
DeepHand: Robust Hand Pose Estimation
by Completing a Matrix Imputed with Deep Features -

Supplementary Material

Ayan Sinha∗ Chiho Choi∗ Karthik Ramani
Purdue University

West Lafayette, IN 47907, USA
{sinha12, chihochoi, ramani}@purdue.edu

This document serves as supplementary material to the
paper, DeepHand: Robust Hand Pose Estimation by Com-
pleting a Matrix Imputed with Deep Features. We discuss
additional details about our matrix model and validate our
parameter choices.

1. Matrix Completion
In this section, we mathematically derive the final equa-

tion of our matrix completion model which estimates the
unknown pose vector p2 ∈ R1×m from the activation fea-
tures D = [D1;d2] and the known parameter values P1.

d2 p2

Spatial

Neighbors

Temporal

Neighbors

Input

D1

n

t

1

P1

r m

Activation Features Pose Parameters

Unknown Parameters

Figure 1: The individual block matrices in matrix comple-
tion imputed with deep features.

Figure 1 shows the imputation of the block matrices cor-
responding to equation (1) in the main manuscript, inclu-
sive of spatial and temporal neighbors. First, n nearest
neighbors to the input activation feature are retrieved from
the database. These activation features and corresponding
annotated parameter values are filled into the matrix block
corresponding to D and P, respectively. Additionally, the
activation features corresponding to the t previous frames

∗These authors made an equal contribution.

along with the estimated parameter values serve as tempo-
ral neighbors in the matrix blocks, D and P. Suppose p2 is
a submatrix of the matrix X.

X =

[
D1 P1

d2 p2

]
(1)

where D1 ∈ R(n+t)×r, d2 ∈ R1×r, and P1 ∈ R(n+t)×m,
and r is the dimensionality of the feature vector.

Lemma 1.1. Suppose that the matrix X is of rank k and
partitioned as shown in equation 1. We assume that the
matrix D1 also has rank k. Then

p2 = d2(D1)+P1, (2)

where + denotes the Moore-Penrose pseudo-inverse.

Proof. The matrix X is decomposed using SVD to rank
k as X = UΣV ′ where Σ = diag(σ1, σ2, ..., σk), U ∈
R(n+t+1)×k, and V ∈ R(r+m)×k. Assume U1 ∈ R(n+t)×k

and U2 ∈ R1×k. Consequently, V1 ∈ Rr×k and V2 ∈
Rm×k. Then, we can rewrite D1 = U1ΣV ′1 ,P1 =
U1ΣV ′2 ,d2 = U2ΣV ′1 , and p2 = U2ΣV ′2 . Let D1 = LR,
where L = U1S and R = SV ′1 for S =

√
Σ. Using Mac-

Duffee’s theorem as done in [1],

D1
+ = R+L+

= R′(RR′)−1(L′L)−1L′

= V1S(SV ′1V1S)−1(SU ′1U1S)−1SU ′1
= V1(V ′1V1)−1Σ−1(U ′1U1)−1U ′1

(3)

As a result, d2(D1)+P1 equates to

d2(D1)+P1 = (U2ΣV ′1)V 1(V ′1V1)−1Σ−1

(U ′1U1)−1U ′1U1ΣV ′2
= U2ΣV ′2
= p2.

(4)

This completes the proof.

In practice, we kernelize the feature matrix D as radial
basis functions (RBF):

K (D,D) = exp

(
−‖D

TD‖2

2σ2

)
, (5)

where σ denotes the variance of the database (σ=200). The
auxiliary knowledge about nearest neighbors is implicitly
accounted for in the kernelized similarity matrix K, making
the estimation more robust to outliers and noise. Note that
the kernelized matrices K1 and k2 replace matrices D1 and
d2 in equation 1 with appropriate dimensions.

X =

[
K1 P1

k2 p2

]
(6)

where K1 ∈ R(n+t)×(n+t), k2 ∈ R1×(n+t), and P1 ∈
R(n+t)×m. We ensure invertibility of matrix K1 by adding
a diagonal matrix, cI to K1 where c = 0.001. Conse-
quently, the kernelized version of equation 2 can be solved
directly without resorting to an intermediary SVD of K1

which is computationally expensive. This diagonal matrix
also acts as a regularizer and prevents overfitting similar in
spirit to kernel ridge regression. The final solution is given
by:

p2 = k2 (K1 + cI)
−1

P1, (7)

2. System Specifications
2.1. Running and training times

Our hierarchical framework for hand pose estimation
takes advantage of multi-threading (OpenMP). The pose pa-
rameters in Stage 2 corresponding to the five finger artic-
ulations are evaluated in parallel using five threads. Our
system runs at 32 FPS (≈ 31ms per frame) on an Intel
Xeon E3-1240 CPU with 16GBs RAM. The computation
time for each frame is split as 2ms for preprocessing (i.e.,
region of interest extraction, and resizing the depth image
to dimension 64×64), 9ms for Stage1 which estimates the
global orientation parameters, and 20ms for Stage2 which
estimates the local finger articulations. In order to speed up
training, the ConvNets were trained with the aid of GPU
(NVIDIA Quadro K4000 Graphics card). The training for
global orientation parameters took about four hours and lo-
cal parameters for the 144 bins took about 30 hours.

2.2. Justification of Design Choices

We use 60 spatial neighbors with 16 temporal neigh-
bors for global parameter estimation and 24 spatial neigh-
bors with 4 temporal neighbors, respectively, for all quan-
titative evaluations in Section 6.3 and 6.4 in the main
manuscript. In this subsection, we empirically validate
the choice of these parameters. Figure 2a compares the

12

24

36

0.0987

0.0992

0.0997

0.1002

0.1007

0.1012

48 60 72

N
o

rm
al

iz
ed

 a
v
er

ag
e

er
ro

r
[0

,1
]

of global neighbors

(a)

0

4

8

0.0975

0.098

0.0985

0.099

0.0995

0.1

0 16 32
N

o
rm

al
iz

ed
 a

v
er

ag
e

er
ro

r
[0

,1
]

of global neighbors

(b)

Figure 2: Design choices. Joint angle error is normalized
between 0 and 1. (a) Choice of spatial neighbors n. Min-
imum joint angle error is achieved when the number of
neighbors for global pose estimation are 60 and for local
estimation are 24. (b) Choice of temporal neighbors t. The
system shows highest accuracy with 16 neighbors for global
estimation and 4 neighbors for local estimation.

accuracy achieved by using different number of spatial
neighbors from the database for global and local param-
eter estimation on the synthetic database described in the
main manuscript. The minimum mean joint angle error
is achieved when we use 60 and 24 spatial neighbors for
global and local parameter estimation, respectively. A
higher number of neighbors is inefficient both in terms of
accuracy and time in our DMC model, whereas lesser num-
ber of neighbors may result the estimation of joint param-
eters to be stuck in a local minima. We also conducted ex-
periments to find the balance between spatial and temporal
neighbors. In order to reduce jitter in the pose estimates,
we add t number of temporal neighbors in the matrix block
(i.e., matrix D and P) as shown in Figure 1. In Figure 2b,
we see that 16 temporal neighbors for global and 4 tempo-
ral neighbors for local parameter estimation is optimal in
terms of achieved accuracy. The lower number of tempo-
ral nearest neighbors compared to spatial nearest neighbors
indicates that the activation features contain implicit infor-

Frame # 49 50 51 52 53 54 55 56

Without

temporal

neighbors

With

temporal

neighbors

Figure 3: The effect of temporal neighbors on final hand pose estimation. Top row shows the result of DMC without temporal
neighbors and bottom row shows the result with temporal neighbors on continuous frames from our synthetic dataset. The
dashed circles highlight the increased robustness and reduced jitter of final hand pose by incorporating temporal frames into
DMC.

mation about adjacent hand poses. The lower number of
temporal nearest neighbors also makes our method robust
to rapid hand movements, severe occlusion and other sce-
narios for which temporal information may not be reliable.
However, including temporal nearest neighbors reduces jit-
ter. This effect is displayed in Figure 3. The top row dis-
plays the result on continuous frames without incorporating
temporal neighbors and the bottom row corresponds to the
result by including temporal neighbors. We observe that the
resulting hand pose by incorporating temporal neighbors is
more robust (see dashed circles), and reduces jitter in a real-
time setting.

References
[1] A. B. Owen and P. O. Perry. Bi-cross-validation of the svd and

the nonnegative matrix factorization. The Annals of Applied
Statistics, pages 564–594, 2009. 1

