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Figure 1. SynchronizAR allows for instant spatial registration among multiple users’ mobile AR devices. Three SLAM based AR devices are registered
with respect to each other (a, b, d). We enable AR collaboration activities such as spatial aware screen sharing (a) and miniature world navigation (c).

ABSTRACT
We present SynchronizAR, an approach to spatially register
multiple SLAM devices together without sharing maps or
involving external tracking infrastructures. SynchronizAR em-
ploys a distance based indirect registration which resolves
the transformations between the separate SLAM coordinate
systems. We attach an Ultra-Wide Bandwidth (UWB) based
distance measurements module on each of the mobile AR
devices which is capable of self-localization with respect to
the environment. As users move on independent paths, we
collect the positions of the AR devices in their local frames
and the corresponding distance measurements. Based on the
registration, we support to create a spontaneous collaborative
AR environment to spatially coordinate users’ interactions.
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We run both technical evaluation and user studies to investi-
gate the registration accuracy and the usability towards spatial
collaborations. Finally, we demonstrate various collaborative
AR experience using SynchronizAR.
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INTRODUCTION
Emerging mobile technologies allow augmented reality (AR)
applications to become pervasive [23]. Especially, the advanc-
ing simultaneous localizing and mapping (SLAM) technique
extends the interaction volume into a highly spatial space by
providing highly accurate tracking. With SLAM, a mobile AR
device is capable of instant self-localizing with respect to the
surrounding environment without external tracking setups and
prior maps [20, 34].

Involving multiple users in a collaborative co-located environ-
ment requires synchronizing spatial frames across different
users [6, 47]. This aspect is different from a single-user AR
application. To overcome this challenge, researchers often
introduce an external tracking system [46, 7] to establish a
global shared frame. However, the cumbersome infrastructure
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counteracts the imperative mobility and immediacy of AR
collaboration activities.

A contemporary approach leverages SLAM to create a map
of the environment in-situ and share it across users either off-
line or through a cloud service [2, 10, 36, 52]. Although
this approach alleviates the restriction on mobility, it suffers
from a laborious global map building process notably in a
large space. Recently, researchers have proposed collaborative
SLAM methods which automatically share the map in real-
time as it expands [16, 24, 35, 45]. Yet, these methods require
the users to start roughly at the same position with common
views to synchronize the maps initially. This assumption
markedly prevents a spontaneous collaboration as it requires
specific positions and orientations to start the registration.

The state-of-the-art cloud based AR synchronization solutions
essentially rely on a centralized data structure, i.e., a SLAM
map contains one or multiple anchors or the full scan of the
environment. Instead, we focus on instantly registering mul-
tiple SLAM based mobile AR devices without sharing maps
or using external tracking setups to support spontaneous AR
collaborations in this work.

A direct approach to resolve the peer-to-peer 6 degree-of-
freedom (DOF) transformation requires tracking the collabora-
tor’s device and estimating its full pose from the local device.
One straightforward method is applying vision-based tracking
using the embedded camera SLAM device. Unlike the tradi-
tional fiducial marker based tracking [3], recent learning based
methods have achieved remarkable successes on human/object
pose estimations [9, 41, 51]. Yet the vision-based approaches
still rely on keeping the collaborator within the local cam-
era view to estimate the pose and derive the transformation.
Furthermore, the wearable or hand-held form factors of AR
devices demands segmenting them out from images which in-
volve human-device interactions [29, 50]. An electromagnetic
based alternative suffers from bulky size and sensitivity to the
magnetic distortion in the environment [5, 42, 49].

We present SynchronizAR, an indirect synchronization ap-
proach which leverages local SLAM results and radio-
frequency (RF) based distance measures among the SLAM
devices. While the multiple SLAM devices move on inde-
pendent paths, the distance measuring instances corresponds
to the time varying positions in their local SLAM coordinate
systems. Then we formulate a distance based registration to
resolve the transformation across different local SLAM frames.
In specific, we adopt the UWB based time-of-flight distance
measuring, as it outperforms existing received signal strength
indication (RSSI) based technique using Wifi or Bluetooth in
terms of accuracy [32].

In summary, our registration follows a non-central approach
by leveraging a self-contained hardware module (i.e., UWB).
Comparing with the cloud-based synchronization, we better
supports in-situ spontaneous AR collaborations: (i) more flexi-
bility against a dynamic environment (e.g., lighting conditions,
objects being moved) and zero cost when shifting to a new
environment, (ii) less constraints on users’ working zone as no
“re-localization” is required, (iii) less dependences on cloud

and network especially when Internet accessing is limited,
(iv) more compatibility across devices which normally don’t
share the same perception hardware, SLAM algorithms and
map files, and (v) better supports on privacy control when the
map contains sensitive information. Here we list the main
contributions of this paper as follows.

• An approach to resolving the relative translation and ro-
tation between SLAM based mobile AR devices utilizing
UWB distance measurement units.

• Implementation of a spontaneous collaborative AR system
enabled by the instant registration and evaluation of the
system performance.

• Exploration and demonstration of enabled co-located col-
laborative AR activities with our prototypes.

BACKGROUND

Collaborative AR Systems
The paradigm of AR has been introduced for both co-located
and remote collaborations. Early explorations on co-located
scenario such as Shared Space [8] and Studierstube [46] aug-
mented face-to-face collaborative experience with AR. Vita [7]
presented a 3D model visualization and manipulation system
supporting multiple users. The interaction volume of the pio-
neer works were restricted by the external tracking setups, e.g.,
fiducial marker, electromagnetic, inertial, and multi-camera
systems. As for remote collaborations, Gauglitz et. al. lever-
aged SLAM technique to reconstruct a surface model of the
local scene supporting virtual navigation in a video confer-
ence [18]. Oda et al. proposed to use virtual replicas to
assist remote collaboration in AR [38]. Further, researchers
investigated telepresence systems to enable life-size dynamic
interactions between remote users. Room2Room [40] showed
a projected augmented reality system, and Holoportation [39]
utilized a head-mounted display (HMD). In a remote collabo-
ration scenario, the interactions either stay loosely connected
with the physical scene [39, 40] or constrained within a con-
trolled small volume [38] since the local environment differs
from the remote one. With SyncrhonizAR, we focus on con-
structing an shared augmented physical space instantly by
synchronizing multiple users’ local SLAM coordinates.

Synchronization of Spatial Frames
In a collaborative environment, common spatial references are
crucial for communication and coordination [17, 47]. Reg-
istering multiple users together within a global frame using
external vision based tracking systems have been used in pre-
vious works [21, 30, 31, 55]. Other works set up the global
frames with different sensor based alternatives including GPS
for outdoor environment [44], electromagnetic [42, 49], in-
ertial [7], ultrasonic[19], RF based tracking for indoor sce-
narios [11]. Besides, registering users to a common anchor
scene spatially also derives transformation between users for
coordinations. Researchers have used fiducial markers [8]
or pre-captured scene images [28] as anchors. Further, with
the emerging SLAM techniques, a SLAM map of the shared
scene which is offloaded to multiple users allows for flexible
and mobile coordinations [2, 10, 36]. Moreover, collaborative



SLAM supports multiple agents to share and build the map in
real-time [16, 24, 35, 45]. In our work, instead of sharing the
SLAM maps, we emphasize on promoting spontaneous AR
collaborations.

Peer-to-Peer Tracking and Localization
The advantages of utilizing the embedded camera on the
SLAM based AR device to directly track the pose of the col-
laborator are obvious. Despite the convenience of avoiding
introducing extra components, it has been challenging to ac-
curately estimate the full pose of a wearable or hand-held AR
device accurately from images where it is being operated by a
user. Other direct tracking alternatives such as electromagnetic
sensing [25, 42, 49] are not applicable to mobile AR devices
because of the high power consumption and bulky size of the
base.

In contrast, the indirect approaches measure distances, angles-
of-arrival or RSSI with RF based technologies and then derive
the relative transformation between RF units. The indirect
approaches have been widely used for wireless sensor net-
work (WSN) localization [32]. Hazas et. al. applied ultrasonic
based ranging for distance and angles-of-arrival measurement
to derive the 2D localizations of statically placed devices [22].
Gellerson et.al. explored spatial aware mobile user interfaces
with similar method [19]. A more recent work demonstrated
an approach combining SLAM based mobile AR with UWB
units to localize multiple Internet-of-things (IoT) devices dis-
tributed in 3D space [26]. Comparing with ultrasonic based
sensing, UWB provides much larger sensing ranges with high
accuracy [13]. However, these works primarily focused on
either multi-user collaboration in a static setup or a single-user
interacting with static surrounding devices. SynchronizAR
contributes towards supporting spontaneous collaboration in
general but highlights enabling spatial collaboration activi-
ties among freely moving users in AR. Besides, comparing
with [26], our work derives not only translational but also
rotational transformation between users.

SYNCHRONIZAR
We introduce SyncrhonizAR, an approach to instantly register
co-located multiple SLAM devices spatially with respect to a
shared environment. It is an enabling registration technique
which can be used to coordinate the collaborative AR inter-
actions. We attach an UWB unit on each mobile AR device
which is capable of self-localizing with respect to the environ-
ment using SLAM. During the registration, the AR devices
move on different paths correspondingly, and the UWB units
measure the distances among the devices as shown in Figure 2.
We then derive the relative transformations by solving a dis-
tance based optimization problem. In this section, we first
describe the general formulation to solve 6 DOF registration
between two device. Then we adapt the method according to
our realistic requirements.

General Formulation
In Figure 2, each user holds a SLAM based mobile AR de-
vice which is equipped with a UWB unit. As we are not
sharing the SLAM map, the devices (A and B) yields two
independent coordinate systems, i.e., F1, F2 respectively.

Figure 2. Registration between two users with SynchronizAR.

Without loss of generality, the registration essentially resolves
the translational (T1

2) and rotational (R1
2) transformation from

F2 back to F1, e.g., 1xi = R1
2

2xi +T1
2. As the users are mov-

ing, 1xi,
2 yi ∈ R3 denotes positions of A and B at time t = i

in their corresponding frames, i.e., F1 and F2. The distance
between A and B at each time instance while they move on
their paths is derived as follows.

di = ‖1xi−1 yi‖= ‖2xi−2 yi‖
= ‖1xi−R1

2
2yi−T1

2‖

Within the time period t ∈ {1, . . . ,N}, we collect the
local positions, 1X = [1x1, . . . ,

1 xN ]
T ∈ RN×3 and 2Y =

[2y1, . . . ,
2 yN ]

T ∈ RN×3 for A and B respectively. At the same
time, the UWB units measure the distances d̂i. Because of the
distance errors introduced by the measurements, we formulate
an optimization to estimate the transformations as follows.

min
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1
2

S(1X,1 Y,R1
2,T

1
2)= min
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2,T

1
2
∑
i≤N

ωi(d̂i−di(
1X,1 Y,R1

2,T
1
2))

2

(1)
where the weight ωi is defined based on the quality of the mea-
surements. Note, in our current implementation, we simply
set the weights equally to be 1.

Optimization with Reduced Dimensions
The general formulation of the problem requires to search solu-
tions in a 6 dimensional space, as our unknown transformation
has 6 DOF, i.e., 3 translational and 3 rotational DOF. However,
with a close look at the SLAM system, we reduce the rota-
tional DOF down to 1. Modern SLAM implementations on the
of-the-shelf devices such as Google Tango and Hololens often
leverage the built in inertial measurement unit (IMU). Such a
visual-initial approach achieves a robust and accurate motion
tracking. As shown in Figure 3, when the device initializes
SLAM, a world coordinate system will be created with an
origin at the instant position. Also, the orientation of the coor-
dinate system will be compensated by the IMU measurements
at the moment so that the x− z plane remains horizontal. That
said, we only need to consider the rotation angle θ about y
axis. Then we reduce the search dimension from 6 to 4.

Furthermore, we employ a heuristic to constrain the search
space with boundaries on the translational y axis. First we
observed a simple fact that when a user interacts with an AR



Figure 3. Coordinate system of a SLAM device.

device, the translational movements along y axis are limited
considering ergonomic factors such as arm lengths and fa-
tigues. Further, comparing with the movements on x and z
axes which can easily reach to dozens of meters, the range on
y axis appears a relative small level (∼ 1 m). Besides, for a
HMD, moving along y axis is obtrusive and unnatural.

However, for the distance based optimization problems, the
flip ambiguity arises easily when the sample positions roughly
appear on a plane which implies a irregular distribution, i.e.
not a uniform distribution in 3D space [4, 26]. Our heuristic
tackles these problems by taking the following steps: (i) ini-
tializing the SLAM at a fixed hight (∼ 1.5m above the floor),
(ii) constraining the the movements on y axis during the regis-
tration, (iii) set the y components of 1X and 1Y to their average
values respectively, and (iv) adding boundaries on T1

2 to the
optimization solver. To this end, we adjust Eq. 1 a constrained
optimization problem with reduced dimensions as follows.

min
θ ,T1

2

S(1X,1 Y,θ ,T1
2) = min

θ ,T1
2
∑
i≤N

ωi(d̂i−di(
1X,1 Y,θ ,T1

2))
2

s.t.tymin ≤ ty ≤ tymax
(2)

where ty denotes the y component of T1
2, and tymin and tymax

are boundaries of ty.

Scalability
To this extent, we offer an instant registration for spontaneous
collaborations between two users. For more than two users,
we consider different situations: (i) multiple users form a new
collaboration and (ii) one or more users join an existing col-
laboration. For the first situation, a total number of k users
results k(k− 1)/2 transformations, among which only k− 1
transformations are independent. For example, with indepen-
dent transformations R1

2,T
1
2 and R1

3,T
1
3, we can derive the

homogeneous transformation as follows.[
R2

3 T2
3

0 1

]
=

[
R1

2 T1
2

0 1

]−1[ R1
3 T1

3
0 1

]
(3)

We select k− 1 independent transformations in a manner
of one-to-many. Namely, we measure the distances from
a single device to the rest of devices within the UWB net-
work. Together with the corresponding local positions, we

Figure 4. System overview of a prototype example with two AR devices
and the distance measurement modules.

Figure 5. Hardware overview of the prototype. UWB based distance
measurement module attached on a mobile AR device.

run k−1 times one-to-one registrations. Then we calculate all
k(k− 1)/2 transformations similar to Eq. 3. For the second
situation, we select one node from the existing collaboration
and perform a registration between the new users and this
node only. Again, we propagate the rest of transformations
similarly.

IMPLEMENTATION
SyncrhonizAR utilizes an indirect distance-based registration
and requires no map sharing. As illustrated in Figure 4, our
prototype system consists of AR devices, distance measure-
ment modules, and a remote solver (e.g., PC) which were
connected to a wireless local area network (WLAN). We de-
veloped the self-contained UWB based distance measurement
module with off-the-shelf components. Through the UWB
network, the distances were measured and packaged to an arbi-
trary MCU. Then the distance measurements were sent to the
AR devices via UDP. The local coordinates of the AR devices
have been shared through the WebRTC. Then, a remote solver
fetched the sample packages which include the distances and
the local coordinates by communicating with one of the AR
devices through UDP. Our system supports heterogeneous
SLAM based AR devices and corresponding SDKs [20, 34,
54] as long as we attach our UWB measurement modules onto
them as shown in Figure 5.

Hardware & Firmware
Our distance measurement module consists of a micro-
controller unit (MCU), a UWB unit and peripheral circuits.
The overall size of the board with all components assembled is
90mm×40mm×20mm. We select a ESP32 (NodeMCU 32S)



module as our MCU since it provides built-in WiFi commu-
nication function [15]. The UWB unit (DWM1000) connects
with the MCU through SPI bus. We utilize a rechargeable Li-
ion battery (9V, 600mAh) and a dual regulator set to power the
MCU (5V) and UWB unit (3.3V) separately. As for the AR de-
vices, we prototype our system with the ZenFone (ZS571KL)
which runs a Google Tango system.

UWB units measures distances through a double-sided two-
way ranging scheme operating on the MCU. This scheme
corrects the time drift for the time-of-flight measurement by
exchanging two round-trip messages [27]. When perform-
ing one to n ranging, we estimate the update rate is around
1000/(80+21n)Hz with our current parameters, e.g., one-to-
one ranging results in ∼ 9.9Hz and one-to-two ranging results
in∼ 8.1Hz. Correspondingly, in a two-user or three-user regis-
tration, users are free to move with a normal speed (∼ 1m). On
the other hand, the SLAM from the AR device runs at a rate
of ∼ 30Hz. Thus we keep synchronizing the newly received
distance measurements with the most updated local positions
as one complete sample, which yields an update rate ∼ 8.1Hz.

With continuous transceiving of UWB and WiFi, the whole
board peak current reaches 300mA calculated based on the
datasheet. A 600mAh battery lasts for ∼ 2hrs which means
we can perform registration (∼ 10s) about 720 times. After
registration, we keep DWM1000 in sleep mode (550nA) so
that the battery can last substantially.

Instant Registration
Recall Eq. 2, a sequential quadratic programming (SQP) al-
gorithm is commonly used to effectively solve constrained
optimization problems [37]. A number of software packages
offer implementations for SQP. As in our prototype, we of-
fload the solver onto a remote PC (CPU 2.5GHz, i7-6500U)
which runs MATLAB Optimization Toolbox ([33]). We set the
boundaries of ty as tymin =−0.1m and tymax = 0.1m with the as-
sumption that users initialize the SLAM within a height range
of [1.4−1.6]m above the floor. For an one-to-one registration,
we observe the algorithm converges in a short time (< 0.15s)
with 100 samples. As a side note, we clarify that we do not
focus on transplanting the SQP implementation onto mobile
platforms here.

Collaborative AR Applications
Our applications need to manage three types of wireless com-
munications: (i) the distance measurement modules and the
AR devices, (ii) the AR devices and the remote solver and
(iii) among different AR devices. We adopt the user datagram
protocol (UDP) to transmit the measurements from the MCU
to AR devices. As for synchronizing multiple users’ positions,
orientations, and collaborative activities, we set up a local
server and utilize WebRTC [12] for real-time communications.
Meanwhile, during the registration phase, we collect the local
positions and distance measurements and feed them to the
remote solver through UDP as well. The AR collaboration ap-
plications have been implemented within Unity3D [53] using
Google Tango API.

Figure 6. Technical evaluation setups.

TECHNICAL EVALUATION
To study the performance of our registration method, we set
up a technical evaluation. Primarily, we considered a 2-user
registration case. We studied the sampling parameters such as
the sampling spaces and the distances between users. Since our
approach requires users to roughly hold the device at a constant
height during the sampling, we define the sampling space as an
axis aligned bounding box (l×w) on the horizontal plane x−z
plus a height level (h) along the y axis. And r ∈ {3,4,5,6}m
denotes the distances between the sampling space centers of
each user. We selected a sufficiently large 3D volume as the
sampling space in order to capture the data systematically,
i.e., l×w = 2×2m and 0.8≤ h≤ 2.1m. We collected 3000
samples for each r and repeated the same data capturing.

Our approach emphasizes on enabling spontaneous collabora-
tions without sharing SLAM map. Thus we mainly com-
pared with a registration given the shared map. For this
purpose, the local positions of each AR device yielded the
same coordinate system of the shared map. Then we syn-
thetically created different frames by transforming the shared
coordinate system with randomly generated θg ∈ [−π,π] and
Tg = [tx, ty, ty]T ,−10≤ tx, tz≤ 10m and−0.2≤ ty≤ 0.2m. We
intentionally varied ty in a small range to simulate the real sit-
uation where different users would not be able to initialize the
SLAM at the exact same height. We sub-sampled the datasets
based on different test conditions and computed the synthetic
local positions with the given ground truth transformations.
Then we fed the optimization solver with the synthetic local
positions and the true distance measurements. In the results,
the accuracy of the registration was indicated by root mean
square error (RMSE) of the translational (tx, ty, tz) and rota-
tional (θ ) transformation separately.

Sampling Space
We evaluated the sampling space given the furthest distance
between two users, i.e., 6m. Then we varied the planar bound-
ing box of the sampling space as l = w = 1.4,1.6,1.8,2m and
dissected the heights into three levels h ∈ [0.9− 1.5], [1.2−
1.8], [1.5− 2.1]. With these test conditions, we repeated the
sub-sampling and optimization for 10 times and took the av-
erages. Prior to the evaluation, our preliminary tests indicate
a sampling number of 100 is a good balance between sam-
pling time and the accuracy. Further 100 different ground truth
transformations were drawn for each test.

A two-way univariate ANOVA result showed the bounding
box size and the height level were significant to the accura-
cies of T and theta. Then we performed a post hoc pairwise



Figure 7. Results of evaluations of both translational (up) and rota-
tional (down) accuracy on the sampling space with l = w = 1.4,1.6,1.8,2
and three hight levels at h1 ∈ [0.9− 1.5],h2 ∈ [1.2− 1.8], andh3 ∈ [1.5−
2.1]m.

Figure 8. Results of evaluations of both translational (left) and rota-
tional (right) accuracy on the distances (r ∈ {3,4,5,6}m) with l = w =
1.6m and h ∈ [1.2−1.8]m.

comparisons with Bonferroni correction to examine the condi-
tions separately. For both translational and rotational accuracy,
we observed that, for l = w ∈ {1.6,1.8,2}, there were no
significant differences (p > 0.05), yet l = w = 1.4 yielded a
significant difference from others (p < 0.05). Further, pair-
wise tests with h still indicated significant differences from
each other. As shown in the Figure 7, we confirmed that the
average translational error stayed below 0.2m, and rotational
one less than 0.21 (∼ 12◦) as the bounding box size became
larger than 1.6m. The optimization result was sensitive to
the distribution of the samples, e.g., a larger zone makes the
optimization more robust. But when the region is sufficiently
large, we suspected the optimization reaches to a limit because
of the UWB accuracy.

Although h appeared to be significantly affecting the accuracy,
the overall accuracy still remained low as long as l = w ≥
1.6m. Further from an ergonomic point of view, we selected
a height level within [1.2− 1.8]m. Note, our test adopted a
strict condition on height variations (0.6m) to guarantee the
effectiveness of our practical guidance.

Distances
Based on the results from the sampling space evaluation, we
selected l = w = 1.6m and h ∈ [1.2−1.8]m for studying the
effect of distance r ∈ {3,4,5,6}m on the registration accu-
racy. With a one-way ANOVA test, we found that r signif-
icantly affects both both translational and rotational accura-

cies (p < 0.05). Pairwise comparisons with Bonferroni correc-
tion showed that within group of r ∈ {4,5,6}, there were no
significant differences. We suspected that within a close range,
the measurement accuracy of UWB unit may degrade. From
Figure 8, we observed that, the average errors for T yielded
below 0.25m for all r, and θ less than 0.23 (13.2o).

Results
The investigations from the technical evaluation indicated we
support one-to-one registration at various distances. With lim-
ited resources, we conservatively suggest the following sam-
pling parameters for the registration: (i) initialize the SLAM
device at a height of ∼ 1.5m from the floor, (ii) capture 100
synchronized local positions and distance measurements, (iii)
during sampling, cover a space with l = w≥ 1.6m, (iv) hold
the device at a constant height roughly (h ∈ [1.2− 1.8]) for
better accuracy. With these parameters, we observed an aver-
age translational accuracies of ∼ 0.15m from Figure 7 and 8
and rotational one of ∼ 0.13 (7.4◦) when r ≥ 4m.

TASK EVALUATION
To further verify the registration performance and examine the
usability toward supporting spatial AR coordination activities,
we conducted a task evaluation with users. We recruited 11
university students (10 male) with an average age of 25 to
participate our study. The majority (9) of the participants were
familiar with the concept of AR. We asked users to finish a
two-session study which focused on view pointing and trace
following with rendered AR cues respectively. Through these
tasks, we emphasized comparing our distance based approach
against the sharing map registration.

To setup a collaborative environment, one of the authors acted
as User A and the participant played a role of User B. User
A was provided with a pre-built SLAM map of the environ-
ment whereas User B always started the SLAM with arbitrary
positions and orientations in the given environment. The vi-
sual cues were always created within the User A’s coordinate
system at first . Then User A and User B held the device
and kept moving on independent paths until enough samples
were collected for the registration. With the runtime registra-
tion result, the visual cues were duplicated in User B’s frame.
Subsequently, with the AR cues, users were asked to finish
the tasks. To remove possible learning effects, we offered a
training and practice trial before the test.

We constrained the tasks to focus on evaluating the registration
performance with the real users. Thus in this paper, we did
not include any collaborative tasks and collect the subjective
experiences. For the studies, we compared the performance
against the central-map approach. Yet we did not let the user
to explicitly experience the map sharing action (we set it up
for users). For the View Pointing task, it took us about 15
minutes to scan the environment (∼ 5×7m) and ∼ 3 minutes
to exchange the scanned map (∼ 30MB) through a WLAN.
As for the Trace Following task, we used a map (∼ 50MB)
for an environment of ∼ 10× 30m. Further, we noticed the
maps were sensitive to the ambient lighting condition.



Figure 9. Setup for view pointing task evaluation. User sits on a rolling
chair points to different directions with visual cues.

View Pointing
In a collaborative AR environment, it is essential to synchro-
nize the orientations between users for spatial reference. As
shown in Figure 9, we set up a top view camera in the physical
environment so that the pointing results from User A and User
B can be compared with a common reference. To be specific,
User A positioned the virtual indicators while sitting in the
rolling chair. After a registration, User B was asked to move
towards the chair and sit in it. In each trial, we generated a
randomized sequence containing 4 indices of the 8 evenly dis-
tributed virtual spheres. User B rotated the chair and pointed
at a direction.

We asked the users to perform the registration followed by
a trial 3 times in this task. In total, we obtained 132 images
showing 11 users pointing at different directions. After pro-
cessing the images with MATLAB, we recognized the triangle
which is fixated on the chair and the corresponding direction
in the image frame. Similarly, we captured the ground truth
by averaging the pointing directions from 24 images of UserA
pointing with the prebuilt SLAM map. Then we averaged the
trials and compared with our ground truth. The overall mean
error of 3.7◦ with a standard deviation of 9.0◦ is comparable
with a suggested viewfinder frustum field of view (8◦) [1]. This
result implies that SynchronizAR is applicable for orientation
sensitive AR collaborations.

Trace Following
We selected a trace following task to evaluate the effects of
both translational and rotational results on the AR guidance
scenarios. Unlike the fixated rolling chair in task 1, users
dynamically moved in a larger space (∼ 5×3m). We generated
a metric to evaluate the similarities between different paths
from the recorded top-view videos. To eliminate the subjective
motion from different users, we created baselines for each user.
To be specific, instead of creating a ground truth from User
A in prior, we requested users to follow the traces with the
registration provided by a shared map twice. Then the ones
with runtime registrations will be compared with this baseline.

As shown in Figure 10, we constructed 3 traces with different
shapes (L-, S- shape, and a spline) with the same starting and
ending points to represent curves with different curvatures.

Figure 10. Illustration of path following task evaluation. Users follow 3
different virtual traces (a, c, d) in the AR scene (b).

Figure 11. Results from trace following task.

Each user was asked to follow all three traces 4 times in total,
i.e., twice with ground truth and twice with runtime registra-
tions. The camera captured the trace following movements
where users wore a hat which was covered by a red dot. After
processing the video, we obtained the paths of users in the im-
age frames. A modified Hausdorff distance (pixels) increases
monotonically as the amount of differences between two sets
of points increases [14]. It is often used to compare the similar-
ities of two curves. Thus we employed the Hausdorff distance
as it is sensitive to both translational and rotational errors
between the curves. For each user, we denoted the two sets
of paths with ground truth as G1 and G2, and the ones with
runtime registration as H1 and H2. Further, for each user, we
calculated the Hausdorff distances between paths in G1 and
G2 (DG1G2) with respect to different traces. We composed
DG1H1 , DG2H1 , DG1H2 , and DG2H2 together and performed a
T-test against DG1G2 from all of the users.

For all three traces, we observed no significant difference be-
tween the baselines and the runtime registration results (p =
0.92,0.77,0.55 respectively). The mean errors and standard
deviations are plotted in Figure 11. Through this task eval-
uation, we confirmed that our registration accuracy supports
creating visual guidance in AR collaborations.

EXAMPLE USE CASES
By applying the registration result, SynchronizAR enables ev-
ery AR device to be spatially registered with each other in-
stantly and conveniently. Taking advantages of the spatial
awareness across the users in an AR environment, we show-
cased four use cases with SynchronizAR.



Figure 12. SynchronizAR supports spontaneous collaboration, i.e., a new
user (b) join an existing AR collaboration (a) instantly (c).

Spontaneous Collaboration
Here we built a multiple-player ball catching game with sup-
port from SynchronizAR. We leveraged the spatial interactions
such as pointing enabled by the registrations in AR collabora-
tive games. Further we demonstrated our instant registration
technique which enables a player to join any time during the
game. At first two players started a game (Figure 12 a). Then
a third player was able to join the game after a quick regis-
tration process with one of the original players (Figure 12 b).
After that, the coordinate system of the new player was shared
between the original collaboration environment and the game
continued with three players (Figure 12 c).

Interactive AR Game Construction
With SynchronizAR, we created an interactive AR game con-
struction and playing experience to multiple users. Here we
allow users to construct AR games in the physical world as a
game map and instantly share it with other users once regis-
tered. For example in this coin-collection game, a builder (Fig-
ure 13 a, b) first placed golden coins and rusted coins in the
café and turned it into a game scene. Then a catcher (Fig-
ure 13 c, d) registered with the builder and synchronized with
the game world. With proximity based spatial movement,
the catcher collected coins in the AR scene. We also sup-
port asynchronized collaboration as we need no infrastructure
prior. After registering once, any user can revisit the scene and
view collaborator’s activities which happened while he/she
was gone.

Figure 13. Interactive AR game creation. Two users act as a game world
builder (a, b) and a player (c, d).

Figure 14. A spatially coherent virtual model (a) is created after user A
and B scan their own surrounding environment (c, d). Two distant users
can refer to each other’s view with spatial references (a, b, e).

Figure 15. SynchronizAR being used for human-robot interactions(c).
The robot mimics the user’s movement (b). And they can access each
other’s views (a, d).

Spatial Aware Screen Sharing
In a co-located collaborative context, two users stays distant
from each other may also want communicate through view
sharing instantly. Different from a traditional video conferenc-
ing, SynchronizAR offered spatial awareness to the shared view.
Also during the collaboration, we allow users to freely refer to
each other’s surrounding environment. Here, the users scanned
the environment around each of them separately (Figure 14 c,
d). Then the scanned geometry models can be registered us-
ing the spatial transformation from SynchronzAR. As the user
walked around, the distant collaborator can access the first-
person view through the frustum, also create an independent
virtual navigation with the registered 3D model.

Human Robot Interactions
In the future, we envision that human beings and autonomous
robots interact with each other naturally [48]. In this context,
the spatial awareness will be critical. By attaching an AR
device to an autonomous robot and registering it with a user,
we coordinate the robot with respect to the user’s position and
orientation. Thus, the user can interact with the robot naturally
through his/her spatial movement. For example, in this use
case, we enable the robot to mimic the user’s movement in the
same direction and adjust the facing direction accordingly.



DISCUSSION AND LIMITATION
Sampling Parameters. With limited resources, we were not
able to fully investigate the sampling parameters. In our cur-
rent setup, we primarily rely on a shared SLAM map as ground
truth for testing. Despite the stable performance on Google
Tango devices, we observed drift from time to time in a feature
less environment. In the future, we also plan to introduce an
external tracking system e.g., a VICON like system to study
the effects of possible drifts from the SLAM itself. Addition-
ally, our distance based registration required users to move on
independent paths. Although during the user study, we haven’t
observed identical walking patterns, it will be helpful to give
AR walking cues to users during registration.

Temporal Synchronization. We run a 1-to-n pooling where
the n distances were packaged on an arbitrary MCU and sent
to the AR devices via UDP. The newly received distances
package, together with last updated coordinates which were
smoothed by a running average, were sent to the solver. Al-
though we did not explicitly model the temporal differences
between the measurements and the coordinates, the running
average practically reduced the potential correspondence er-
ror. We acknowledge that the accuracy may improve with a
dedicated synchronization scheme. Still we found the average
positional RMSE (∼ 0.25m) remains at the same level of the
UWB accuracy (∼ 0.1m).

Scalability. We believe the modern mobile device can solve
our optimization problem given the fact it runs SLAM in
real-time which usually involves heavy optimization. In a
non-central deployment, the distance measurements and the
local coordinates can be first synchronized and packaged on
the local AR devices. Then the packed messages will be
shared through a peer-to-peer communication. Finally, the
optimization runs in the AR device instead of a remote server.

Potential Applications. Although the cloud based solution is
capable of supporting the collaborative AR given a reliable
map, our method is more suitable for cases where a reliable
map is not available or hard to access (a dynamic environment),
or not necessary (e.g., casual social AR activities). Also, for
large spaces (e.g., urban planning), the users can start the
collaboration at different locations instantly without scanning
the map as shown in the Spatial Aware Screen Sharing case.
Further our method can be used to augment other approaches.
For examples, enhancing LBS with accurate registrations (e.g.,
Pokemon battles), and with cloudAR, enabling asynchronous
and persistent experience.

Form Factors. For the AR devices, we selected Google Tango
phones to prototype our AR applications. However, our reg-
istration is applicable to heterogeneous devices (HMD and
handheld) running various SLAM algorithms since our indirect
approach does not require sharing SLAM map. Further, our
registration can be utilized for establishing a collocated collab-
oration for virtual reality (VR) devices which rely on SLAM
tracking. On the distance measurement side, we would like
to work on minimizing the package of the module. Besides,
it will interesting to generalize distance based registration ap-
proach with matured RF technologies (Bluetooth and WiFi)

with different types of distance estimation (time-of-flight, time-
difference-of-arrival, and angle-of-arrival) [43].

Accuracy. Although we observed a good translational and ro-
tational accuracy within a large area, we found the UWB
measurements can be distorted under heavy non-line-of-
sight (NLOS) conditions such as solid walls. In the future, we
need to identify the NLOS measurements and compensate or
remove them. Besides, the SLAM algorithm itself may drift
in a featureless environment causing inaccurate registration
or shifting the AR rendering after the registration. Also we
observed the standard deviation of the error remains high as
shown in Figure 7 and 8. We suspect this is caused by the
SLAM drift primarily. Future, we plan to determine the error
resources by comparing with a VICON system.

Number of Users. Our current supports for more than 3 users
rely on pairwise peer-to-peer registration. To further support
more users being registered simultaneously, we need to over-
come two issues: (i) sampling rate of distance measuring, and
(ii) introducing distance constraints into the optimization. We
plan to resolve the sampling rate limitation by introducing
time-different-of-arrival. As for the highly nonlinear con-
strained optimization, we still need to investigate and select a
method which is applicable for mobile devices [56].

CONCLUSION
In this work, we proposed SyncrhonizAR, enabling a co-
located collaborative AR experience by spatially registering
multiple users in a spontaneous manner. Through our technical
evaluation, we conservatively suggested guidelines for using
SynchronizAR. We observed an average translational accuracy
of 0.15m and rotational accuracy of 7.4◦ when two users
are at a distance r > 4m. Within the user study, we validated
that with our registration, users can successfully perform AR
spatial interactions accurately including view pointing and
trace following. Therefore, we believe our work is applicable
to a wide range of use cases leveraging the spatial registration
of multiple SLAM devices.
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