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Abstract—Recent developments in high-throughput technologies for measuring protein-protein interaction (PPI) have profoundly

advanced our ability to systematically infer protein function and regulation. However, inherently high false positive and false negative

rates in measurement have posed great challenges in computational approaches for the prediction of PPI. A good PPI predictor should

be 1) resistant to high rate of missing and spurious PPIs, and 2) robust against incompleteness of observed PPI networks. To predict

PPI in a network, we developed an intrinsic geometry structure (IGS) for network, which exploits the intrinsic and hidden relationship

among proteins in network through a heat diffusion process. In this process, all explicit PPIs participate simultaneously to glue local

infinitesimal and noisy experimental interaction data to generate a global macroscopic descriptions about relationships among proteins.

The revealed implicit relationship can be interpreted as the probability of two proteins interacting with each other. The revealed

relationship is intrinsic and robust against individual, local and explicit protein interactions in the original network. We apply our

approach to publicly available PPI network data for the evaluation of the performance of PPI prediction. Experimental results indicate

that, under different levels of the missing and spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relationship for

PPI prediction with a higher sensitivity and specificity compared to that of recently proposed methods.

Index Terms—Protein protein interaction network, complex network, computational biology

Ç

1 INTRODUCTION

THIS paper introduces an intrinsic geometry structure
(IGS) of protein-protein interaction (PPI) network for

the prediction of PPIs in network. Subsequent sections pres-
ent the background of computational predication of PPI,
review of the related methods, and a brief introduction to
our proposed method.

1.1 Protein-Protein Interaction Prediction

Protein-protein interactions play important roles in assem-
bling molecular machines through mediating many essen-
tial cellular activities [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13]. It is of important biological interest to ana-
lyze (PPI) network for deep understanding protein func-
tions in cellular processes and biochemical events. The
recent advancement in high-throughput technologies such
as two-hybrid assays, tandem affinity purification, and
mass spectrometry have provided tremendous amounts of
PPIs in biological networks [14], [15]. The wealth of experi-
mentally identified PPIs provide more opportunities in the
exploration of protein functions and regulation in various

organism. However, the labor-intensive experimental data
are inherently associated with high false positives (FPs) and
false negatives (FNs) which stir up many concerns in com-
prehensive analysis in understanding the PPI network [16],
[17]. In addition, the identified PPI networks are somewhat
incomplete as it is impractical to experimentally verify all
individual PPIs within one cell [18]. These limitations can
be complemented by the computational models for predict-
ing PPIs from noisy experimental observations [15]. The
complementary in silico approaches have been receiving
more and more attentions in the assistance of PPI network
analysis [1], [15], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29].

1.2 Review of Existing Prediction Methods

The computational approaches for the prediction of PPIs
have been developed over the years [15]. We roughly break
those approaches into two categories: the approaches based
on integration of multiple data sources and the approaches
solely based on topology of PPI network.

As our method falls into the later category, we mainly
review the related works that address the problem of PPI
prediction only using topology of network. For a review of
earlier prediction approach, we refer readers to [15] for the
discussion of applicability of computational methods to
different types of prediction problems. The review sum-
maries the prediction methods, including Gene neighbor
and gene cluster methods, Phylogenetic profile methods,
Rosetta Stone method, Sequence-based co-evolution
methods, and classification methods. Although these pre-
diction approaches can address the prediction of PPI to
some extent, their performance rely on the biological
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sources outside of PPI network, such as gene expression
arrays, proteomics, and chromatin immunoprecipitation
on chip assays.

The approaches in the later category are promising as
they predict PPIs simply based on the topological connec-
tions in network and independence of any other biological
sources [26], [30], [31], [32], [33], [34], [35], [36], [37]. In this
category, the approaches differ from each other because
they interpret the explicit topological connection of PPI net-
work from different perspectives. The common neighbor
method assumes that, in a network, two nodes are likely to
interact with each other if they share many common neigh-
bors [38]. However, as this method relies only on local topo-
logical information, the prediction will be biased by the
local noisy interactions [19], [39], [40], [41]. A better way of
capturing topological structure of the entire network is
based on the consensus across all of individual interactions.
A recent approach is proposed to generate a set of dendro-
grams and create a single consensus dendrogram to
summarize network structure [38]. Such a consensus den-
drogram captures the topological features that appear con-
sistently across all or a large fraction of the dendrograms. It
demonstrates a good performance in prediction of missing
interaction [38]. However, the process of generating multi-
ple dendrograms and creating a single consensus one is
computational expensive and thus the method is inefficient
in the application of large PPI network. Another approach
to use topological information is propagation of local struc-
ture to a global view of network structure. In [33], [34], the
authors introduced two indices called IG1 and IG2 based on
the use of the local topology of a pair of proteins to rank
their interaction probability. Furthermore, recently Yuan
et al. [37] developed a generative network model for the
prediction of protein-protein interactions in network.

One of well established propagation method, the shortest
path propagation, has been recently introduced for the pre-
diction of the PPI in networks [1]. Their approach achieves a
good performance in PPI prediction with specificity of
85 percent and sensitivity of 90 percent. However, although
it is able to capture the global structure of the network, it
should be noticed that the shortest path propagation is
known to be sensitive to short-circuit topological noise. The
addition of spurious PPI would significantly affect the short-
est path propagation. The random walk based diffusion
propagation gains its advantage by progressively exploiting
all possible linkages among proteins in the network [31],
[32]. It is therefore robust to local noisy interactions. Authors
in [31] introduce this propagation strategy to PPI prediction
in the network and demonstrate good performance in their
experiments. However, it is an open research for choosing an
appropriate parameter of steps for the propagation process.
This parameter determines the extent to which the global
structure of a network is exploited. A greater propagation
step allows to exploit more global structure however reduces
the resolution to differentiate PPIs. A smaller propagation
step allows to preserve a relatively higher resolution but the
revealed structure is more sensitive to noise [42]. Contrast to
random walk based diffusion propagation, the heat diffu-
sion, governed by the eigenfunctions of Laplacian operator
on network, can take account all of the local information at
once to produce a consistent global solution.

1.3 Our Solution: Intrinsic Geometric
Structure (IGS)

In this paper, heat diffusion is used to define intrinsic geo-
metric structure of a PPI network. Because heat diffusion
across network aggregates structural information about all
possible paths connecting two nodes in network, it captures
intrinsic relationship among nodes. Similar to random walk
based diffusion propagation, the extent to which heat dif-
fuses across network is scaled by the parameter of the dissi-
pation time, which controls how globally the network
structure is exploited. We propose a maximum likelihood
based algorithm to determine the optimal dissipation time
to balance the exploitation of the local and global structure
of the entire PPI network. And the intrinsic geometric struc-
ture of PPI is defined as the revealed structure in heat diffu-
sion process by the optimal dissipation time. The IGS
organizes the proteins in the heat featured space according
to their interactions in the network and has following three
desirable properties: 1) it organizes information about
intrinsic geometry of a PPI network in an efficient way, 2) it
is stable under a certain number of missing and spurious
interactions. 3) it faithfully interprets the implicit relation-
ship with physics meaning supported. Fig. 1 illustrates the
basic idea of IGS and how IGS detects spurious links and
missing links in noisy PPI network. Fig. 1A demonstrates a
toy PPI network consisting of seven proteins and nine PPIs
in the network. The solid line between two proteins indicates
there is a PPI between them. Fig. 1B depicts the intrinsic geo-
metric structure for PPI network in (A). The new relationship
between any pair of proteins is defined by the revealed struc-
ture (IGS). In the Fig. 1B, the strength of the relationship
among proteins is represented by the color of the line
between the nodes on the surface. The closer the color to red,
the stronger two protein are. Spurious or missing links can
be identified by investigating the strength of the revealed
relationship. The stronger the relationship between a pair of
nodes are, the more likely they are true PPI in the original
PPI network. In the Fig. 1A, we suspect that the link between

Fig. 1. Illustration of intrinsic geometric structure. (A) illustrates a toy PPI
network consisted of seven proteins, which are denoted by P1 to P7. The
solid line indicates an interaction between a pair of proteins, some of
which are possibly spurious. The dashed line indicates possible missing
link. (B) illustrates the intrinsic geometric structure of network on the left.
The strength of revealed relationship among proteins gauged by its
color. The closer the color to red end, the stronger the relationship
between a pair of proteins is, the more likely they interact with each other
in the original network. A possible missing link between P2 and P4 is
identified since the revealed relationship by IGS is stronger (color in
yellow). A potential spurious link between P1 and P7 is identified as well
since the revealed relationship by IGS is weaker (color in blue).
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P1 and P7 is a spurious link because only an isolated pair link
between them. We also suspect that there should be a miss-
ing link between P2 and P4 because there are a couple of
paths between two nodes. We can confirm the suspicion by
the strength of new revealed relationships among proteins in
Fig. 1B. There is a blue link between P1 and P7 indicating a
weaker relationship, and there is a yellow link between P2

and P4 indicating a relatively stronger relationship. The PPI
in original network could be redefined according to the
strength of relationship defined by IGS.

The remainder of this paper is organized as follows.
Section 2 provides the description of the method of defining
the intrinsic geometric structure and the way to learn the
intrinsic geometric structure. Section 3 describes experimen-
tal results on applications in PPI network. Section 4 presents
additional discussion and concludes with description of the
limitations of our current implementation and ways to
address these limitations in the future.

2 METHODS

In this section, we will first introduce fundamentals about
heat kernel, and develop the proposed intrinsic geometric
structure for PPI network.

2.1 Heat Kernel on Network

Heat transfer is a flow process of thermal energy from
one region of matter or a physical system to another,
which is mathematically governed by heat equation. Heat
Kernel provides a fundamental solution to heat equation
in the mathematical study of heat conduction and diffu-
sion. The heat kernel records the evolution of temperature
in a region whose boundary is held fixed at a particular
temperature (typically zero), such that an initial unit of
heat energy is placed at a point at some time. Intuitively,
we could imagine that applying a unit amount of heat at
one node i and allow the heat flow on the network across
all edges, heat kernel measures the amount of the heat
that passes from the node i to any other node j within a
certain unit of time. Given a graph constructed by con-
necting pairs of data points with weighted edges, the heat
kernel quantitatively codes the heat flow across a graph
and is uniquely defined for any pair of data points on the
graph. Suppose there is an initial heat distribution on net-
work at time 0. The heat flow across the network is gov-
erned by the heat equation uðx; tÞ, where x denotes one
node in the network and t denotes the time after the
application of unit heat. The heat kernel provides the fun-
damental solution of the heat equation [43]. The heat ker-
nel is closely associated with graph Laplacian by:

@Ht

@t
¼ �LHt; (1)

where Ht denotes the heat kernel, L denotes the graph Lap-
lacian and t denotes time.

2.2 Numerical Implementation of Heat Kernel

Graph Laplacian. As the graph Laplacian is important for
solving the heat equation, we will introduce the graph Lap-
lacian as follow. The PPI network under study is denoted as
a graph G ¼ ðV;E;WÞ, where V is the set of notes, E is a set

of edges, andW is the weight matrix,

Wði; jÞ ¼ 1 if i 6¼ j
0 if i ¼ j;

�
(2)

where Wi;j is the weight of the edge connecting node i and
node j and 1 denotes there is an interaction between a pair
of proteins. The graph Laplacian is given as follows:

L ¼ D�W; (3)

whereD is a diagonal degree matrix and its diagonal entries
are given by the summation of rows ofW :

Dii ¼
X
j

Wij (4)

The normalized Laplacian of the graph is defined by

L̂ ¼ D�1=2LD�1=2: (5)

It is of great interest to analyze the spectral decomposition
of the normalized Laplacianmatrix L̂. We can express L̂:

L̂ ¼ FLFT ; (6)

where L ¼ diagð�1; �2; . . . ; �NÞ(�1 < �2 < � � � < �N ) is a
diagonal matrix with ascending eigenvalues as the diago-
nal entries and F has the corresponding eigenvectors as
its columns.

Heat Kernel by Eigenfunction Expansion. The heat kernel,
defined in Eq. (1), can be expressed as the eigenfunction
expansion by the graph Laplacian described below.

Ht ¼ expð�tL̂Þ; (7)

where Ht is the heat kernel and L̂ is the normalized graph
Laplacian. By the Spectral Theorem, the heat kernel can be
further expressed as follows:

Htði; jÞ ¼
XjV j

k¼1

e��ktfkðiÞfkðjÞ; (8)

where �k is the kth eigenvalue of the Laplacian and fk is the
kth normalized eigenfunction. The eigenvalues are ordered
so that

�1 � �2 � � � ��jV j;

and we pick an eigenvector for each eigenvalue. If the eigen-
value has geometric multiplicity one, the eigenfunction will
be well-defined up to a scalar. The normalization of the
eigenfunctions here refers to a choice of constants so that

X
i

jfkðiÞj2 ¼ 1: (9)

The quantity Htði; jÞ, defines the heat affinity between the
pair of points i and j, is a measure of heat transfer between
the two points after time t. We observe the symmetry:

Htði; jÞ ¼ Htðj; iÞ; (10)
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reflecting the symmetry of the Laplacian, whereby the
eigenvalues are guaranteed to be real and endowed with a
complete basis of eigenvectors.

The heat kernel is sensitive to the structure of the net-
work as it collects heat based information about all the pos-
sible paths between two nodes on the network. The heat
flow on the network can be quantitatively approximated by
the heat kernel Htði; jÞ, normally viewed as a function of
two points i; j on the network at any given time t. The rate
of diffusion over any one of the edges is determined by its
weight. The value of the heat kernelHtði; jÞ is the amount of
heat accumulated at j after time t.

2.3 Intrinsic Geometric Structure

Heat kernel provides a transform by which the relation-
ship among the data points is redefined according to the
re-organization of all of the data simultaneously. The
transform thus define a new relationship among proteins
according to their topological connections. However, the
heat kernel dynamically characterizes the proteins in the
network from a local to global structure in the original
network because it encapsulates the information about
the heat flow over the time. The heat flow gradually
aggregates information from local to global regions. At
short time, heat kernel captures the local connectivity or
topology of the network, while for long times the solution
gauges the global geometry of the manifold on which the
graph resides. However, there is one question remaining
to answer: how to determine an appropriate time to bal-
ance how globally the structure of the entire network is
exploited. The statistical interpretation of Htði; jÞ arises
from an exploration process: starting at node i, and
exploring the entire network in all possible connections,
the probability that j has been reached at the time t is
Htði; jÞ [42]. Based on the statistical interpretation, we
proposed an approach to determining the time at which
the likelihood for all of the observed PPIs is maximized.
We formulate the optimization problem as follows. The
likelihood function for the

LðtjPPI1; PPI2; . . . ; PPInÞ ¼
Yn
k¼1

P ðPPIkjtÞ; (11)

where PPIk denote the kth pair of the protein-protein inter-
action, n is the number of the total observed PPI in the net-
work, t denotes the heat dissipation time and P ðPPIkjtÞ
denotes the probability that, starting from one node in kth
pair of PPI, another node is reached by the time t, and
equals to the value provided by heat kernel HtðPPIkÞ. In
practice, it is convenient to convert to logarithm of likeli-
hood function, defined as:

lnLðtjPPI1; PPI2; . . . ; PPInÞ ¼
Xn
k¼1

lnP ðPPIkjtÞ: (12)

We are about to solve the following optimization prob-
lem to find the optimal time.

t ¼ arg max
t

lnLðtjPPI1; PPI2; . . . ; PPInÞ: (13)

Basically, the IGS organizes the proteins in the heat fea-
tured space according to their interactions in network and
has the following two desirable properties:

1) It organizes information about the intrinsic geometry
of a PPI network in an efficient way,

2) It is stable under a certain number of missing and
spurious interactions,

3) It faithfully interprets the implicit relationship with
physics meaning supported.

The algorithm for solving the optimization problem in
Eq. (13) is outlined below:

Algorithm 1. Determination of Intrinsic Geometric
Structure

1: Given the network, V as the set of PPIs in the network, i and
j denote ith and jth protein, respectively, Ht denotes heat
kernel and Htði; jÞ denotes heat affinity between ith protein
and jth protein by heat dissipation time of t. IGS denotes
the intrinsic geometric structure of the network.

2: Compute the graph Laplacian L for the network and its nor-

malized version L̂.
3: Compute the eigenvalues and eigenvectors of L̂,
4: Compute the heat kernel Ht at each time t, and evaluate the

likelihood defined in Eq. 13.
5: Terminate the iteration while likelihood function becomes

stable or the number of the iterations reaches, we find the
time t at which the likelihood function reaches maximum
(see Fig. 2). The located time is then chosen as OptTime

6: The IGS is then given byHOptTime

7: return IGS

Fig. 2 illustrates the process of determination of the opti-
mal time. By observation, likelihood value increases initially
and monotonically decreases after obtaining its maximum
at time around 1:5. We then set the optimal time for the PPI
network 1:5. We notice that the likelihood increases rapidly
and then decreases slowly after crossing the optimal time.
The likelihood remains stable while the heat distributes
evenly on the network after a long dissipation time.

3 RESULTS

To test the performance of IGS in PPI prediction in network,
we carry out two experiments based on the experimental
setting in [1], [38] and our new design of experiments

Fig. 2. Determination of optimal heat dissipation time. Figure illustrates
the process of determination of the optimal time. By observation,
likelihood value increases initially and monotonically decreases after
obtaining its maximum at time around 1:5.
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against false positive and false negative PPIs in network.
First, Two-class classifier test to differentiate the protein
protein interaction and protein protein non-interaction
(NPPI) at different noise levels. For the evaluation of
the performance, we use the ROC (receiver operating
characteristic curve, a graphical plot of the sensitivity versus
(1 - specificity)) curve and precision-recall (PR) curve.
Second, the test of the prediction of interaction from the net-
work at different noisy level. For the evaluation of the per-
formance, we use the area under curve (AUC). Our method
is compared with two recent approaches for the prediction
of PPI network [1], [38]. As our method mainly compare to
the methods [1], [38], in the experiments, we denote the
method proposed in [1] as MDS and the method proposed
in [38] as HRG, and our method is denoted as IGS.

3.1 Data Sources

Since our method is mainly compared to the MDS method
proposed in [1], we carried out our experiments on the
same dataset which is used [1]. Therefore, we verify our
approach on a publicly available S. cerevisiae network
[44]. The S. cerevisiae network, which consists of 9; 074
interactions amongst 1; 622 proteins (we denoted it as
CS2007 hereafter), is believed to be of high confidence.
The high-confidence property of CS2007 makes it a good
dataset for the test of a computational based method. To
avoid the computational error for spectral decomposition
of normalized Laplacian matrix in 6, we firstly identify
the largest connected component of CS2007 which has
8,323 interactions between 1,004 proteins to form the final
experimental dataset. In addition, to demonstrate the gen-
erality of our method, we also verify our approach on two
other types of complex networks (non-PPI network) [38],
[45], [46].

3.2 Computation of Heat Kernel Matrix

To better understand the calculation of heat kernel matrix,
we provide a mini-example in this section. We created a set
of four connected nodes as shown in Fig. 3A. We first calcu-
late the weight matrix for the set of nodes based on Eq. (2).
Fig. 3B shows the weight matrix with “1” indication of a

connection and “0” indication of no connection. We then
calculate normalized Laplacian matrix based on Eq. (5).
Fig. 3C shows normalized Laplacian. The heat kernel matrix
is calculated in the last step based on Eq. (7) or (8). Fig. 3D
shows the heat kernel matrix at time t ¼ 0:1. Each entry
Htði; jÞ in the matrix corresponds a heat kernel value at time
t. For example, Htð1; 2Þ ¼ 0:0376 indicates the heat kernel
value between node 1 and node 2 is 0:0376.

3.3 Two-Class Classifier Test

To validate the performance of IGS for differentiating the
PPI and NPPI, we use the ROC curve and precision recall
curve as the criteria. Both curves reflect how well IGS can
robustly differentiates the PPI from the NPPIs based on the
revealed and intrinsic relationship among proteins. To plot
the ROC curve and PR curve, we should first define true
position (TP), false positive, true negative (TN) and false
negative. The TP measures the intersection between the
new assigned PPIs set and the ground truth PPIs set, FP
denotes the assigned edges which are not in the set of
ground truth PPIs set, TN denotes the intersection of new
assigned NPPIs and ground truth of NPPIs, and FN denotes
new assigned NPPIs which are not in the set of ground truth
NPPIs. The ROC and PR curve are computed based on heat
affinity given by IGS as follows.

1) We vary the threshold from minimum to maximum
value in the heat affinity set among all pairs of
proteins.

2) For a given threshold, we compute the true positive
(TP) function, true negative function, false positive
function and false negative function.

3) Based on the values obtained in the previous step,
we compute the sensitivity rate (TP/(TP+FN)) and
specificity rate (TN/(TN+FP)), precise (TP(TP+FP))
and recall (TP/(TP+FN)). To plot the ROC curve, the
horizontal axis represents (1 - specificity), and the
vertical axis represents sensitivity. To plot the PR
curve, the horizontal axis represents recall, and the
vertical axis represents precision.

To demonstrate the robustness of IGS, we remove a frac-
tion of true positive PPIs in the original network and plot
the ROC curve at different levels of the removal of edges.
The ROC curves are shown in the Fig. 4. The illustrated
results are encouraging in terms of the prediction perfor-
mance of PPI from the incomplete network. Without the
removal of true PPI, the area under the ROC is nearly 1:00
and we can have specificity and sensitivity both over 0:95.
The corresponding false positive rate (1-specificity) and
false negative rate are all below 0:05. In addition, we find
the IGS is very robust to the removal of the true PPIs in the
network. As we can see from the Fig. 4, IGS performs pretty
well even with 60 percent edges removed from the network.
This result is appealing as most of the PPI network is incom-
plete with a large fraction of missing PPI in the observation
in real scenario. Furthermore, IGS outperforms the MDS
embedding method in this test [1]. They report a specificity
0:85 and sensitivity 0:90 in the experiment [1].

Following the experimental setting in [1], we further
plot the precision and recall curve for accuracy analysis.
The experimental result is shown in Fig. 5. Because the

Fig. 3. Demonstration of Heat Kernel Calculation. Figure A illustrates the
connections among four nodes. Figure B is the corresponding weight
matrix (Eq. (2)) for those four nodes. Figure C is the normalized Lapla-
cian matrix (Eq. (5)). Figure D is the heat kernel matrix at time t ¼ 0:1,
for example,Htð1; 2Þ ¼ 0:0376.
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PPI network is really sparse, the fraction of true PPI is
orderly lower than the fraction of true NPPI. A random
predictor would give less than 1 correct TP in 1;000 pre-
dictions, while the precision of PPI prediction of IGS can
be over 0:90 at a recall about 0:60 for the original PPI net-
work. The precision and recall analysis in [1] provides a
precision of 0:15 at a recall about 0:35. With their level of
precision and recall, they are able to reveal at least twice
as many PPI available in BioGRID [1]. Our IGS is
expected to give a much higher prediction of true PPI. In
addition, we could see that the PR curve remains at a rea-
sonable level even with 60 percent edges removed from
the network. This result also indicates that the precision
of prediction by IGS is not dramatically affected by the
missing PPI in the network.

3.4 Prediction of Interaction in Networks

In this experiment, we demonstrate the performance of
IGS in prediction of missing PPI and identification of
spurious PPI in the noisy network. For an incomplete
observed PPI network, we determine the IGS to fit the
network and associate the heat affinity with each pair of
proteins in the network. We are interested in the pairs of
proteins that have high heat affinity but are not connected
in the observed network, and the pairs of proteins that
have low heat affinity but are connected in the observed
network. The first type of pairs of proteins are most likely
candidates for missing PPIs, and the second type of pairs
are most likely candidates for spurious PPIs. Our method
is tested with one PPI network and two other type of
complex networks, and compared to two recent proposed
methods in [1], [38].

For each network, we randomly remove a subset of con-
nections for the simulation of missing PPI, and randomly
insert a subset of connections for the simulation of spurious
PPI. We attempt to predict the missing PPI and identify the
spurious PPI. A well established criteria for quantifying the
performance of prediction algorithms in machine learning
area is the AUC, which can be calculated by the area under
(ROC) curve. The AUC is often interpreted as the probabil-
ity that a randomly chosen missing connected pair of nodes
(true positive) is given a higher score by IGS than a

randomly chosen unconnected pair of nodes (true negative)
[38]. A random predictor will give AUC of score 0:5, and
the extent to which the AUC by IGS exceeds 0:5 reflects
how our prediction is better than chance.

3.4.1 Test on PPI Network

We use PPI network data (CS2007) to assess the perfor-
mance of our method from two perspectives. First, we want
to compare the performance in predictions of missing PPI
using our method with that of MDS [1]. We evaluate the
comparison by gradually increase the deletions of the true
PPI and attempt to predict using the topology information
remaining in the network. Second, we want to compare the
performance in identification of spurious PPI using our
method with that of MDS. We evaluate the comparison by
gradually increase the insertions of the false PPI and
attempt to identify using the topology information remain-
ing in the network.

The first comparison result is shown in Fig. 6A. The hori-
zontal axis represents the ratio between the number of the
deleted PPIs (Fig. 6A) or the inserted PPIs (Fig. 6B), and the
number of the true PPI in the network. Fig. 6A displays
the the result about the first test. We can see from the figure
that the AUC gradually decreases with the increase in the
ratio of deletion from 0:2 to 0:8. The comparison of two
curves shows that IGS consistently outperforms MDS in
predicting the missing PPIs indicated by the higher values
of AUC. The second comparison result is shown in Fig. 6B.
Fig. 6B displays the the result about the second test. We can
see from the figure that the AUC gradually decreases with
the increase in the ratio of insertion from 0:2 to 0:8. The com-
parison of two curves shows that IGS consistently outper-
forms MDS in identifying the spurious PPIs indicated by
the higher values of AUC.

3.4.2 Test Other Complex Network

In addition to testing PPI network, we further test IGS on
other types of complex networks to demonstrate the gener-
ality of IGS. We compare IGS with one more recently pro-
posed prediction method [38] and MDS. The method
proposed in [38], name hierarchical random graphs (HRG),

Fig. 5. Precision-recall test of IGS method. Five curves in the figure rep-
resent the PR curves for our method at different levels of removal of
edges.

Fig. 4. Sensitivity-specificity test of IGS method. Five curves in the figure
represent the ROC curves for our method at different levels of removal
of edges.
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also evaluate the probability of two nodes linking with each
other. In this test, we predict the missing PPI but insert a
certain levels of the spurious links to simulate the noisy
links. In particular, we combine different levels of deletion
and insertion and attempt to predict the missing interac-
tions from the remaining topology information.

The comparison results are shown in Tables 1 and 2 for
terrorist network and Dolphin network respectively [45],

[46]. In the Table 1, we can find the IGS performs best
among three methods, followed by HRG. Both IGS and
HRG reveal the new relationship among the nodes in the
network based on the consensus metric which captures the
topological features of entire or a large fraction of network.
Therefore, they are more robust to both the missing and
spurious PPIs. This robustness against the noise is con-
firmed in this test. We explain why MDS method performs
worse against insertion and deletion noise. The metric
revealed by MDS is based on the shortest path traveled
from one protein to another protein in the network [1].
Before the deletion of the PPI between a pair of proteins, the
shortest path is 1 as they are linked. However, the length of
the shortest path increases if PPI no longer exists between
them. Before the insertion of the PPI between a pair of
proteins, the shortest path is larger than 1 as they are not
directly linked. The path-length might be a very large
number if two nodes are really far away. However, the
shortest path would be changed to 1 if a link is intro-
duced between them. The short-circuit noise is a very typ-
ical topological noise in computational geometry area
which is usually overcome by the global geometric metric
for example the graph Laplacian based representation.
While IGS and HRG evaluate the probability of two node
linking each other taking into account all existing connec-
tions, therefore, they are more robust to both missing PPI
and spurious PPI according to the results in the table.
The comparison results shown in Table 2 for Dolphin net-
work indicated IGS and HRG have close performance in
prediction, but still outperform the MDS method. How-
ever, based on our experimental test, HRG method is
computationally expensive and fails to work on large size
networks, like CS2007.

Fig. 6. Comparison of AUC test of IGS and MDS methods on CS2007. In
(A), AUC values are computed for each method under certain level of
deletions of true positive PPIs in the original network. “Del” on the hori-
zontal axis displays the ratio between removed true PPIs and the num-
ber of PPIs in the original network and the vertical axis displays the
corresponding AUC value. In (B), AUC values are computed for individ-
ual methods under certain level of insertions of false positive PPIs in the
original network. “Ins” on the horizontal axis displays the ratio between
inserted false PPIs and the number of PPIs in the original network and
the vertical axis displays the corresponding AUC value.

TABLE 1
Comparison of IGS, HRG, and MDS Methods

on Terrorist Network

InsnDel 0.2 0.4 0.6 0.8

0 0.8806 0.8386 0.7766 0.6473
0.2 0.8141 0.7725 0.7061 0.6346

IGS 0.4 0.7814 0.7099 0.6725 0.5860
0.6 0.7366 0.6602 0.6135 0.5832
0.8 0.7021 0.6298 0.6001 0.5707
1 0.6832 0.6147 0.5832 0.5638

0 0.8139 0.8265 0.7517 0.6995
0.2 0.6957 0.6932 0.6145 0.5764

HRG 0.4 0.7020 0.6204 0.6410 0.6143
0.6 0.6646 0.6492 0.5973 0.4940
0.8 0.5966 0.5696 0.5433 0.4749
1 0.5614 0.6118 0.4900 0.5479

0 0.7926 0.7529 0.7032 0.5806
0.2 0.7655 0.7318 0.6693 0.5683

MDS 0.4 0.7066 0.6969 0.6445 0.5356
0.6 0.6852 0.6672 0.6358 0.5089
0.8 0.6622 0.6451 0.6210 0.4894
1 0.6579 0.6374 0.6143 0.4733

Comparison of AUC value test of IGS, HRG, and MDS methods on Terrorist
Network. For each method, AUC values are computed under different
conditions of insertions or deletions. “Ins” stands for the ratio between the
number of inserted false PPIs and the number of PPIs in the original network.
“Del” denotes the ratio between the number of removed true PPIs and the
number of PPIs in the original network.

TABLE 2
Comparison of IGS, HRG, and MDS Methods

on Dolphin Network

Ins nDel 0.2 0.4 0.6 0.8

0 0.8290 0.7703 0.7170 0.6031
0.2 0.7541 0.7206 0.6510 0.5788

IGS 0.4 0.7072 0.6696 0.6396 0.5610
0.6 0.6772 0.6214 0.5818 0.5425
0.8 0.6325 0.6285 0.6103 0.5707
1 0.6155 0.5858 0.5571 0.5402

0 0.8953 0.8231 0.7478 0.6973
0.2 0.6867 0.6365 0.6274 0.5004

HRG 0.4 0.6309 0.4427 0.5496 0.5815
0.6 0.5873 0.5592 0.4921 0.5298
0.8 0.5580 0.4878 0.5363 0.5346
1 0.5797 0.5112 0.5143 0.5798

0 0.7881 0.7641 0.6630 0.5503
0.2 0.7522 0.6828 0.5900 0.5310

MDS 0.4 0.7210 0.6567 0.5678 0.5211
0.6 0.6493 0.6237 0.5653 0.5177
0.8 0.6048 0.5864 0.5536 0.5041
1 0.5945 0.5640 0.5487 0.4952

Comparison of AUC value test of IGS, HRG, and MDS methods on Dolphin
Network. For each individual method, AUC values are computed under
different conditions of insertions or deletions. ‘Ins’ stands for the ratio between
the number of inserted false PPIs and the number of PPIs in the original
network. ‘Del’ denotes the ratio between the number of removed true PPIs and
the number of PPIs in the original network.
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4 DISCUSSION AND CONCLUSION

The silico approaches for prediction of PPI in network have
been receiving more and more attentions, however, are fac-
ing challenging because of the inherently spurious andmiss-
ing PPIs presence in observed measurements. The geometric
based approaches, which are only based on the topology of
the PPI network, are very promising as those approaches are
fully independent from other prior knowledge except for
topology of the PPI network.We proposed a novel geometric
description, intrinsic geometric structure for the protein-pro-
tein interaction network. IGS reflects the hidden and implicit
relationship among proteins. We will discuss the properties
of the intrinsic geometric structure as follows:

4.1 IGS is Learnt from Noisy Observation

As it is known in biological high-throughput data, one of the
typical features is the noisy. The PPI network is usually
observed with a high rate of missing and spurious interac-
tions. An approach is likely to be overwhelmed by the high
level of noises in the network if it simply relies on the individ-
ual local pairs of data or a small number of neighbors. How-
ever, two proteins are expected, though not interacted at
individual pair level, to be statistically interacted givenmany
paths bridging each other by considering all of topological
connections in the network. And two proteins are expected,
though connected at individual pair level, to be statistically
non-interacted given few paths bridging each other by con-
sidering all of topological connections in the network. A good
data analysis approach should be globally aware and robust
to the perturbation of the local features. The new relationship
reflected by our IGS is determined by taking into account of
all local pieces of individual PPIs. The new relationship is
based on the behavior of the PPI network system governed
by agreement between all individual interactions. Therefore,
the IGS is determined from a global structure as all of the
available prior knowledge, which is very robust to noise.

4.2 IGS is Learnt from Limited Local Knowledge

PPI network are often observed in a incomplete manner as it
is impractical to experimentally verify all individual PPIs
within on cell or organism. f an approach is only able to cap-
ture the local neighbors for a PPI network, it is likely to fail to
reveal the real relationship among proteins due to incom-
pleteness. To complete a high fidelity PPI network, it is of
great importance take into account all the pieces of local infor-
mation simultaneously, in order to generate the knowledge
behind the overall global structure of the data. IGS progres-
sively collect the local information in a heat diffusion process
to reach an optimal arrangement of all local piece of PPIs in a
global consistent manner. Therefore, given a sufficient sam-
ples of true positive and true negatives, even they are not a
complete description of network, IGS is able to reveal a high
fidelity PPI network. The excellence of IGS against the incom-
pleteness is highlighted by its good performance at a large
number of insertions and deletions introduced.

4.3 Limitations and Future Directions

Although our approach demonstrates a great performance
in the analysis of PPI network, we are aware of some limita-
tions in our current implementation and experiments.

Because we mainly focus on the development of computa-
tional model, the analysis of biological significance has not
been emphasized in the paper. For example, the noise prop-
erties in raw PPI data can be different from the simulated
random deletions and insertions used in existing experi-
ments. The applicability and generality of IGS should be
further explored in the future work by testing real challeng-
ing PPI network. For the tests on challenging PPI network,
we will also compare our proposed method to a recently
developed method based on generative network model
[37]. We give a global optimal scale to describe the intrinsic
geometric structure. However, the heat diffusion process is
known to describe the structure in a multi-scale manner.
Therefore, it is of interest to investigate the multi-scale prop-
erties of the PPI network and evaluate the stability and
other properties at each different level. The multi-level
description of PPI network will provide a grain to coarse
insights and might reveal more details about the network.
Furthermore, IGS is a general method and applicable to a
wide range of problem domains, for example, the recon-
struction of the air transportation network.
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