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Abstract

We propose DeepHand to estimate the 3D pose of a hand
using depth data from commercial 3D sensors. We discrimi-
natively train convolutional neural networks to output a low
dimensional activation feature given a depth map. This ac-
tivation feature vector is representative of the global or lo-
cal joint angle parameters of a hand pose. We efficiently
identify ’spatial’ nearest neighbors to the activation fea-
ture, from a database of features corresponding to synthetic
depth maps, and store some ’temporal’ neighbors from pre-
vious frames. Our matrix completion algorithm uses these
’spatio-temporal’ activation features and the corresponding
known pose parameter values to estimate the unknown pose
parameters of the input feature vector. Our database of ac-
tivation features supplements large viewpoint coverage and
our hierarchical estimation of pose parameters is robust to
occlusions. We show that our approach compares favor-
ably to state-of-the-art methods while achieving real time
performance (≈ 32 FPS) on a standard computer.

1. Introduction
Robust hand tracking is central to human-computer in-

teraction interfaces and augmented reality applications. Al-
though, there exists robust and accurate methods for full
body tracking, hand tracking is far more challenging [10,
11, 26, 23, 29, 16, 14, 17, 18]. This is due to several reasons:
(i) the hand pose exists in a high dimensional space because
each finger and the palm is associated with several degrees
of freedom, (ii) the fingers exhibit self similarity, are flexi-
ble and often occlude each other, (iii) noise in acquired data
coupled with fast finger articulations confounds continuous
hand tracking. Multi camera setups or GPU acceleration
eases some of these challenges, but limits deployment to
the general public.

We present a robust method for hand tracking with a
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single depth camera which achieves real time performance
without a GPU. Specifically, we propose a novel matrix
completion method to estimate the joint angle parameters
on a per frame basis. Our method is flexible to operate with
or without temporal information. This alleviates the need
for explicit pose initialization if the method loses track or
the hand disappears from the camera’s view frustum. Fur-
thermore, our pre-compiled database supports large view-
point coverage and our hierarchical pose estimation from
global to local parameters is robust to severe finger occlu-
sions.

At the core of our approach lies a convolutional neu-
ral net (ConvNet) architecture to discriminatively reduce
the dimensionality of the depth map. ConvNets have
achieved ground-breaking performance in image classifica-
tion [2, 24] and video recognition [8, 9]. A naive strategy
to replace the classification layer in a deep neural net with a
regression layer leads to errors, as the objective function of-
ten gets stuck in a local minima. Previous approaches have
shown that this error decreases by incorporating a prior [15]
or a intermediate heat map features [29] into the ConvNet
architecture. Different from these approaches, we train sev-
eral ConvNets to output a discriminative low dimensional
activation feature in the penultimate fully connected layer.
This activation vector represents either the global hand ori-
entation or the local articulations of the five fingers, given
a depth map. Our main insight is that a pool of (spatially
or temporally) nearby activation features to an activation
feature can better represent the hand pose. For generat-
ing a population of activation features from which such a
pool is extracted, we render realistic depth maps covering a
large range of hand articulations and feed them into a deep
ConvNet. The ConvNets automatically learn the scope of
training (local or global), the finger type (thumb, ring, in-
dex, middle or little), and prevalent occlusions by simply
inputting the discretized class of the pose parameter val-
ues, and do not require any additional information. We
then store the activation features from the ConvNets for
each depth map in the training data to create a population



database of activation features. We demonstrate these ac-
tivation features can be re-purposed on generic databases
in our experiments. Additionally, the low dimensionality
of the activation feature, coupled with product quantization
enables efficient retrieval of approximate nearest neighbors
from the population at runtime.

A pose estimation matrix is imputed with the deep ac-
tivation vectors of the nearest neighbor, their correspond-
ing joint angles and the activation vector of the input depth
map. This is similar in spirit of the collaborative filtering ap-
proach proposed in [1]. However, neither do we use low fi-
delity BRIEF descriptors for nearest neighbor retrieval, nor
do we use inefficient iterations to factorize and complete the
matrix. Instead, we estimate the unknown values in the in-
complete matrix (i.e. pose parameters of input depth map)
by assuming a low-rank matrix structure with missing en-
tries. We also add some temporal neighbors from previous
frames in the pose estimation matrix which act as a regular-
izer and reduce jitter of the estimated pose.

Following the success of cascaded approaches to hand
pose estimation [23, 18], we hierarchically regress the hand
pose from global to local joint angle parameters. The ar-
ticulation complexity of the palm is lower than of the fin-
gers, and hence, robust estimation of the global orientation
is an easier task relative to that of the fingers. The ConvNet
finetuned to the conditioned search space outputs more dis-
criminative activation features for finger articulations. This
in turn leads to better accuracy for finger parameter estima-
tion. We demonstrate that the ConvNet architecture signifi-
cantly outperforms PCA [23] and random forests (RF) [18]
for global pose initialization. Our overall pipeline runs as
32 frame per second (FPS) on a standard computer. Our
main contributions are summarized as follows:

1. Initialization of the pose matrix using a low dimen-
sional and discriminative representation of the global
orientation or finger articulations as an activation fea-
ture using deep ConvNets, which aids efficient re-
trieval of nearest neighbors from a large population of
pre-computed activation features using product quan-
tization.

2. An efficient matrix completion method for estimating
joint angle parameters using the initialized pose ma-
trix.

3. A hierarchical pipeline for hand pose estimation that
combines the global pose orientation and finger articu-
lations in a principled way while maintaining real-time
frame rates on a standard computer.

The rest of this paper is organized as follows. In sec-
tion 2, we review relevant literature on 3D hand pose esti-
mation from depth sensors. Section 3 briefly describes our
synthetic 3D hand model. The activation feature extraction

using ConvNets is discussed in section 4. Section 5 intro-
duces matrix completion for pose parameter estimation. Ex-
perimental results and evaluations are described in section
6. Finally, conclusions are presented in section 7.

2. Related Work

Approaches for hand-pose estimation can be broadly
classified as either generative (model-based) or discrimina-
tive (appearance based) methods. We briefly discuss the
generative and discriminative methods relevant to our work.
We refer the readers to [5] for a comprehensive review on
wearable, marker based and RGB input based techniques
from single or multiple cameras and [31] for review on
depth-based body pose estimation.

Generative methods An explicit hand model guides the
optimization of an objective function in model-based meth-
ods to recover the hand pose. [16] use particle swarm opti-
mization (PSO) and [14] use a Gauss-Seidel solver to re-
cover the hand configuration. The objective function is
based on the similarity of the depth map and an approxi-
mate depth map corresponding to the hand model. The ac-
curacy of the these methods are highly reliant on the hand
crafted similarity function. Moreover, these methods are
susceptible to error accumulation when the previous esti-
mates are inaccurate. To alleviate model drift prevalent in
generative methods, recent approaches adopt the paradigm
of optimization + reinitialization. These methods first cre-
ate a population of hand poses and then select the hand pose
that best fits the observed depth data. The heavy compu-
tational burden of this optimization means that the system
either achieves low frame rates (12 FPS in [30]) or needs to
be accelerated using a GPU (as in [18]).

Discriminative approaches Appearance based methods
are proposed for hand pose estimation in [10, 11, 27] simi-
lar in spirit to human pose estimation in [19]. The low res-
olution of hand depth map, self-occlusion and rapid move-
ments lead to large errors in these methods. Subsequently,
local regression [3] based approaches were presented to
improve the robustness to occlusions, but these methods
[23, 26, 28] may suffer from jittering between frames. In
[29], convolutional neural networks are used to infer 2D
heat-maps corresponding to joint positions. However, their
inverse kinematic approach for 3D pose recovery from a 2D
image is inefficient in the presence of occlusion. Although
our method is similar in spirit to regression, our deep activa-
tion features together with enforced temporal consistency in
the matrix completion method suppress jitter. Also, the low
rank assumption used for matrix completion implicitly al-
lays outliers and aggravates inliers. Our method also shares
relationship with the collaborative filtering model proposed
in [1]. However, the small size of their database makes the
method prone to errors when introduced to unknown poses.
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Figure 1: An overview of the proposed approach. In a real-setting, we extract region of interest using depth map and RGB-
based wrist band detector (a)-(b). The obtained depth image is fed into a ConvNet which outputs an activation feature.
This activation feature synchronizes with other features in a population database using our matrix completion method and
the global pose parameters are estimated(c). Based on this global pose initialization, we estimate the rest of the local joint
parameters in the same recursive manner (d). The final hand pose is displayed on a multimedia screen (f).

3. Preliminaries

In this section, we briefly describe our 3D hand model
and discuss our method to extract the region of interest cor-
responding to the hand which serves as input to our hand
pose estimation method.

Hand model We use a kinematic hand model with 21 de-
grees of freedom (DOF), represented as H(θ, φ), as stan-
dard in hand pose estimation literature (see Figure 1e). θ
denotes the set of 18 joint angle parameters and φ is the set
of 3 global translation parameters (x, y and z) of the hand.

Region of interest extraction Unlike the body, the hand
occupies a relatively small region in the overall depth image
obtained from the 3D depth camera. Hence, we preprocess
the depth image to only include values that lie in the range
of [50, 500]mm under the premise that the hand lies within
this range. We then do a largest blob detection as an in-
dicator of the hand segment, followed by median filtering
for noise removal, depth normalization so that values lie in
the range [0, 255], and finally resize the image while main-
taining the aspect ratio to obtain a 64×64 depth image.The
centroid of the blob in the original image marks the global
position, φ. In more extreme settings (for ranges upto 2000
mm), we use a colored wristband as a simple indicator of
the hand region as done in [17, 25]. Even in a close range
scenario, the wristband helps removing extraneous pixels
like those below the wrist, leading to better performance.

4. Dimensionality Reduction using Deep
Learning

It is well known that the activation features from the in-
termediate hidden layers of a ConvNet can be re-purposed
across domains [4, 6]. This suggests that the activation fea-
ture of a depth image itself contains discriminative cues
about its overall shape and form of the hand, in the con-
text of hand pose estimation. The thrust of our approach
relies on the contention that a pool of nearby activation fea-
tures is better able to reach consensus about the hand’s ori-
entation and shape. This introduces two challenges (1) The
activation features in the population should conform to the
activation features obtained from different individuals in di-
verse real settings. Additionally, they should be accurately
annotated with their ground truth labels (joint angles or po-
sitions) (2) The population of activation features must be
large enough to provide robust nearest neighbors to any in-
put activation feature, however should be efficiently retriev-
able and consume limited memory. A straightforward ap-
proach is to directly use the depth data gathered from 3D
sensors to train a ConvNet and store the corresponding acti-
vation features. However, creating a such database of hand
poses to cover full range of hand articulations with accu-
rate ground truth labels is a tedious task. In this section, we
describe how we generate such a population of activation
features from synthetic dataset, reflective of real data.



Gaussian noise Classification accuracy
Yes 77.00%
No 44.88%

Table 1: The classification accuracy for the global rotation.

4.1. Synthetic population of realistic hand poses

We generate synthetic depth maps by first imposing
static (e.g., range of motion, joint length, location) and dy-
namic (e.g., among joints and fingers) constraints listed in
[13]1. We then uniformly sample each of the 18 joint pa-
rameters in this restricted configuration space. This en-
sures that the depth maps are reflective of real poses cov-
ering a wide range of hand articulations. However, data
from 3D sensors are prone to noise, distortion and addi-
tional artifacts. Hence, we add gaussian noise N(0, σ2)
to the synthetic depth maps wherein the standard deviation
σ is chosen from a range of [0, 2] by uniform sampling.
We empirically validated the inclusion of Gaussian noise
by testing the classification accuracy of the global rotation
angles in the correct bin (total 144) for a real hand depth
sequence captured using SoftKinect DS325 (2500 frames).
The drastic improvement of classification accuracy in Ta-
ble 1 highlights that our noise model if fairly reflective of
real sensor noise. Our training dataset covers an entire cam-
era viewpoint (coverage due to the 3 wrist rotation angles
θW = {θWr , θWp , θWy }, where θWr ∈ [−45, 135], θWp ∈
[−45, 180], θWy ∈ [−45, 180]). Our large coverage ensures
the robustness our method to camera viewpoint changes and
not restricted to near frontal poses. We discuss the size of
the synthetic population in context to ConvNets in the next
subsection.

4.2. Activation features using ConvNet

ConvNet and its variants are the current state of the art
architecture for numerous classification tasks such as ob-
ject detection, scene recognition, texture recognition and
fine grained classification. However, hand tracking is effec-
tively a regression task. Our preliminary experiments with
deep learning indicated that ConvNets do not adapt to re-
gression as well as they do for classification as shown in
Figure 2d. Consequently, our activation features are com-
puted using ConvNet for classification instead of regres-
sion. These activation features feed into our matrix com-
pletion method which implicitly regresses and outputs the
estimated joint angle parameters. The classification of joint
angles into quantized bins, and hence, calculation of the ac-
tivation feature in the penultimate layer, is performed by the
ConvNet architecture displayed in Table 2. Observe that the
penultimate layer corresponding to the activation feature is

1The availability of rigourous constraints in terms of joint angles is the
main reason we choose angles over joint position in our hand pose method.

Layers # Kernels Filter size Stride Pad
1 Conv 16 5×5×1 1 2
2 Pmax 2 0
3 ReLU
4 Conv 32 5×5×16 1 2
5 ReLU
6 Pmax 2 0
7 Conv 32 5×5×32 1 2
8 ReLU
9 Pmax 2 0

10 Conv 64 5×5×32 1 2
11 ReLU
12 Pmax 2 0
13 Conv 128 4×4×64 1 0
14 ReLU
15 Conv 32 1×1×128 1 0
16 ReLU
17 Conv 144 1×1×32 1 0
18 Smax

Table 2: Overall architecture of our convolutional networks.
(Conv: convolutional layer, Pmax: max pooling layer,
ReLU: rectified linear units layer, Smax: softmax layer)

a 32 dimensional vector of the sixth convolutional layer so
as to reduce memory usage in storing the population of acti-
vation features. We use these activation features in a collab-
orative spatio-temporal fashion to estimate pose parameters
using efficient nearest neighbor search and out novel matrix
completion model.

There are two extremal strategies for quantization. The
first strategy is to quantize each joint angle separately for a
total of 21 ConvNets. However, this is inefficient both in
terms of speed and memory. The second is to use an all-
in-one strategy to train all joint angle parameters simultane-
ously. However, it would be impossible to learn an accurate
classifier in such a high dimensional space even with a nom-
inal number of bins. Hence, we use a 2-stage hierarchical
strategy which satisfactorily balances computational time,
memory requirement and classification accuracy.

In Stage 1 the activation feature associated with the 3
global rotation angles, θW = {θWr , θWp , θWy } is calculated
and input into the matrix completion method along with a
pool of nearest neighbors. The output of the matrix com-
pletion method is used to infer the correct rotation bin. For
each rotation bin, five ConvNets are trained to output the
activation feature associated with each of the five fingers.
The ConvNets in Stage 2 are trained on images within the
bin to simplify learning and also on images in adjacent bins
to prevent boundary errors. We used 200K images for Stage
1 global regression (see Figure 1c) wherein the roll, pitch,
yaw angles were quantized into 144 bins. Subsequently, 5
Convnets for each of the 144 bins were trained on 10K im-



Model Accuracy Memory Settings
RF 57.45 % 1.30 GB 22 Depth, 70 Trees

59.04 % 1.87 GB 22 Depth, 100 Trees
ConvNet 71.01 % 2.12 MB 20 Epochs

72.30 % 2.12 MB 25 Epochs
PCA 5.72 % None

Table 3: Accuracy and memory comparison of global pose
initialization.

ages within the bin and 10K randomly chosen images in
adjacent bins. Training converged after 20 Epochs for the
global bin and approximately 10 Epochs for the local rota-
tion bins. The discrete quantization over the joint angle val-
ues for each finger is as follows: thumb (144), index (144),
middle (36), ring (144), and little (144).

The activation feature associated with the global rotation
is critical to the overall accuracy of our approach because
this step influences all subsequent ones. To demonstrate the
efficacy of ConvNet relative to other approaches, we detail
the classification accuracy of ConvNet for global rotation
relative to PCA [23] and random forest (RF) [18]. We used
100K depth images because of RF’s memory constraints.
Table 3 shows that ConvNet achieves a very high accuracy
with minimal memory requirement.

5. Matrix Completion for Regression

The matrix completion algorithm runs 6 times: once for
the 3 global rotation angles and 5 times for estimating the
15 joint angle parameters associated with the fingers. An
iterative approach as the one in [1] is inefficient. Instead we
evaluate the unknown parameters in a single shot by assum-
ing a low rank matrix. We discuss the details of our nearest
neighbor retrieval to create a pool of activation features fol-
lowed by the matrix completion method below.

5.1. Extracting pool of activation features

Our matrix completion method takes spatio-temporal
nearest neighbors as input. Acquiring temporal nearest
neighbors are trivial as they are simply the activation fea-
tures from the previous frames. However, brute force near-
est neighbor evaluation from say the 200K global activa-
tion vectors introduces a computational bottleneck unsuit-
able for realtime application. Our solution to alleviate this
problem is to use the top classes predicted by the softmax
function in ConvNet to first reduce the search space. We
then use highly efficient product quantization based nearest
neighbor approximation [7] with 8 subquantizers to retrieve
the desired number of nearest neighbors. Details of product
quantization are skipped for brevity. In practice, we found
retrieving a higher fraction of approximate nearest neigh-
bors by product quantization and then selecting the desired

number of nearest neighbors using brute force search from
this reduced subset to be more robust than direct retrieval.

5.2. Matrix Completion

Let n be number of spatial nearest neighbors, D1 ∈
Rn×r be the r dimensional activation vectors and P1 ∈
Rn×m be the m desired joint angle parameters being esti-
mated of the n neighbors. In addition, let vector d2 ∈ R1×r

be the r dimensional activation feature output from Con-
vNet. Let vector p2 ∈ R1×m be the unknown parameters.

M =

[
D1 P1

d2 p2

]
(1)

Our task is to estimate p2 given the other 3 block matrices.
Assuming a low rank structure of matrix M this reduces ro
solving:

p2 = d2(D1)
−1P1, (2)

The proof of the above result is detailed in the supplemen-
tary material.

In practice, we observed that kernelizing the feature ma-
trix and regularizing it by adding a small constant, c to the
diagonal, in the spirit of ridge regression makes the output
more robust. This parameter c is set to 0.001 in all our ex-
periments. We use the RBF kernel with sigma equal to the
variance of the dataset (σ = 200).

A straightforward extension beyond including just the
spatial neighbors is to also include t temporal neighbors
from previous frames. This reduces jitter and improves the
final quality of our solution. We use 60 nearest neighbors
and 16 temporal neighbors for the global parameter estima-
tion. For the 15 local angles, we use 24 nearest neighbors
and 4 temporal neighbors. The choice of these parameters
is empirically validated in the supplementary material.

6. Experiments
We conduct a comprehensive evaluation with state-of-

the-art approaches as well as self-generated baselines on the
synthetic and real datasets to demonstrate the efficacy of our
solution. We first describe the datasets and baselines.

6.1. Datasets

We split our evaluation into two stages. First, we use
synthetic data to compare our method to baselines. This
comparison validates the rationale of our specific approach
against other choices. This data is generated using the same
approach as described in Section 3 to generate our database,
albeit continuity constraints are enforced. Two synthetic se-
quences are generated which are 2.5K frames long at stan-
dard rates (approximately 80 seconds each). The advantage



of these synthetic sequences are that they are already la-
beled, avoiding tedious ground-truth assignment.

Next, for fair comparison to other methods, we evalu-
ate the performance of our method on two publicly avail-
able datasets: Dexter1 [21] and NYU [29]. The Dexter1
dataset consists of seven gestures (i.e., adbadd, flexex1,
pinch, fingercount, tigergrasp, fingerwave, and random)
with high inter-gesture verifiability, however, mostly from
frontal viewpoints. Hence we use the NYU dataset for
a more thorough evaluation of the method. As we shall
shortly show, our method remarkably achieves state-of-art
performance without fine-tuning on their training dataset.

Although the authors are aware of other datasets like
ICVL [26], MSRA14 [17], or MSRA15 [23] in the litera-
ture, we do not use them for one or more of the following
reasons: (1) the depth pixels of the body are included with
the hand depth map. Recall we use a heuristic method for
segregating the hand from the rest of the body and a wrist
band under more extreme conditions. We did not find a
straightforward way to segregate the data without incurring
loss. (2) The hand poses are enforced using muscular labor,
i.e., hand configurations wherein one or more finger applies
pressure on another. These configurations are not accounted
for in our joint angle modeling framework to render syn-
thetic depth maps, however, modeling additional constraints
to account for such hand poses is plan of future work. Also
note that we use the SoftKinetic’s DethSense DS325 for all
our real demonstrations.

6.2. Baselines for method validation

There are three salient features of our approach which
we rigorously validate. First, a hierarchical approach is jus-
tified in spite of the computational overload it introduces.
Second, a pool of activation features is better at estimating
the hand pose than a single activation feature or a direct re-
gression based approach using ConvNets. Third, our choice
of imputing the matrix with spatio-temporal neighbors and
kernelizing the features provides superior performance. We
naturally perform this validation by comparing to the fol-
lowing three baselines: (a) Holistic which evaluates all pa-
rameters in an all-in-one approach using a single activation
feature. We also compare it to JMFC which also performs
a matrix update using a single feature vector, although us-
ing computationally expensive iterations in [1] (b) Conv-PQ
which directly estimates the pose parameters to be the near-
est neighbor and Regression which directly regresses pose
parameters using ConvNets with L2 loss are used to val-
idate our choice of pool of activation feature, and finally
(c) No-temporal which contains only spatial neighbors for
matrix completion, Non-kernel which uses feature matrix
without kernelization, and Weighted which finds pose pa-
rameters using Gaussian similarity between activation fea-
tures as weights are used to validate our matrix completion

approach. The validation is done in terms of one or more
of the following standard error metrics popular for pose es-
timation problems: (a) the average joint angle error in de-
grees, (b) the average joint distance error in millimeters, (c)
the maximum allowed joint angle error in terms of a thresh-
old εA, and (d) the maximum allowed joint distance error
in terms of a threshold εD. Broadly speaking, the first two
metrics evaluate performance at a local joint level whereas
the the other measure global robustness of an approach.
We employ the appropriate metric based on the context of
the evaluation. Although our angle based method is par-
ticularly effective in minimizing joint angle errors, yet we
choose joint distances as our error metric on public datasets
to demonstrate the overall robustness of our approach.

6.3. Comparison to Baselines

In this section, we quantitatively evaluate our method
with respect to the baselines on the synthetic datasets. Fig-
ure 2 shows that our method significantly outperforms the
proposed baselines both in terms of local as well global er-
ror metrics. The performance markup over the Conv-PQ
approach as seen in Figure 2c indicates that a ConvNet by
itself would do a poor job of inferring a complex articulated
structure such as the hand. The performance improvement
over Holistic in the zone of small angles is also intuitive. It
indicates that the global activation feature contains some la-
tent information about the local joint angles, but this infor-
mation is better revealed by a hierarchical estimation pro-
cedure. This is also validated in Figure 2a and 2b where
we see a significant performance improvement in terms of
joint angles for finger portions that are frequently occluded
such as the middle finger. It is also noteworthy to note that
the similarity of these plots in terms of error ranges to plots
on real hand sequences implicitly validate our data creation
process. Regression 2 for joint angle prediction resulted
in worse performance than even Conv-PQ baseline (nearest
activation feature) as shown in Figure 2d. We adopted dif-
ferent approaches, e.g., fine-tuning our ConvNets, L1 loss,
etc.to ensure that direct regression is indeed suboptimal. We
contend that as joint angles are a function of relative joint
points,learning joint angles is harder compared to joint posi-
tions, and hence, resulted in inferior performance. Figure 2e
shows the performance of matrix-completion baselines rel-
ative to our proposed approach. The figure validates that
constructing a kernel, incorporating temporal information
and using matrix completion instead of simple weighted re-
gression are all critical to good performance.

6.4. Comparison with the state-of-the-arts

Having validated the rationale of our approach, we now
compare our method to other state-of-the-art approaches

2the penultimate layer is of dimension 2048 as we do not need nearest
neighbor retrieval
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Figure 2: The results of quantitative evaluation on the synthetic dataset.

(a) (b)

Figure 3: The results of quantitative evaluation on the public dataset. Note that the accuracies are directly estimated from
corresponding figures (i.e., figure 4 in [20] and figure 3a in [15]).

[29, 21, 26, 22, 20, 15, 1] on the Dexter1 and NYU datasets.
Quantitative Analysis We measured the average dis-

tance error of five fingertips (inmm) on the Dexter1 dataset
to evaluate the overall robustness of our approach. Figure 3a
shows the comparison of our approach to other methods
which include both discriminative [26, 1] as well as gener-
ative [21, 22] methods. Not only does our method achieve

the lowest overall error rate (see Table 4), we also achieve
the lowest individual error rates for all but one gesture i.e.
adbadd. This is because the particular gesture is especially
hard to model in terms of joint angle constraints.

We evaluated our approach directly on the 8.2K of test
depth maps from the NYU dataset. Figure 3b illustrates
the maximum allowed error with respect to the distance
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Figure 4: Qualitative evaluations are conducted on two public datasets, Dexter1 and NYU. The first row shows the input
depth image, and corresponding estimation is presented in the second row.

Methods [26] [21] [22] [20] [1] Ours
Error 42.4 31.8 24.1 19.6 25.27 16.35

Table 4: The overall average error (mm) of the five finger-
tip positions on Dexter1. Ours shows the lowest error rate
compared to the state-of-the-art methods.

threshold. The fact that our method performs better than
[15] over a long range indicates the activation features we
get from ConvNet can be used across domains and sensor
types 3, and hence the activation features can potentially be
made general purpose. This is encouraging in the context of
progressively fine-tuning ConvNets with more information
such as when new joint angle constraints or dynamic con-
straints become available. Furthermore, simulating princi-
pled noise models such as [12] corresponding to true sensor
noise can further enhance the generality of these features in
the context of hand pose estimation.

Qualitative Analysis We do a qualitative evaluation of
our algorithm with the state-of-the-art methods on some
public datasets. The top row of Figure 4 shows cropped
64x64 depth images which are used as input to our system,
and the second row shows corresponding estimates with our
matrix completion method (without temporal neighbors).
All estimated poses are kinematically valid and follow a
natural sequence. For the sake of completion, we also show
some failure cases in the last two columns of Figure 4. In
our system this happens when some unnatural pose (driven
by muscular force ) appears in front of the camera or when
the image is severely affected by noise or has missing parts.

7. Conclusion
We present a novel framework for hand pose estimation

using a deep convolutional neural network. Instead of us-
ing a single activation feature, we use a pool of activation
features to synchronize and collectively estimate the hand

3NYU dataset use PrimeSense to capture their data

configuration, all in real time. This pool is derived by train-
ing a deep ConvNet with a large database of synthetic hand
poses and efficiently storing the activation feature corre-
sponding to the penultimate fully connected layer. Care-
ful thought was placed so that this database is reflective of
real data. At runtime the pool of activation features in the
spatial domain and temporal domain combine together in a
hierarchical way to robustly estimate the hand pose. The
derived activation features can be applied across domains
and sensor types as demonstrated in our experiments. Fur-
thermore, our method achieves state of the art performance.
Although our approach is general, one limitation of our ac-
tivation features is that the estimations are only valid in the
joint angle domain. Future work will focus on ways such
that people working in the joint angle or joint position do-
main can seamlessly fuse their models together to create
even deeper and more robust models. Another line of future
work is to investigate our matrix completion approach in a
more general setting. The simplicity combined with its effi-
ciency makes a promising alternative to standard regression
techniques for a wide array of machine learning tasks.
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