriptors. Here, NA = no augmentation, AZ = augmenting training data with azimuth
rotations about z-axis, SO(2)(x)=augmenting training data with SO(2) rotations about x-axis , Alt-
AZ = augmenting training data with alt-az rotations and SO(3) = augmenting training data with
random rotations.

NA AZ  SO@2)(x) AI-AZ SO(3)
Intrinsic-2 472% 689%  89.6%  99.71%  12.5%
Intrinsic-3  759% 91.6%  944%  99.7%  92.6%
Intrinsic-8  94.4% 100%  100%  100%  99.1%

non-convexity of surfaces, we assume the projections capture sufficient information of the shape to
be useful for rigid shape analysis.

Spherical parametrization Spherical projection produces extrinsic shape descriptors which are
not suitable for non-rigid shape analysis. To handle deformable shapes, we use the authalic spherical
parametrization method (Sinha et al.|(2016))) to obtain an area-preserving bijective spherical map and
use the following intrinsic shape descriptors: (1) Principal Curvatures: the two principal curvature
kmin and k4. measure the degree to which the surface bends in orthogonal directions at a point.
(2) Average Geodesic Distance (AGD): this measures the centerness of a point on the surface. (3)
Heat kernel signature (HKS) (Sun et al.| (2009)): this measures the amount of untransferred heat
after time ¢, assuming an unit heat source is added on each point of the surface (see Fig. [5|right for
example).

In all of the following experiments, spherical functions are discretized using icosahedron-sphere
grid with subdivision frequency f = 32. This will generate five patches of size 33 x 65, by stacking
them one above the other. The input size to all networks are 165 x 65 x K, where K is the number
of input channels. For the 12 valence-5 vertices in the icosahedron, we apply the shared hexagon
filter by computing the center point twice. Since it affects a small number of vertices, we empirically
validate that the effect can be ignored.

6.2 NON-RIGID SHAPE CLASSIFICATION

We first conduct experiments on SHREC’ 11 non-rigid shape classification, and we compare three
types of spherical functions: (i) Intrinsic-2 contains the two principal curvatures, (ii) Intrinsic-3 adds
AGD to intrinsic-2, and (iii) Intrinsic-8 adds five HKS sampled at 5 logarithmic time scales on top
of Intrinsic-3. And we compare five modes of experiments: (a) trained with original data without
data augmentation (NA), (b) trained with 36 azimuth rotation augmentation (AZ) by sampling w
per 10 degrees, (c) trained with 36 rotation augmentation (SO(2)(x)) by rotating about z-axis per
10 degrees, (d) trained with 72 alt-az rotation augmentation (Alt-AZ) by sampling 6 and ¢ per 30
degrees, and (e) trained with arbitrary 128 rotations (SO(3)). In each category, 16 objects are used
for training and 4 objects are used for testing.

Architecture and hyper parameters Our network contains five a3SConv-dropout-ReLU-LMP
blocks. A 20% dropout is added right after each spherical convolution layer for regularization. The
resulting spherical functions are pooled using a global max pooling (GMP) layer followed by two
fully connected layers for the final classification. A 50% dropout layer is inserted in between the
last two fully connected layers. We use 32, 64, 64, 128, 128 features for the a®SConv layers, and
512 features are output from the GMP and fed into the first fully connected layer. Each filter on S?
has kernel size ring-2, stride 1 and each LMP layer has size ring-2 and stride 2.

Results Table[I|shows the performance of these intrinsic descriptors for non-rigid shape classifica-
tion under different augmentation modes. Notice that the original testing data are randomly posed.
In spite the small training data, our network achieves good classification accuracy for Intrinsic-8
even without data augmentation.We attribute the capability to generalize to random perturbed data
to the use of LMP layers, which allows a certain amount SO(3) rotation invariance. Comparing
the four types of data augmentation strategies, our experimental result confirms that SO(2)(x) aug-
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Table 2: ModelNet classification result using different perturbation modes of the testing data,
demonstrating the rotation invariance property of our network with different types of unseen orien-
tations. Here, NR = non-rotated and X/Y denotes, that the network was trained on X and evaluated
onY.

NR/NR NR/AZ NR/ALT-AZ NR/SO(3)  SO(3)750(3)
ModelNet10  933%  84.0% 91.5% 90.2% 89.0 %
ModelNetd0  89.6%  73.4% 89.4% 87.9% 88.7%

mentation performs better than the original training data, AZ type augmentation and SO(3) random
augmentation. It is predictable that alt-az augmentation performs even better with more augmented
data. Theoretically, our network is invariant to azimuth rotation except for the two poles. Due to the
approximation error introduced in the implementation, we see AZ type data augmentation can com-
pensate those equivariance errors. Compare to other deep learning based non-rigid shape analysis,
the geometry image method (Sinha et al.| (2016)) is most similar to ours. Their reported classifica-
tion accuracy of 96.6% is also based on an alt-az rotation augmentation. Our method outperforms
the state-of-the-art approach by about 3% margin even by using two principal curvature (Intrinsic-2)
as inputs.

6.3 RIGID SHAPE CLASSIFICATION

We further experiment on ModelNet10 and ModelNet40 rigid shape databases, and we use the model
trained and tested on aligned data as baseline, and we explicitly test the equivariance/invariance
property of our learned shape representations by perturbing the testing data in different modes.

Architecture and experiment setup We experiment with four types of perturbations: (a) test
with original aligned data (NR), (b) test with azimuthal rotation perturbations (AZ), (c) test with
alt-az field rotation perturbations (Alt-AZ) and (d) test with random SO(3) rotations. We also ran-
domly perturb the training data and test it with randomly perturbed testing data. In these exper-
iments, two channels of spherical functions: SEF and NDF are used as the input and we use the
same network structure as we use in SHREC 11, except that in the five cascaded a®Sconv layers,
32,64,128,256,512 filters are used, and in the first fully connected layer, 1024 features are generated
for classification.

Results Table [2| summarizes the performance of a®SCNN for classifying rigid objects for unseen
orientations. The column NR/NR shows the classification accuracy for aligned training and testing
data. As expected, aligned data gives the best classification performance and it serves as the base-
line for evaluating the rotation equivariance/invariance of the learned models. Comparing the four
types of perturbing modes, the learned representation has the best classification accuracy for testing
data perturbed with alt-az rotation. For random SO(3) rotation, whether it is with perturbed testing
data only (see column NR/ SO(3)) or with both testing and training data perturbed (column SO(3)
/ SO(3)), our network still performs well, showing that > SCNN may generalize to unseen orienta-
tions even without data augmentation. It is counter-intuitive that azimuthal type of perturbation gives
slightly worse performance (see column NR/AZ) since in theory, our network is azimuthal rotation
invariant. We interpret this as the result of the equivariance error coming from icosahedron-sphere
grid tessellation and singularities at poles, while alt-az and SO(3) perturbation might compensate
this with perturbations which can be better treated by the LMP and GMP layers.

Discussion It is difficult to provide quantitative comparison because little research has been done
on learning rotation invariant shape descriptors. The state-of-the-art methods such as, volumetric
methods and point cloud based method report very high classification accuracies on ModelNet, but
none of them can generalize to unseen orientations. Given the rather task agnostic architecture of our
model and the lossy but compact input representation we use, we interpret our models performance
as strong empirical support of the effectiveness of learning alt-az rotation invariant shape descriptors
using alt-az spherical convolution operators.
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Table 3: Results and best competing methods for the SHREC17 competition, perturbed dataset.

Method P@N R@N Fl1@N mAP NDCG Inputsize params

Tatsuma & Aono| (2009) 0.705 0.769 0.719  0.696 0.783 38 x 2242 M
Furuya & Ohbuchi (2016) 0.814 0.683 0.706  0.656 0.754 126 x 10? 8.4M

Cohen et al.|(2018) 0.701 0.711 0.699  0.676 0.765 6 x 1282 1.4M
Esteves et al.{(2018) 0.690 0.684 NA 0.630 NA 2 x 322 0.5M
Ours 0.701 0.702 0.695  0.650 0.762 2x165x65 1.8M

6.4 3D SHAPE RETRIEVAL

We evaluate shape retrieval performance on the challenging SHREC’ 11 non-rigid dataset. Intrinsic-
8 is used as our input spherical images and we extract the output 512 features of the fully connected
layer as the shape descriptors. Our approach significantly outperforms all other methods with 0.82
mARP retrieval performance. Fig[6|uses the dimensionality reduction method t-SNE (van der Maaten
& Hinton|(2008)) to plot the rotation invariant feature descriptors extracted. It shows that our learned
descriptors successfully disentangle the original 3D object space and exhibit a clustered behavior in
the feature vector space.
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Figure 6: The shape descriptor of SHREC’11 original models (training set) extracted by our
a®SCNN network, rendered with t-SNE.

Finally, we run shape retrieval experiments on ShapeNet Core55, following rules of the SHREC’17
3D shape contest (Savva et al.| (2016).) There is a aligned regular dataset and a version in which
all models are perturbed by rotations. We concentrate on the perturbed version to test the quality
of our learned shape descriptors to unseen orientations for large scale rigid 3D object retrieval task.
An SO(2) rotation augmentation is performed by rotating each training data per 60 degrees about a
random axis.

The same architecture and same type and size of input that we used for ModelNet classification
problem is used in this experiment. The learned model from ModelNet40 was transferred and fine-
tuned for SHREC’ 17 feature extraction. Our trained model obtains a 83% classification accuracy
after about 24 hours of training and we use the 1024 features extracted from the first fully connected
layer as the invariant shape descriptors to perform the shape similarity calculation using cosine
distance. We then evaluated our trained descriptors using the official metrics and compared to the
top four competitors, which includes the other two spherical convolution based methods. As shown
in Table. E], all three spherical convolution based methods (Cohen et al.| (2018) |[Esteves et al.| (2018)
and ours) preform slightly below the current best, we believe that this is due to the information
loss caused by projecting 3D shapes onto the 2-sphere. To our surprise, all the three spherical
convolution based methods report very similar performance, ours is slightly below (Cohen et al.
(2018)) and slightly above |Esteves et al.[(2018)). Both of the other two spherical convolution methods
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utilize Fast Fourier Transform (FFT) to compute the convolution which does not support local filters.
Ours offers an alternative method which complete the current work while offers multi-level feature
extraction capabilities and GPU based fast computation.

7 CONCLUSION

In this paper, we presented and analyzed a convolutional neural network based on alt-az anisotropic
spherical convolution operator which is different from the existing types of networks. Numerically,
we implemented an efficient algorithm for computing spherical convolution with locally-supported
geodesic filters using icosahedron-sphere grid. We demonstrated the efficacy of our approach for
non-rigid/ rigid shape classification and retrieval and showed that it compares favorably to competing
methods. Furthermore, we have shown that the proposed method can effectively generalize across
rotations, and achieve state-of-the-art results on competitive 3D shape recognition tasks, without
excessive data augmentation, feature engineering and task-tuning.
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APPENDIX

A AZIMUTH ROTATION EQUIVARIANCE

Under the definition of alt-azimuth anisotropic convolution, for an alt-az rotation Dg (p, ¥, 0), and
a general rotation D (1,1, w1), (assume the number of channels K = 1 for simplicity,) we have:

(h+ Do f)(R) = [ (Prb)@)f(Q a)ds() = [ AR F(Q "a)ds(a)
S2 S2 (14)
- / h(R~ Q) f(8)ds(8) = / h(Q™'R)~ i) f (@)ds ()
SZ SQ

Q'R is in general a rotation in SO(3), but when Q is an azimuth rotation, Q'R =

R(fl,lef)ngy) = RE;Z wle’) is an alt-az rotation such that,

(h*DQf)(R):/ h((QT'R) ') f(@)ds(d) = (h» f)(Q™'R) = Dg(hx f)(R) (15

S2
B SO(2) ROTATION AUGMENTATION FOR GENERAL ORIENTATIONS

Since composite a>SConv layers will not affect rotation equivariance property, without losing gen-
erality, we assume our network consists of one a>SConv and one GMP layer. For any feature output
from a GMP layer, suppose it is activated at point (6o, o). It corresponds to a maximum corre-
lation between the learned filter 4 and the input image f (when h is “alt-az” rotated onto ,). Any
SO(3) rotation of f which first rotates the point 4, back to the north pole 7(0, 0, 1), followed by
an arbitrary alt-az rotation D(¢’, §’,0) to new point 1, will be invariant to the network. When h is
convolved at point ;. We define this set of rotation as “alt-az shift rotation”(see Figma)). Alt-az
shift rotation rotation causes no relative angular change of the geodesic disc centered at u, with
respect to the h’s convolving.

Figure 7: Rotations of salient features. (a) Alt-az shift rotations are invariant to the network, (b) a
rotation of a salient feature about arbitrary axis. When local filter A is convolved at each rotated w7,
there is a relative angular change compared with (a).

For a direction 7 ( 71 is not along z-axis or y-axis), if one rotates f about 7 an arbitrary angle which
move the original salient point 4, to 11, this rotation is in general not an alt-az shift rotation and will
change the correlation between h and f when h is convolved at u; (See Figﬂkb)). If one rotates f
about n a full round, the geodesic disc centered at ,, will go through a relative self rotation from 0
to 360 degrees, using the alt-az rotation of h to each corresponding point as the direction references.

Therefore, by augmenting f using SO(2) rotation about an arbitrary axis 71, any feature of f, after
SO(3) random rotation, can always alt-az shift rotate to the same feature in one of f’s augmented
copies.
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