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Abstract
The use of hand gestures has a potential as an promis-
ing input metaphor. Wearables like smart textile and data
gloves can provide hand gesture recognition to potentially
replace, augment or improve existing input methods. Al-
though recent bikes provide advanced functions with electro
mechanical components, the input metaphor still relies on
mechanical switches or levers. In this paper, we investi-
gate the acceptance and performance of using hand ges-
ture during cycling. Through an observational study with 16
users, we devised a taxonomy of hand gestures. Users pre-
fer subtle micro hand gestures to ensure safe cycling while
maintaining a flexible controllability. We also implemented
a wearable prototype that recognizes these gestures. In
our evaluation, the prototype shows an average of 92 %
accuracy while showing similar response time to existing
mechanical inputs.
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INTRODUCTION
Recent developments in electro-mechanical components
(e.g. electronic shifting and suspension locking) and use of
peripherals (e.g. headlights and bike computers) during cy-
cling have increased input requirements for the bike. How-
ever, previous study [4] showed that adding physical input
controls would affect negatively on cycling safety. Moreover,
limited physical volume of bike’s handlebar makes it hard
to implement all control components in accordance with
increased bike functions.

Currently, users control a bike using mechanical inputs
installed/mounted on the handlebar such as shift levers,
twist levers and buttons. These inputs often lead users to
move a hand from one place to the other or require visual
attention during manipulation. To this extent, bike manu-
facturers have started to employ wearable input devices for
bikes [21], but they still relied on simple triggers like finger-
tip pressing. While glove-based hand gesture inputs have
been explored widely for design, robotics, medicine and
computer applications space [14], relatively few research
has focused on cycling. Furthermore, gloves are commonly
equipped during cycling for hand protection and warmth,
which reduces the doubts about users’ willingness to wear
additional equipment.

In this paper, we aim to explore acceptable hand gestures
for input controls during cycling. Based on devised ges-
tures, we further investigate performance in terms of reac-
tion time. This verifies the performance of using explored
gestures. Throughout exploratory study with users, we de-
vised 10 hand gestures based on finger contact, bending,
and hand tilting. We found that users preferred microges-
tures [23], instead of whole hand gestures. In addition,
some whole hand gestures were found to have safety con-
cerns. We implemented a wearable prototype for evaluating

and demonstrating bike functions and peripheral devices
controls during cycling.

RELATED STUDY
Recognition of hand gestures have been implemented us-
ing electromyography (EMG) [12], capacitance sensing
around the wrist [15], and strain sensing on the skin [11].
Beside, previous works employ smart textile [25], mag-
netic sensing [3], and vision system [9] to provide finger-
level controls. However, these works focus on enabling
interactions rather than exploring a set of acceptable ges-
tures from end-users. To this extent, other works have done
gesture elicitation studies for domains like mobile interac-
tion [16], TV control [19], and surface computing [22], but
few studies have focused on the hand gestures interaction
with bike components during cycling. Recently, microges-
tures have been highlighted with mobile and discrete nature
of interactions [2, 23]. Throughout our work, we bring out a
taxonomy of microgestures for cycling which reflects safety
concerns and controllability with handlebars.

Previous works demonstrate interactive system for cycling
including navigation through vibration [18], visual feedback
using smart eyeglass [17], and head-up display [4]. Recent
research and commercial works also incorporated hand
gestures control during cycling [1, 4, 8, 10, 20]. However,
there is little or no research on studying input metaphors
for cycling. Yoon et el’s work [25] illustrated that the per-
formance of current input metaphors can be improved by
adopting wearable inputs with multimodal sensing capa-
bilities. We implemented a prototype as a glove integrated
with multi-modal sensing capabilities (finger bending, press-
ing, and hand tilting). With the proposed prototype, we rec-
ognized 10 microgestures discovered from an exploratory
study. Thus, we suggest using hand-based microgestures
as a new input metaphor during cycling. The study results
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Figure 1: Hand gestures elicited from exploratory study. A total of 10 microgestures from users’ inputs are illustrated with Gesture ID.

verify that microgestures show competitive performance
comparing to existing mechanical inputs.

EXPLORATORY STUDY: DESIGNING GESTURES

Figure 2: Our prototype:
microgesture-based glove

We conducted interview and observation study with users
to gain a better understanding of feasible gestures for cy-
cling. We carried out multiple sessions like previous work [24]
to finalize gestures. We recruited 16 participants (3 female,
ages 23∼43, average = 26, SD = 5.32 ) with different back-
grounds including daily bike users, pro-cyclist, bike engi-
neers, and local bike dealers. All participants had experi-
ences with existing bike’s input methods such as controlling
gear shifting and interacting with bike computer. To reduce
legacy bias from previous experiences, we forced partic-
ipants to produce multiple interaction proposals for each
function [13]. We then observed user’s gesture demon-
stration with a bike handlebar while they were seated and
pedaling on the bike. We asked users to complete following
questions and tasks:

1. What are primary input mechanisms used during cy-
cling? Participants explain and demonstrate main
input mechanisms used based on their experiences.

2. Do you encounter any problems with current input
mechanisms during cycling? Participants list factors
that affect current controls during cycling.

3. How might hand gestures be used during cycling?
Participants illustrate hand gestures for different bike
functions and demonstrate with a bike handle bar.

We collected gestures from user’s responses which in-
clude 1) legacy-inspired gestures such as hand tilting while
pressing an index finger with a thumb (Gesture ID 2) and
2) newly suggested hand gestures like pressing side of the
finger (Gesture ID 6). After collecting gestures from all par-
ticipants, we had an evaluation session with same group to
rate all collected gestures based on Feasibility, Attention,
and Interference [24]. Based on these ratings, we formed
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a taxonomy of 10 hand gestures for cycling which will be
further evaluated.

Figure 3: The schematic workflow
of the prototype

Figure 4: Graphs of sensor signals
for all microgestures. The
horizontal and vertical axes
represent time and amplitude
respectively. Each color represents
different sensors used in our
prototype and numbers indicate
Gesture ID in Figure 1.

Safety concern and microgestures for cycling
All users report that existing mechanical input methods of-
ten cause safety issues. First, users need to move a whole
hand from one place to another for interacting with periph-
eral devices such as headlight, mobile device, or electric
component of bikes. Participants also mentioned that cur-
rent eyes-on interactions with mechanical buttons easily
lead to interference with cycling. To overcome these issues,
participants suggest microgestures for interactions during
cycling rather than whole hand gestures. Participants also
emphasize advantages of using microgestures: 1) less mo-
tions for executing inputs and 2) less visual attentions for
executing inputs.

Exploratory study with users helped us formulating a taxon-
omy of microgestures for cycling. We categorize gestures
according to sensing requirements and functions.

Contact : Participants preferred various types of finger con-
tacts. Main categories include 1) inter-finger contact, 2) tab
on the side of a finger, and 3) contact top/bottom side of a
finger with surrounded structure.

Bending: Participants selected finger bending as a poten-
tial gesture element since it represents user’s natural hand
posture like open/close grips. Participants showed strong
interests in utilizing only few magnitude levels since they
cannot guarantee fine-grained controls of finger bending.

Tilting: All participants mentioned using hand tilting as an
essential gesture element. They inherited Tilting from cur-
rent bike input metaphors where most bikes adopt twisting-
lever for changing gears.

Multimodal Physical Sensing: Within the devised taxonomy,
more than half of gestures merge multiple sensing prop-
erties (e.g. tilting while contact). Primary reason for multi-
modal physical sensing was to avoid unintentional triggers.

Function Mapping: Participants showed strong adherence
in mapping legacy-inspired gestures to Bike Controls. Sev-
eral participants mentioned that it was hard for them to ap-
ply random hand gestures like inter-finger contact to bike-
related controls like shifting gears.

PROTOTYPE
To fulfill requirements from devised microgestures, we focus
on embedding sensors to recognize inter-finger contact, fin-
ger bending, and hand tilting (Figure 2). For contact sens-
ing, we attach a total of 6 force-sensitive resistors (FSR)
to : 1) fingertips of index, middle, and ring finger, 2) fin-
gernails of index and middle fingers, and 3) inner side of
the index finger. We selected Flexiforce A201 (0.38” di-
ameter) FSR for fingertips and inner side of index finger,
and Interlink 400 FSR (0.5” diameter) for fingernails. Two
flex sensors (4.5” length) are embedded on top of index
and middle fingers to capture finger bending. We cap-
tured hand tilting by attaching accelerometer to the back
of hand. Two microcontrollers integrated with a Bluetooth
4.0 Low Energy (Nordic nRF51822, clock speed 16 MHz,
2.4 GHz band) process analog readings from all sensors
and transmit computed Gesture ID to either smartphone or
bike control hub. These two microcontrollers communicate
with each other via serial communication.

To recognize different gestures, we employ a multi-class
thresholding. Along with various threshold ranges, we uti-
lize different set of sensors to recognize different gestures.
As shown in Figure 4, we observe significant changes in
sensor readings within devised microgestures. This sup-
ports that proposed microgestures are distinguishable only
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with raw signals. For example, Gesture ID 3 We implement
smooth filters on each pressure sensor and bend sensor.
Moreover, no user-dependent calibrations are used during
our evaluations or demonstrations.

PRELIMINARY EVALUATION
To explore the performance of microgestures with real
users, we carried out two preliminary evaluations: 1) accu-
racy test on gesture classification and 2) reaction time mea-
surements for existing mechanical inputs and microgesture-
based glove. Both evaluations took place in a lab environ-
ment where we asked users to sit on the bike and pedal
during the session. The results show that users attain an
average accuracy of 91 % with uncalibrated raw sensor
readings to differentiate 10 microgestures. The reaction
time comparison results show that suggested microges-
tures perform as good as existing bike inputs.

Figure 5: Confusion matrix of
different input types. Rows indicate
presented inputs and columns refer
to selected inputs. Class is same
as Gesture ID used in Figure 1.

Figure 6: The study setup with
existing mechanical inputs

Figure 7: The study setup with our
prototype

Accuracy Test
For accuracy test, we intentionally design our algorithm with
multi-class thresholding based on raw sensor signals. Al-
though machine learning technique [6] can further enhance
classification performance, we are more interested in verify-
ing the reliability and the stability of raw signals from micro-
gestures. We recruited 11 participants (three females) with
a mean age of 27 (SD = 3.27, all right-handed). We asked
participants to execute every gesture designed in our pro-
totype (10 classes) for 5 times with randomized orders. No
user dependent calibration was done.

Figure 5 illustrates the confusion matrix of different micro-
gestures. All gestures show similar accuracy which shows
equal performances across microgestures. Overall accu-
racy comes out to be 91 %. We also count number of unin-
tentional triggers. In a total of 550 trials (11 users × 50 tri-
als), there are 15 unintentional triggers (2.73 % of total

data) which bring overall accuracy down to 88 %. The main
source of unintentional triggers is the fitting of the glove.
Participants who show good fits with our glove (4 partici-
pants) commit 50 % less unintentional triggers.

Reaction Time
The purpose of comparison study is in two folds: 1) ex-
plore reaction time performance comparing to existing in-
put metaphor with various gesture sets containing different
number of gestures and 2) investigate performance of in-
dividual microgestures. We recruited 8 participants (two
females) with mean age of 24 (SD = 2.23, all right handed).
Figure 6 illustrates our study setup for mechanical inputs
and microgesture-based glove with a real bike. During the
study, we restricted users from looking at the handlebar re-
gion to simulate cycling environment. After the study, we
took a short survey to retrieve NASA-TLX ratings [7].

In this study, we had 4 sets containing different number of
gestures (2, 4, 6, and 8 gestures). Within each set, users
performed tasks using both input devices: handlebar with
common mechanical inputs and our glove prototype with
microgestures. We called random functions mapped to
specific gestures. Participants triggered called functions
using the given input devices. In order to capture time dura-
tions, we used video data for mechanical inputs and outputs
from microcontroller for microgestures. We adopted within-
subject design for this study since individual performance
varies in controlling different input devices. In order to min-
imize a learning effect, we randomized the order of ges-
ture sets and provided sufficient practice time before each
set (10 minutes). We collected a total of 1536 data points (8
users×4 sets×2 methods×24 trials).

Figure 8 represents reaction time using mechanical inputs
and devised microgestures with our prototype. On the aver-
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age, it required 0.03s (1.3%) more reaction time to use mi-
crogestures comparing to mechanical inputs. A two-sample
t-test shows that reaction time results are from the same
distributions with p=0.21. This indicates that the response
time performance of existing inputs and microgestures are
similar. Furthermore, both input types show increase in
overall reaction times for large number of input types.

Within the microgesture performance, we looked at indi-
vidual gesture performance. As shown in Figure 9, we no-
tice that legacy-inspired microgestures (Gesture ID 2∼5)
showed 20% faster reaction time than newly suggested
gestures (Gesture ID 6∼10). This indicates that users per-
form better with microgestures that adopt motions from han-
dling existing inputs . Gesture ID 7 & 8 exhibited highest
reaction times. These two gestures utilize top part of fingers
which are often not involved in input controls.

Figure 8: Reaction time for input
execution using mechanical inputs
and a set of devised microgestures
with different number of input types
in each set (2,4,6 and 8 gestures)

Figure 9: Reaction times for
different Gesture ID

DISCUSSION & FUTURE WORK
During our user study, we observed that mechanical inputs
like buttons required user’s whole visual attention during
execution. Users had to find and locate the buttons before
execution. In contrast, no subsequent visual attentions were
required for controlling with microgestures. This implies that
employing microgestures has a potential to reduce work-
loads for active exercise like cycling. Our post NASA-TLX
survey supports where users rate Physical and Temporal
demand lower (27.7 % and 23.5 %) for using microgestures
over existing mechanical inputs.

Participants’ reaction time was high when they performed
Gesture ID 7 & 8. This indicates that participants did not
feel comfortable about directly using top side of fingers.
This is aligned with previous study on human’s natural hand
motion with tools [5] that humans utilize only inner and side
of fingers to manipulate tools. Also, higher reaction time in

newly suggested microgestures (Gesture ID 6∼10) show
users’ high inclination towards legacy-inspired gestures
for cycling. Thus, UI designers/researchers who work on
microgestures for cycling should consider mapping legacy-
inspired gestures for main bike controls since their functions
are more crucial than those of peripheral devices.

Based on this preliminary test results, we are interested in
pursuing the study in real environment settings to under-
stand in-depth performance of micro hand gestures during
cycling. We plan to incorporate machine learning technique
to provide reliable gesture recognition. Currently, we are
working on reducing the size of the hardware to provide
lightweight and solid prototype.

CONCLUSION
In this study, we conducted exploratory studies to form a
taxonomy of feasible gestures for cycling. We devised 10
microgestures that has a potential to work as bike inputs
based on users’ feedback and ratings. We implemented a
glove prototype that captures microgestures. The accuracy
test shows that microgestures can be easily recognized uti-
lizing only raw sensor signals. The preliminary comparison
study shows that microgestures perform similar to existing
mechanical inputs in terms of response time. The evalua-
tion results show the feasibility of adopting microgestures
as potential inputs for cycling. With suggested future works,
we believe that micro hand gesture can become an alterna-
tive inputs for cycling.
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