
JCISE-16-2090

Secure Collaboration in Engineering Systems

Design

Shumiao Wang

Currently at

Google Inc.

Siddharth Bhandari

Currently at

Tata Institute of Fundamental Research

Siva Chaitanya Chaduvula

School of Mechanical Engineering

Purdue University

Mikhail J. Atallah

Department of Computer Science

Purdue University

Jitesh H. Panchal∗

School of Mechanical Engineering

Purdue University

Karthik Ramani

School of Mechanical Engineering

Purdue University

ABSTRACT

The goal in this paper is to enable collaboration in the co-design of engineering artifacts when participants

are reluctant to share their design-related confidential and proprietary information with other co-designers, even

though such information is needed to analyze and validate the overall design. We demonstrate the viability of co-

design by multiple entities who view the parameters of their contributions to the joint design to be confidential. In

addition to satisfying this confidentiality requirement, an online co-design process must result in a design that is

of the same quality as if full sharing of information had taken place between the co-designers. We present online

co-design protocols that satisfy both requirements, and demonstrate their practicality using a simple example of

co-design of an automotive suspension system and the tires. Our protocols do not use any cryptographic primitives

– they only use the kinds of mathematical operations that are currently used in single-designer situations. The

participants in the online design protocols include the co-designers, and a cloud server that facilitates the process

while learning nothing about the participants’ confidential information or about the characteristics of the co-

designed system. The only assumption made about this cloud server is that it does not collude with some participants

against other participants. We do not assume that the server does not, on its own, attempt to compute as much

∗Email: panchal@purdue.edu Address all correspondence to this author.

JCISE-16-2090

information as it can about the confidential inputs and outputs of the co-design process: It can make a transcript of

the protocol and later attempt to infer all possible information from it, so it is a feature of our protocols the cloud

server can infer nothing from such a transcript.

1 Introduction

1.1 Need for Secure Collaboration in Engineering Systems Design

While online collaborations are revolutionizing design and manufacturing, they are falling short of achieving their full

potential because there are significant barriers to information-sharing. These include the fear that information voluntarily

shared with a partner can later be used in ways contrary to the volunteer’s interests, the fear that sensitive information will

leak to a competitor [1]. What a participant gains from the mutual sharing of information can be more than offset by what

is lost from revealing confidential and proprietary information. There are also government regulations about information-

sharing: if one of the parties is government, or if foreign entities are among the participants, then there are national security

reasons to protect sensitive information. Within engineering design, such privacy concerns are the key barriers impeding

collaboration [2, 3], specifically, in three design scenarios: collaborative exploration of design space, crowdsourcing, and

cloud-based design and manufacturing.

During the early stages of systems design, before parties have decided whether the collaboration would be meaning-

ful, designers generally need to exchange information about capabilities and sub-system behaviors. Such information can

either be in terms of performance curves and datasheets, or test results from independent entities. For complex systems,

designers may need detailed mathematical models encapsulating the behavior to ensure that the sub-system performs well

within the context of the overall system. Such behavioral models embody significant knowledge, and have the potential

to reveal confidential information about the subsystem. In such cases, designers may be reluctant to share the models for

collaborative exploration of design spaces. Existing research on collaborative engineering design has not addressed such

scenarios because of the implicit assumption that collaborating entities are willing to share all the details about their part of

the design. Collaborative design platforms such as the product data management (PDM) and product lifecycle management

(PLM) systems are only focused on access management, i.e., a participant either has access to data/models or not. These

access control approaches [4,5] are designed against malicious agents outside the collaboration. However, they are not useful

against malicious or curious partners. Moreover, such an approach works well for later stages of design, after partnerships

have been established, but not for the early stages of design described above. Similarly, distributed collaborative simulation

platforms such as iSIGHT, ModelCenter, and FIPER [6] also lack the capabilities to protect confidential information from

prospective partners, while enabling joint simulation.

Crowdsourcing [7] is another scenario where mutually beneficial design interactions may be hampered due to concerns

over security of private information. Crowdsourcing is the practice of outsourcing tasks, traditionally performed by em-

ployees or suppliers, to a large group of people in the form of open tournaments [7]. It involves two types of parties –

seekers and solvers. Seekers have a problem that they want to solve, and solvers are individuals who compete to solve the

problems. The solver who submits the best solution receives a pre-specified award. Crowdsourcing is attractive for product

− 2 −

JCISE-16-2090

development organizations because of various benefits, including access to a broad pool of solvers, increased capacity of idea

generation through open innovation, and the opportunity for cost savings because the payment is made only after solutions

are obtained [8]. However, the downside of crowdsourcing is that solvers may be unwilling to respond to the competition

due to the fear that their ideas may be misused without a reward. Similarly, if the seeker is a defense agency, it may be

unwilling to share the details of their problem in online settings for security reasons. Hence, the success of crowdsourcing as

a mechanism for design collaboration significantly depends on the availability of secure collaboration in engineering design.

The third emerging scenario where secure collaboration is important is cloud-based design and manufacturing (CBDM).

CBDM is a product realization model that enables rapid product development through on-demand distributed system of in-

terconnected physical and virtual design and manufacturing services [9]. The economics of using clouds for designing by

services [10] are compelling due to the potential for dynamically adapting the amount of computing resources and hardware

needed. However, security and privacy are some of the main factors affecting the adoption of public clouds by organi-

zations [11]. Because of the trust issues, many organizations prefer secure and private clouds that are more expensive to

develop, operate and maintain.

As a summary, there are three main impediments to design collaboration, which have resulted in the unwillingness

to: a) collaborate during design exploration, and b) participate in crowdsourcing tournaments, and c) make use of cloud.

The goal of the work presented in this paper is to make such online design collaborations possible in the co-design of

engineering artifacts when participants are reluctant to share their own confidential and proprietary information with the other

co-designers, even though such information is needed for producing a design of the appropriate quality and performance. Our

main results are online protocols that enable the parties in the co-design to cooperatively achieve the desired result without

any of them revealing their own private data, even though the jointly designed engineering artifact depends crucially on

every participant’s private data. We also demonstrate the viability of our protocols by implementing them and experimentally

evaluating them.

1.2 Uniqueness and Contributions

Our approach does not use encryption and other cryptographic primitives, even though it is well known that techniques

from the cryptographic area of secure multi-party computation [12] are perfectly capable, in theory, of solving all of the co-

design problems considered in this paper. This is primarily due to performance issues. The use of cryptographic techniques

would involve operations like fully homomorphic encryption [13] and secure circuit evaluation [14] that, when used in the

context of the mathematical calculations for engineering design, would be both very slow and very hard to implement, which

is also observed in [15]. In contrast, our protocols use the same mathematical primitives that arise anyway in the design

process.

On the other hand, our approach does increase the size of the numbers involved, but the addition and multiplication of

large numbers is nevertheless orders of magnitude faster than the use of the above-mentioned cryptographic primitives. The

need for using larger numbers than those in the current design process, arises because in our protocols co-designers hide their

numbers through adding and multiplying them with randoms, and it is well known that this does a good job of hiding only

− 3 −

JCISE-16-2090

if the random numbers used are much larger than the numbers they are meant to hide (unless the arithmetic is modular, in

which case the hiding is perfect). Using modular arithmetic (for perfect hiding) is something worth investigating in follow-on

work – we have chosen to avoid it in our current design and implementation because (i) it would substantially complicate

our protocols (and may even make some of them impractical); and (ii) our current use of large randoms for hiding (without

modular arithmetic) does a good enough job for most practical situations. In addition to the protocols we designed and

implemented for the specific co-design scenarios we considered, and our demonstration of their practical viability, another

contribution of this work is that the computational building blocks we presented and used in our protocols are highly likely

to be useful for other scenarios and in other contexts.

The outline of the paper is as follows. In the following section, we discuss engineering design scenarios where secure

collaboration can be utilized. Section 3 provides details of the protocols used for secure computation in design. A discussion

of the characteristics of the protocols is provided in Section 4. The implementation details and results for an illustrative

design scenario are presented in Section 5. Finally, closing comments are presented in Section 6.

2 Co-Design Scenario for Secure Collaboration

2.1 Secure Collaboration in Designing Composable Dynamical Systems

Consider a scenario shown in Figure 1 where two parties, Alice and Bob, own subsystems 1 and 2 respectively. They

possess detailed information about the behaviors of these subsystems. Specifically, we focus on the dynamic characteristics

of these subsystems, represented by state-space equations. The behaviors of the individual subsystems can be represented

using matrices Ai,Bi,Ci, and Di, and the behavior of the composed system is described using matrices A,B,C, and D.

Matrices A,B,C, and D are dependent on Ai,Bi,Ci, and Di. We assume that Alice and Bob are both interested in knowing the

behavior of the composed system but are unwilling to share the details of their matrices with anyone (i.e., neither with each

other, nor with any third party). It is also assumed that both the parties have no incentive to lie about their individual systems

properties. This is a reasonable assumption in design exploration to establish collaboration because once the parties agree to

collaborate, they will share the details of the models with each other for detailed design.

Fig. 1. Co-design scenario

− 4 −

JCISE-16-2090

The state-space formulation of dynamical systems is chosen because a) any dynamical system, including those with

multiple inputs and multiple outputs, can be represented in terms of the state-space equations, b) it is general enough to be

applied to mechanical and non-mechanical systems, c) non-linear systems can be modeled by linearizing the system about

the operating point, and d) several system-level properties such as observability, controllability, and stability can be revealed

without completely solving the state-space equations.

For privacy preservation, there are restrictions on the kinds of system-level properties which can be explored. For

example, if the parties want to know the detailed responses for different types of inputs, each party may be able to extract the

hidden parameters (or other related information such as bounds on parameters) just based on the responses. If the properties

under investigation implicitly reveal any information about the proprietary data, the privacy constraint is violated. Hence,

such properties cannot be jointly studied. However, properties which do not implicitly reveal confidential information can

be investigated, and protocols for those properties may be developed. Examples of such properties include observability,

controllability, Lyapunov stability, detectability, and stabilizability. In this paper we study the first three properties. In

addition to this the protocols presented in this paper can be used to answer questions such as “does the solution enter a

certain domain?” without revealing any additional information about the private data.

The level of required privacy can be categorized into two scenarios:

1. A scenario where no single party has knowledge of the structure of the composed system, i.e., how the system-level

matrices depend on the sub-system-level matrices. The parties are not willing to share the details of their respective

matrices with each other or with any third party.

2. A scenario where the mathematical structure of the composed system (i.e., how the system-level matrices depend on the

sub-system level matrices) is known to at least one of the collaborating parties while the parameter values of the various

components in the system are private.

In this paper, we consider linear time-invariant (LTI) systems designed under the second scenario where the structure of the

collaborative system is known to at least one party with the parameter values being proprietary to the respective parties. For

this scenario, we present protocols to jointly evaluate properties of the composed dynamical system.

2.2 Illustrative Example: Co-Design of an Automotive Suspension System and Tires

We illustrate the protocols using a specific example of an automotive company (Alice) collaborating with a tire company

(Bob). Alice has a model of the dynamics of the suspension system, which is assumed to be a moving vehicle and suspension

system half-car model [16] (see Figure 2). Bob has a model of the tires, which is assumed to be a simple spring-mass system.

It is also assumed that Alice has complete knowledge of the structure of the composed system but does not know the

parameter values in the tire model which are Bob’s proprietary data. Such an assumption is justified for systems that are

mature and their topologies are well known. In this case, the assumption is that the tire model is well known whereas the

suspension-system model may have a proprietary structure. Through the collaboration, both parties are interested in learning

about controllability and observability of the co-designed system.

As shown in Figure 2, Alice’s private inputs to the collaborative system are M, I, K f s, Krs, b f , br (and distances not

− 5 −

JCISE-16-2090

Fig. 2. Collaborative half-car suspension system model

shown in the figure, L f and Lr, which are distances of front and rear tires from the center of mass of the car). Bob’s private

inputs are M f , Mr, K f t , Krt . The matrices representing the collaborative system in the state-space [16] model are:

A1 =



0 1 0 0

0 0 0 0

−(K f s +Krs)/M −(B f +Br)/M K f s/M B f /M

Krs/M Br/M (KrsLr−K f sL f)/M (BrLr−B f L f)/M

0 0 0 0

0 0 0 0

K f s/M f B f /M f −(K f s +K f t)/M f −B f /M f

0 0 KrsL f /M f B f L f /M f

0 0 0 0

0 1 0 1

Krs/Mr Br/Mr 0 0

−(Krs +Krt)/Mr −Br/Mr −KrsLr/Mr −BrLr/Mr

0 0 0 0

0 0 0 0

(KrsLr−K f sL f)/I (BrLr−B f L f)/I KrsL f /I B f L f /I

−KrsLr/I −BrLr/I −(K f sL2
f +KrsL2

r)/I −(B f L2
f +BrL2

r)/I


− 6 −

JCISE-16-2090

B =



0 0

0 0

0 0

K f t/M f 0

0 0

0 Krt/Mr

0 0

0 0



and

C =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0



The full state controllability and observability are given as [17]:

Controllability =
[

B | AB | . . . | A7B

]

and

Oberservability =



C

CA

. . .

. . .

CA7



The models considered in this paper are simplistic compared to those used in practice, because our aim is to lay the

foundational framework for such collaborations without getting distracted by the modeling details. Hence, considering a

1A is an 8×8 matrix, and due to the space limit, we typed the right half 8×4 submatrix under the left half.− 7 −

JCISE-16-2090

simple model is justified as it highlights the issues and how they are addressed while keeping the complexity down. The

protocols presented in the paper are independent of the problem size. Hence, they can directly be used for more complex

models. Also, the collaboration here involves only two parties but upon observing the techniques employed we see that

modeling such collaborations between multiple parties is straightforward by using the protocols for multiple parties in the

collaboration. This is enabled due to the nature of the protocols which can be generalized for any number of collaborating

parties.

Our protocols not only preserve the privacy of the proprietary parameters of the respective parties but also ensure that

the design of Alice’s subsystem is not leaked. To this end our protocols run in two stages (see Figure 3):

1. The additive split protocol (described in Section 3.2) splits the terms of the state-space matrices (A,B,C, and D) among

the collaborating parties. Note that these matrices are functions of the private parameters of the respective parties and

Alice has information about the structure of the overall system, i.e., how the elements of the matrices are dependent on

the privately held parameters.

2. The next set of protocols enables us to perform various mathematical operations on the obtained additively split terms.

We check the full rank of the observability and controllability matrices and check for the negative definiteness of the

matrix A (using protocols in Section 3.3).

We discuss the protocols in detail in the following section.

Fig. 3. High-level overview of the protocol

3 Protocols for Secure Co-Design

In this section, three sets of protocols are presented. The general problem setting is that two parties Alice and Bob,

denoted by A and B, both possess some private input data, and want to perform specific computations with help from a cloud

− 8 −

JCISE-16-2090

server S, without leaking his/her input to the other party or to S. The server S is modeled as a honest-but-curious server,

i.e., S behaves as the protocol states and does not collude with either client, but tries to learn any confidential information

about the clients’ input or output. Our security assumption is that adding a large random to a value hides it and multiplying

a nonzero value by a large random hides it. We will discuss this in detail in Section 4.

Therefore, we use an additively split scheme to hide all the values involved. To additively split (or split for short) a

value v into two, say vA and vB, a value is randomly chosen as vA, and vB = (v− vA). Here, vA and vB are called the secret

shares of v. If two parties each have one share of v, we say they additively share (or share for short) the value v. A party

possessing either vA or vB could not infer v from that, and the statistical information they obtain is negligible if the random

numbers used for hiding are much larger than the values they are used to hide (more on this in Section 4).

In Section 3.1, we present a set of needed arithmetic protocols. All the input values to the protocols are additively shared

by A and B, and these protocols enable them to perform arithmetic operations and get the results also in the split form. The

ingenuinity of these protocols is to enable A and B to compute without allowing server to learn. A and B achieve this by

morphing the additive splits (of inputs) before sending to the server. This morphing function need to have the following

properties:

1. It should be possible to recreate the morphing by both A and B.

2. Removal of morphing should be possible on the additive splits (of computed result) received from the server .

After each protocol, we briefly show its correctness and prove that no party could learn any information other than its

own input during executing the current protocol.

In most real world applications, the inputs to the co-design system are not initially additively split and shared by the

two co-designers, and moreover, the designers want to know the true result, not just a random-like share. Therefore, to make

these protocols complete, a general method is provided in Section 3.2 to additively split the inputs between the designers,

and a protocol is presented to enable the designers to merge the output back from its split form.

With the ability to split the inputs and merge the outputs, we can solve complicated co-design problems by decomposing

them into those building blocks in Section 3.1. Section 3.3 presents several high level protocols to test specific properties of

a matrix, which suffice to solve the problems presented in Section 2, just as examples of decomposing problems.

3.1 Building Blocks

In this subsection, we present a set of protocols to achieve arithmetic computations on inputs shared by two parties A

and B, without leaking one party’s input to the other or to S, which is proved in their following security analysis. These

protocols are building blocks for the customized high-level protocols.

A and B are able to generate the same random numbers without communication with each other. This is achieved in the

set-up phase by agreeing on a secret random seed and a cryptographically strong hash function. Using the same hash chain

and the same initial seed, A and B generate the random numbers at their own machine. Such random numbers, known to

both A and B, are called shared random numbers when presenting the protocols. All the shared random values used in the

− 9 −

JCISE-16-2090

protocols should be nonzero. If a zero is generated, A and B just discard it and generate another.

3.1.1 Addition and Subtraction Protocol (ASP)

Input: A value (or vector, matrix) v additively shared by A and B as vA and vB; and a value (or vector, matrix) u additively

shared by A and B as uA and uB.

Output: w, additively shared by A and B as wA and wB, and w = v±u.

Protocol:

1. A computes wA = vA±uA.

2. B computes wB = vB±uB.

Correctness: It can be easily verified that w = wA +wB = v±u.

Security: A and B only do computation based on their own input, and thus cannot learn any information by performing this

protocol.

Alice: vA , uA

Alice: wA

Bob: vB , uB

Bob: wB

wA = vA + uA wB = vB + uB

Fig. 4. Flow of the Addition and Subtraction Protocol (ASP)

3.1.2 Multiplication Protocol (MP)

Input: A value v additively shared by A and B as vA and vB; and a value u additively shared by A and B as uA and uB.

Output: w, additively shared by A and B as wA and wB, and w = vu.

Protocol:

1. A generates four shared random numbers r1, r2, r3 and r4, and sends a pair (r1 ∗ vA + r2,r3 ∗uA + r4) to S. B generates

the same shared random numbers r1, r2, r3 and r4, and sends a pair (r1 ∗ vB− r2,r3 ∗uB− r4) to S.

2. S receives a pair from A denoted as (P1,A,P2,A), and a pair from B denoted as (P1,B,P2,B), and computes a value t =

(P1,A +P1,B)∗ (P2,A +P2,B). S additively splits t into tA and tB, and sends them to A and B respectively.

3. A receives tA, generates another shared random number r5, and computes wA = tA/(r1r3)+ r5.

B receives tB, generates the same r5, and computes wB = tB/(r1r3)− r5.

Correctness: This can be verified as w = wA +wB = (tA + tB)/(r1r3) = vu.

Security: From S’s view, the inputs are hidden by four random values in step 2 and S cannot learn them. And the output w

− 10 −

JCISE-16-2090

is hidden from S by multiplying (r1r3), so S cannot learn it either. However, in step 2, S knows how it splits t, i.e., the ratio

between its two shares tA and tB. So in step 3, r5 is used to get a fresh split of w so that the ratio between the two shares of w

is not same as t, preventing S from knowing information about how the output is split. From A and B’s view, the only values

received by them are split shares of a value, which will not leak to them the result or information about how the output is

split. Except these values, no party obtains additional information by executing this protocol.

Alice:

vA , uA , r1 , r2 , r3 , r4

Bob:

vB , uB , r1 , r2 , r3 , r4

Server:

(P1,A,P2,A),

(P1,B,P2,B)

P1,A = r1*vA + r2

P2,A = r3*uA + r4

P1,B = r1*vB - r2

P2,B = r3*uB - r4

t = (P1,A+P1,B)*(P2,A+P2,B)

Alice:

wA = tA/(r1*r3) + r5

Bob:

wB = tB/(r1*r3) - r5

tA tB

Fig. 5. Flow of the Multiplication Protocol

3.1.3 Division Protocol (DP)

Input: A value v additively shared by A and B as vA and vB; and a nonzero value u additively shared by A and B as uA

and uB.

Output: w, additively shared by A and B as wA and wB, and w = v/u.

Protocol:

1. A generates four shared random numbers r1, r2, r3 and r4, and sends a pair (vA ∗ r1 + r2,uA ∗ r3 + r4) to S. B generates

the same shared random numbers r1, r2, r3 and r4, and sends a pair (vB ∗ r1− r2,uB ∗ r3− r4) to S.

2. S receives a pair from A denoted as (P1,A,P2,A), and a pair from B denoted as (P1,B,P2,B), and computes a value q =

(P1,A +P1,B)/(P2,A +P2,B). S additively splits q into qA and qB, and sends them to A and B respectively.

3. A receives qA, generates another shared random number r5, and computes wA = qA ∗ (r3/r1)+ r5.

B receives qB, generates the same r5, and computes wB = qB ∗ (r3/r1)− r5.

Correctness: This can be verified as w = wA +wB = q∗ (r3/r1) = (vA + vB)/(uA +uB) = v/u.

Security: The analysis of security is similar as the MP protocol.

− 11 −

JCISE-16-2090

Alice:

vA , uA , r1 , r2 , r3 , r4

Bob:

vB , uB , r1 , r2 , r3 , r4

Server:

(P1,A,P2,A),

(P1,B,P2,B)

P1,A = r1*vA + r2

P2,A = r3*uA + r4

P1,B = r1*vB - r2

P2,B = r3*uB - r4

q = (P1,A+P1,B)/(P2,A+P2,B)

Alice:

wA= qA*(r3/r1) + r5

Bob:

wB = qB*(r3/r1) - r5

qA
qB

Fig. 6. Flow of the Division Protocol

3.1.4 Logarithm protocol

Input: A value v additively shared by A and B as vA and vB.

Output: A complex value xA held by A and xB held by B, whereas xA + xB = ln(v).

Protocol:

1. A generates two shared random numbers r1 and r2, and sends vA ∗ r1 + r2 to S. B generates the same shared random

numbers r1 and r2, and sends vB ∗ r1− r2 to S.

2. S receives a value from A denoted as pA, and a value from B denoted as pB, and computes a complex number q =

ln(pA + pB). S additively splits q into two complex values as qA and qB, and sends them correspondingly to A and B.

3. A receives qA from S, generates a shared complex random number r3, and computes xA = qA + r3. B receives qB from S,

generates the same r3, and computes xB = qB− ln(r1)− r3.

Correctness: This is verified as xA + xB = q− ln(r1) = ln(pA + pB)− ln(r1) = ln((pA + pB)/r1) = ln(v).

Security: From S’s view, the inputs are hidden by r1 and r2 and S cannot learn them. And the output x is hidden from S

by ln(r1), so S cannot learn it either. r3 prevents S from knowing information about how the output is split by qA and qB.

From A and B’s view, the only values received by them are split shares of a value, which will not leak to them the result

or information about how the output is split. Except these values, no party obtains additional information by executing this

protocol.

3.1.5 Exponentiation Protocol

Input: Assume that A and B mutually agree upon n which is larger than their individual inputs (v,u respectively). Let B

represents u as an array of n bits which is denoted by u. Invert every bit in u and denote this array by c. A determines two

arrays of length n: x = [v20
,v21

,v22
,v23

, . . .v2n−1
] and y = [1,1,1 . . .1]. A and B share one of their additive splits with each

other. So, A has xA,uA,yA,cA and B has xB,uB,yB,cB as inputs to this protocol.

Output: wn, additively shared by A and B as wA,n and wB.n, and wn = vu.

Protocol: This protocol is split into three phases: In phase 1, A and B determine an intermediate array t = u ◦ x. Here ◦

− 12 −

JCISE-16-2090

Alice:

vA , r1 , r2

Bob:

vB , r1 , r2

Server:

pA, pB

pA = r1*vA + r2
pB = r1*vB - r2

q = ln(pA+pB)

Alice:

xA = qA+r3

Bob:

xB = qB - ln(r1) - r3

qA qB

Fig. 7. Flow of Logarithm Protocol

denotes hadamard product and the elements in the array t are given by (ti = uixi ∀i ∈ (1,n)) . Phase 2 is very similar to

Phase 1. In phase 2, A and B determine an intermediate array m = y◦c. In phase 3, A and B add their additive splits obtained

from phase 1 and 2 and determine the product of all the elements in it. This product turns out to be equal to vu.

Phase 1

Input: A has arrays xA,uA and B has xB,uB

Output: A and B receive tA, tB from Server, where tA + tB = x◦u. Note that ◦ stands for hadamard product.

Protocol: A and B perform MP protocol for all the n pairs in the two vectors and thus get n intermediate results. These

results are stored in an array q. Figure 8 displays the multiplication for an ith element in x,u. By the end of n multiplications

in Phase 1, Alice and Bob have arrays tA and tB respectively.

Fig. 8. Flow of Phase 1

− 13 −

JCISE-16-2090

Phase 2

Input: A has arrays yA,cA and B has yB,cB

Output: A and B receive zA, zB from Server, where zA + zB = y◦ c. Note that ◦ stands for hadamard product.

Protocol: The protocol is same as that stated in Phase 1. Only the inputs are different. Figure 9 displays the multiplication of

between ith elements in y,c. By the end of n multiplications in Phase 2, Alice and Bob have arrays mA and mB respectively.

Fig. 9. Flow of Phase 2

Phase 3

Input: A has arrays tA,mA and B has tB,mB

Output: A and B receive wA,n, wB,n from server, where wA,n +wB,n = vu.

Protocol: In this phase also, we use MP protocol. However, unlike earlier, here it is recursive in nature. We multiply all the

elements in the arrays t+m. Since the splits (kA,kB) received from server are additive in nature, we add kA to the existing

wA,i

3.1.6 Greater than Zero (GT0)

Input: A nonzero value v shared by A and B as vA and vB.

Output: A binary bit b, denoting whether v > 0, shared by A and B as two bits bA and bB, and b = bA +bB mod 2.

Protocol:

1. A generates two shared random numbers r1 and r2, and sends pA = vA/r1 + r2 to S.

B generates the same random r1 and r2, and sends pB = vB/r1− r2 to S.

2. S adds pA and pB, and sets a bit b as 1 if the sum is greater than zero and as 0 if not. S additively splits b into two bits

b′A and b′B, and sends them to A and B respectively.

3. If r1 is positive, A and B set bA and bB as b′A and b′B respectively; otherwise, A sets bA =−b′A, but B sets bB = 1−b′B.

− 14 −

JCISE-16-2090

Fig. 10. Flow of Phase 3

Correctness: It is straightforward to verify this protocol works.

Security: From S’s view, the inputs are hidden by r1 and r2, and the output bit b is perfectly hidden by the sign of r1. A or B

only sees an additive share of a bit, which will not leak any information of the output.

Fig. 11. Flow of the GT0 Protocol

3.1.7 EW0 protocol

In the high level protocols, A and B need to check whether some operand is zero as a branch condition in the code. For

example, if a pivot is zero in the Gaussian elimination, they will call a row swap function. This protocol tells them whether

the condition is true or false, without leaking the value if it is not zero, and assuming that in the setting up phase, A and B

agreed a cryptographic hash function H().

Input: A value v shared by A and B as vA and vB.

Output: A and B learn whether v = 0 or not.

Protocol:

− 15 −

JCISE-16-2090

1. A generates a local random number rA and computes xA = rA ∗ vA, and sends it to B.

B generates a local random number rB and computes xB = rB ∗ vB, and sends it to A.

2. Please note that Alice is not aware of rB and Bob is not aware of rA.

3. A computes yA = xB ∗ rA.

B computes yB = xA ∗ rB.

4. A computes H(−yA), and sends it to S.

B computes H(−yB), and sends it to S.

5. S simply sends what it receives from A to B, and what it receives from B to A.

6. A receives the value H(−yB) from S. If H(−yB) = H(yA), it learns v = 0; otherwise, it learns v 6= 0.

B receives the value H(−yA) from S. If H(−yA) = H(yB), it learns v = 0; otherwise, it learns v 6= 0.

Correctness: If v = 0, then vA =−vB, and thus H(yA) = H(−yB); otherwise, H(yA) 6= H(−yB). So, A and B learn the correct

answer by checking the equivalence of the hashed values. Note that, in the computer representation with rounding issues,

negligible values are usually treated as zeros, and the protocol can be modified to handle such cases smoothly as follows:

Before performing the protocol, A and B truncate the most insignificant bits of vA and vB according to error tolerance setting.

Security: Due to the one-way property of hash functions, each party cannot learn the true values by seeing the hashed values.

Fig. 12. Flow of the EW0 Protocol

3.1.8 Extension: Comparison under General Security Assumption

In the above GT0 protocol, we use non-cryptographic operations to compare a number with 0, and this is secure under

our assumptions, and it may leak some information under the standard security assumptions. In this section, we provide a

provable secure approach using the Garbled Circuit (GC) technique [14]. To make it complete, we provide a brief review in

− 16 −

JCISE-16-2090

Appendix A of how two parties use GC to securely evaluate a function without leaking their own private inputs. And in the

following Secure-GT0 protocol, we use GC in a variant scheme, involving a server as the circuit evaluator to get rid of the

expensive oblivious transfer protocols.

Input: A nonzero value v shared by A and B as vA and vB.

Output: A binary bit b, denoting whether v > 0, shared by A and B as two bits bA and bB, and b = bA +bB mod 2.

Protocol:

1. A generates a random r1, if r1 > 0, A sets x = vA, otherwise x =−vA.

B generates the same random r1, if r1 > 0, B sets y = vB, otherwise y =−vB.

2. A constructs a garbled circuit C, with x and y as inputs and a bit wire denoting whether (x+ y)> 0 as output. A sends C

to S and tells S which input wires representing x and which representing y.

A shares with B the encodings chosen for the input wires corresponding to y, and shares the encodings chosen for the

output wire with S.

3. A chooses the encodings representing x and sends them to S. B chooses the encodings representing y and sends them to

S.

4. S receives the encodings for all the input wires, then evaluates C gate by gate, and gets the encoding of the output wire.

S translates the output encoding into a binary bit b, and additively splits b into two bits b′A and b′B, and sends them to A

and B respectively.

5. If r1 is positive, A and B set bA and bB as b′A and b′B respectively; otherwise, A sets bA = b′A, but B sets bB = 1−b′B.

3.2 Protocols to Additively Split the Input and Merge the Output

We assume the inputs to the co-design systems are matrices without loss of generalization, since single values and

vectors are matrices with special dimensions. Each entry in the input matrices may be depending on (1) only A’s design, i.e.,

A’s private input, (2) only B’s design, i.e., B’s private input, (3) both A and B’s design, and (4) only some constants or public

information (like the laws of physics). We distinguish these 4 cases for any entry x, and present how A and B get the additive

splitting form of it as xA and xB without leaking their private input.

(1) A computes x using its own input, generates a random r using the random seed known to B, and sets xA = x− r.

B generates the same random r and sets xB = r.

(2) A and B just switch the roles in case (1).

(3) Assume x depends on a set of A’s private inputs IA and a set of B’s private inputs IB. First, A and B additive split the

input values in IA and IB as in (1) and (2), and then, they run the arithmetic protocols in 3.1 so that they learn x in its

additively split form.

(4) A computes x only using these public information, generates a random r using the random seed known to B, and sets

xA = x− r.

B generates the same random r and sets xB = r.

− 17 −

JCISE-16-2090

(Security) In case (1), (2) and (4), A and B do not communicate with others and thus do not learn any more information than

what can be inferred from their own private input. In (3), they only communicate with the server S when performing the

protocols in 3.1, which are already proved against information leaking.

Similarly, assuming the outputting result of the system is also a matrix. Each value y in it is shared by A and B as yA and

yB after executing the protocols. Now we present the protocol enabling A and B to learn the final result without leaking to S.

1. A generates two shared random r1 and r2, and sends S yA + r1.

B generates the same r1 and r2, and sends S yB + r2.

2. S simple sends what it receives from A to B, and what it receives from B to A.

3. A receives a value pA from S and computes y = pA + yA− r2.

B receives a value pB from S and computes y = pB + yB− r1.

3.3 High Level Protocols

Based on the arithmetic building blocks, one can build higher level protocols to solve specific problems as stated in

Section 2.

3.3.1 Vector Inner Product (VIP)

Input: A vector v of length n additively shared by A and B as vA and vB; and a vector u of the same length additively

shared by A and B as uA and uB.

Output: w, additively shared by A and B as wA and wB, and w = (v,u).

Protocol:

1. A and B perform the MP protocol for all the n pairs of aligned values in the two vectors and thus get n intermediate

results.

2. A and B perform the ASP protocol to sum these intermediate results to get w.

3.3.2 Check a Vector is Zero (CVZ)

Input: A vector v of length n additively shared by A and B as vA and vB

Output: A and B know whether v is a zero vector.

Protocol:

1. A generates a random vector rA of length n, B generates a random vector rB of the same length, and they view them as

an additive split of a vector r.

2. A and B perform the VIP protocol with r and v as the inputs, result denoted as w.

3. A and B perform the EW0 protocol with w as the input. If w = 0, they know v is a zero vector, otherwise it is not.

− 18 −

JCISE-16-2090

It is with negligible probability that w = 0 while v is non-zero.

3.3.3 Matrix Multiplication (MM)

Input: A matrix M1 shared by A and B as M1A and M1B; and a matrix M2 shared by A and B as M2A and M2B;

Output: M, additively shared by A and B as MA and MB, and M = M1M2.

Protocol:

For each entry mi j in M, A and B perform a VIP protocol inputting the ith row of M1 and the jth column of M2, and fill

the results into MA and MB respectively.

3.3.4 Matrix Full Rank Check (MFRC)

Input: A matrix M shared by A and B as MA and MB;

Output: A and B learn whether M is of full rank or not.

We use Gaussian elimination (row reduction) to check whether a matrix is of full rank. The elimination process involves

three basic elementary operations, listed with its implementation on shared data as follows.

1. Multiplying a row with a non-zero number.

This operation can be achieved by performing a set of MP protocols.

2. Multiplying a row with a non-zero number and adding the result to another row.

This operation can be achieved by performing a set of MP protocols and an ASP protocol.

3. Interchanging two rows if a specific entry is 0.

This operation can be achieved by interchanging the corresponding rows in both MA and MB, if A and B find the entry is

0 by performing the EW0 protocol.

During the elimination, A and B check whether the current processing row is a zero vector by the CVZ protocol. If they find

a zero vector,then M is not of full rank.

3.3.5 Matrix Negative Definiteness Check (MNDC)

Let M be an n×n symmetric matrix, and let Mk denote the k× k submatrix formed by deleting the last n− k rows and

columns of M. The following two conditions are equivalent:(1) All the eigenvalues of M are negative, and (2) The determi-

nants (−1)k det(Mk)> 0 for 1≤ k≤ n, i.e., det(M1)< 0, det(M2)> 0, det(M3)< 0, · · · , (−1)n det(Mn) = (−1)n det(M)> 0.

So, to check whether the eigenvalues of a shared matrix are all negative, A and B first compute (−1)k det(Mk) for all Mk, and

then compare these values with 0 with the GT0 protocol.

Now we discuss how to compute the determinant of any shared square matrix M of order n. If n = 1, det(M) is set to be

− 19 −

JCISE-16-2090

the only number in M, otherwise, it can be computed by order reduction. Let mi j denote the entry on the row number i and

the column number j, for i, j ∈ {1, · · · ,n}, and set Mi j (called the cofactors) to be the determinant of the square matrix of

order (n−1) obtained from M by removing the row number i and the column number j multiplied by (−1)i+ j. Then det(M)

can be computed by expanding the first row,

det(M) =
j=n

∑
j=1

m1 jM1 j

By this formula, det(M) can be eventually reduced to the sum of products of entries from M, so A and B can compute it by

performing the ASP and MP protocols in the corresponding order.

4 Analysis of the Protocols

4.1 Security Analysis

In the security proof of the protocols, it is assumed that adding a large random number to a value hides it and multiplying

a nonzero value by a large random number hides it. If the random number is generated from the infinite real range (−∞,∞),

it hides the value perfectly, since the sum or product of the value and such a random is uniformly distributed over the real

range. However, in the machine world, depending on the number of bits used in representation, there is a range for the

random numbers, say [−b,b]. Also there is a range for the values A and B are trying to hide, say [−t, t]. If S knows these two

ranges, and gets a number near the bound (b+ t) as the sum of the value and a random, then it knows the value is near t. In

order to prevent such leakage, A and B could either make b much larger than t so that it is not likely to generate randoms too

close to the bound comparing with t, or let b vary when generating the random numbers and keep b secret from S. And we

can see that the larger b is, the better it hides, while it costs more CPU time to compute.

4.2 Network Communication

During the running of the system, there is no need to build network connections between A and B, since our protocols

do not require any interaction or data transfer between them. Therefore, this is a typical single-server-multiple-clients

framework, and this model places light overhead on the client side, and the server is the only party responsible for listening

to the communication socket. Moreover, this framework is easy to implement with standard network libraries.

All of those building block protocols only require a small constant round of client-server interactions, which is a desirable

property for efficient network protocols. And in the higher level protocols, the building blocks can be executed in parallel

to decrease the communication rounds. For example, in the VIP protocol, there is no dependence between the n times

executions of the MP protocol, so A and B can send all the values that need to be sent in the n MP executions to S at once

and get back the returned values from S in one interaction round.

− 20 −

JCISE-16-2090

5 Implementation and Results

Figure 13 represents the flow of the protocols used to measure the different properties of the collaborative system stated

in Section 2.1. The implementation of the various protocols was carried out sequentially in the order shown.

Fig. 13. Implementation steps

We implemented the code for the protocols in C++ Language under MS Visual Studio. All the protocols are run in a

single thread mode. Three separate projects were built to simulate the roles of Alice, Bob and the Server, and the server-client

communication is implemented using the TCP protocol.

We first simulate the projects as three separate processes locally on a machine with Windows OS, CPU Intel i3 core 2.40

GHz, 6GB memory. The result is shown as follows.

As in [16], Alice’s inputs are set as: M = 4200, K f s = 120, Krs = 180, B f = 25, Br = 35, I = 40000, L f = 55, and

Lr = 65; Bob’s inputs are set as: M f = 125, Mr = 125, K f t = 1100, and Krt = 1100.

1. The run time for additive splitting the matrices A, B and C and obtaining the observability and controllability matrices at

Alice’s side was 6054ms and at Bob’s side was 138ms. The reason for such a difference is mainly because Bob’s code

runs after the connection is built between Alice and the server. Also Alice needs to do local computations for obtaining

the additive splits as she has the knowledge of the structure of the collaborative system. Bob only has to input his private

data following the protocols.

2. The run time for checking the rank of the controllability matrix was 28ms on both clients’ ends. This collaborative

system was controllable according to the output of the MFRC protocol.

3. The run time for checking the rank of the observability matrix was 45ms on both clients’ ends. This system was

observable according to the output of the MFRC protocol.

4. The run time for checking the negative definiteness of matrix A was 44ms on both clients’ ends. This system was not

stable according to the output of the MNDC protocol.

− 21 −

JCISE-16-2090

Table 1. Running time (in ms) of Alice in the two scenarios.

Protocols Alice in Scenario 1 Alice in Scenario 2

Additive Split 11640 855214

Controllability 1184 142628

Observability 3017 307363

Negative Definiteness 1960 301605

To evaluate the performance over the Internet, we planted the server on one machine, and run Alice and Bob’s code on

another. Note that putting the two clients on the same machine or not does not make much difference to the performance,

because the network communication is only between the server and a client, and our model does not assume Alice and Bob

communicates directly. We measured the running time in two scenarios: (1) the server and clients are in the same campus,

the server has fast cabled network, and the clients have fair wireless Internet connections, and (2) the server is physically a

remote one in China, and the clients are in the US. The running time of Alice is described in the Table 1, and Bob is almost

the same since most of the protocols are symmetric.

From the result we can see that the network delay is significant for the protocols, and this could be improved if we reduce

the communication rounds of higher level protocols. As pointed out before, instead of calling the multiplication protocol n

times in the VIP protocol, the clients can send to the server all the values to be sent in these n executions in one round. As a

demo implementation, this optimization was not included in the experiment.

6 Closing Comments

The primary contributions of this paper within the field of engineering design are: a) formulation of the co-design

problem in a form that allows secure privacy preserving simulation of system behavior, b) new protocols for the specific

co-design scenarios discussed in the paper, c) demonstration of the practical viability of the protocols using a collaborative

design example. One of the advantages of the protocols developed in this paper is that the cloud is not used as a repository.

Data are exchanged with the cloud server for computations only. From the data exchanged, the server on its own (i.e., without

colluding with any of the parties) cannot infer anything about the system properties or behavior. The paper also contributes

to the cryptography literature. The computational building blocks presented in this paper and used in the protocols are highly

likely to be useful for other scenarios and in other contexts beyond collaborative design.

We believe that this is a modest, but encouraging, initial step towards secure, privacy preserving model-based systems

engineering (MBSE) and design. One of the assumptions in the co-design scenario chosen is that one of the parties knows

the complete mathematical structure of the system, and only parameter values are private. There is significant opportunity

to develop protocols for other co-design scenarios where this assumption may not hold. Finally, as highlighted in Section 1,

our approach does not use encryption and other cryptographic primitives in order to reduce computation time. The use of

modular arithmetic (for perfect hiding) will be investigated in the future work.

− 22 −

JCISE-16-2090

Acknowledgements

Portions of this work were supported by National Science Foundation Grants CPS-1329979, CNS-0915436, CMMI-

1265622, Science and Technology Center CCF-0939370; by an NPRP grant from the Qatar National Research Fund; and by

sponsors of the Center for Education and Research in Information Assurance and Security. The statements made herein are

solely the responsibility of the authors.

References

[1] Horner, J., and Atwood, M. E., 2006. “Design rationale: the rationale and the barriers”. In Proceedings of the 4th

Nordic conference on Human-computer interaction: changing roles, ACM, pp. 341–350.

[2] Bidarra, R., van den Berg, E., and Bronsvoort, W. F., 2002. “A collaborative feature modeling system”. Journal of

Computing and Information Science in Engineering, 2(3), pp. 192–198.

[3] Red, E., French, D., Jensen, G., Walker, S. S., and Madsen, P., 2013. “Emerging design methods and tools in collabo-

rative product development”. Journal of Computing and Information Science in Engineering, 13(3), p. 031001.

[4] Cera, C. D., Kim, T., Han, J., and Regli, W. C., 2004. “Role-based viewing envelopes for information protection in

collaborative modeling”. Computer-Aided Design, 36(9), pp. 873–886.

[5] Wang, Y., Ajoku, P. N., Brustoloni, J. C., and Nnaji, B. O., 2006. “Intellectual property protection in collaborative

design through lean information modeling and sharing”. Journal of computing and information science in engineering,

6(2), pp. 149–159.

[6] Peter Roehl, G., Raymond Kolonay, G., Rohinton Irani, G., Michael Sobolewski, G., Kevin Kao, G., and Michael Bai-

ley, G., 2000. “A federated intelligent product environment”.

[7] Howe, J., 2008. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business. Crown Business.

[8] Terwiesch, C., and Xu, Y., 2008. “Innovation contests, open innovation, and multiagent problem solving”. Manage.

Sci., 54(9), pp. 1529–1543.

[9] Wu, D., Thames, J. L., Rosen, D. W., and Schaefer, D., 2012. “Towards a cloud-based design and manufacturing

paradigm: Looking backward, looking forward”. In Proceedings of the ASME 2012 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference, Volume 2: 32nd Computers and

Information in Engineering Conference, Parts A and B, ASME.

[10] Wang, H., and Zhang, H., 2013. “Designing by services: A new paradigm for collaborative product development”.

In Cloud Manufacturing, W. Li and J. Mehnen, eds., Springer Series in Advanced Manufacturing. Springer London,

pp. 165–192.

[11] Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., and Molina, J., 2009. “Controlling data in the

cloud: Outsourcing computation without outsourcing control”. In Proceedings of the 2009 ACM Workshop on Cloud

Computing Security, CCSW ’09, ACM, pp. 85–90.

[12] Du, W., and Atallah, M. J., 2001. “Secure multi-party computation problems and their applications: a review and open

problems”. In Proceedings of the 2001 workshop on New security paradigms, ACM, pp. 13–22.

− 23 −

JCISE-16-2090

[13] Gentry, C., 2009. “A fully homomorphic encryption scheme”. PhD thesis, Stanford University.

[14] Huang, Y., Evans, D., Katz, J., and Malka, L., 2011. “Faster secure two-party computation using garbled circuits.”. In

USENIX Security Symposium, Vol. 201.

[15] Wang, S., Nassar, M., Atallah, M. J., and Malluhi, Q. M., 2013. “Secure and private outsourcing of shape-based feature

extraction”. In ICICS, pp. 90–99.

[16] Klee, H., and Allen, R., 2011. Simulation of Dynamic Systems With MATLAB and Simulink. Taylor & Francis Group.

[17] Ogata, K. Modern Control Engineering. Instrumentation and controls series. Prentice Hall.

[18] Rabin, M. O., 2005. “How to exchange secrets with oblivious transfer”. IACR Cryptology ePrint Archive, 2005, p. 187.

Appendix A: Garbled Circuit Protocol

The basic idea to securely evaluate a function f (x,y) by the GC protocol, where x and y are the private inputs from two

parties, is to (1) construct the function f as a boolean circuit C, (2) encode x and y in their binary form as the input and the

function value as the output, and (3) provide a method of computing such a circuit gate by gate in such a way that values

obtained on all wires other than circuit-output wires are not revealed. To hide the values, for every wire in the circuit, two

random encoding values are specified such that one value represents 0 and the other represents 1. Let w denote a wire, we

use w0 and w1 to denote the two random encoding values chosen to represent 0 and 1 respectively.

Let g be a gate with incoming wires u and v and output wire w. Now we present how the gate g is garbled (i.e., to hide the

true bit value of each wire by its random encoding value while still enabling the evaluation of the gate’s output). This is

accomplished by viewing the four possible input encoding values to the gate u0, u1, v0, v1 as encryption keys, and the two

possible output encoding values w0 and w1 which are also keys, are encrypted under the appropriate keys from the incoming

wires. For example, let g be an AND gate. Then, the key w0 is encrypted under the pairs of keys (u0,v0), (u1,v0), (u0,v1),

and the key w1 is encrypted under the pair of keys (u1,v1). So, the gate g is garbled and represented as four ciphertexts

Eu0(Ev0(w0)),Eu0(Ev1(w0)),Eu1(Ev0(w0)),Eu1(Ev1(w1)). Note that the four ciphertexts should be randomly permuted so

that the position does not leak the meaning of the encoding values of wires. Now given the encoding values of the two

incoming wires of a gate, one can, without knowing the meaning of input wires (i.e., whether it’s 0 or 1) and the meaning

of the gate (i.e., whether it’s a logic AND or OR), try to decrypt the four ciphertexts, and only one will success and thus

provide the proper encoding value of the output wire (we assume an “indicator of success” string of a pre-determined length

is appended to each plaintext). By induction, given the appropriate encoding values of all the input wires to the whole circuit,

one can compute the encodings values for the output wires gate by gate without knowing the meaning of the encodings.

In a garbled circuit protocol, one party P1 (the circuit generator) prepares a circuit for computing f , chooses two encoding

values randomly for each wire, and garbles all the gates as described. P1 sends the garbled circuit to the second party

P2 (the circuit evaluator) to evaluate. P2 obtains the encoding value for each input bit as follows: for those input wires

corresponding to P1’s input, P2 asks P1 for the encoding values of them; and for the input wires corresponding to P2’s input,

the two parties use oblivious transfer (OT) to enable P2 to obtain the encoding values without leaking his input to P1. An

OT protocol [18] allows a sender holding encoding values w0 and w1, to transfer to a receiver holding a selection bit b in

− 24 −

JCISE-16-2090

a way that the receiver learns nothing about w1−b, and the sender learns nothing about b. With the encoding value of each

input wire, P2 then obliviously computes the output of the circuit without learning any intermediate values. For each output

wire corresponding to P2’s output, P1 sends both encoding values for 0 and 1 respectively to P2 so that P2 could interpret its

own output; while for each wire corresponding to P1’s output, P2 just sends the output encoding value to P1, and P1 could

interpret since it knows the meaning of all the encodings.

− 25 −

JCISE-16-2090

List of Tables

1 Running time (in ms) of Alice in the two scenarios. 22

List of Figures

1 Co-design scenario . 4

2 Collaborative half-car suspension system model . 6

3 High-level overview of the protocol . 8

4 Flow of the Addition and Subtraction Protocol (ASP) . 10

5 Flow of the Multiplication Protocol . 11

6 Flow of the Division Protocol . 12

7 Flow of Logarithm Protocol . 13

8 Flow of Phase 1 . 13

9 Flow of Phase 2 . 14

10 Flow of Phase 3 . 15

11 Flow of the GT0 Protocol . 15

12 Flow of the EW0 Protocol . 16

13 Implementation steps . 21

− 26 −

