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Comparing Functional Analysis
Methods for Product
Dissection Tasks
The purpose of this study is to begin to explore which function identification methods
work best for specific tasks. We use a three-level within-subject study (n¼ 78) to compare
three strategies for identifying functions: energy-flow, top-down, and enumeration. These
are tested in a product dissection task with student engineers who have minimal prior
experience. Participants were asked to dissect a hair dryer, power drill, and toy dart gun
and generate function trees to describe how these work. The function trees were eval-
uated with several metrics including the total number of functions generated, the number
of syntactical errors, and the number of unique (relevant and nonredundant) functions.
We found no statistical, practical, or qualitative difference between the trees produced by
each method. This suggests that the cognitive load for this task for novices is high enough
to obscure any real differences between methods. We also found some generalized find-
ings through surveys that the most difficult aspects of using functional decomposition
include identifying functions, choosing function verbs, and drawing the diagram. To-
gether, this may also mean that for novice engineers, the method does not matter as much
as core concepts such as identifying functions and structuring function diagrams. This
also indicates that any function identification method may be used as a baseline for com-
parison between novices in future studies. [DOI: 10.1115/1.4030232]

1 Introduction

Functional decomposition is a process that is typically used to
assist engineers with identifying essential functions in various
design tasks, including product dissection. It is an important tool
used in industry to improve legacy products, understand competi-
tor products, or help new employees learn about a company
design. More generally, it is a type of problem solving strategy
used by engineers to convert complex problems into abstractions
[1], where they are easier to solve [2,3]. The ability to do this
effectively represents a high-level skill and deep learning [4].
However, functional decomposition is often ignored by engineers
because it is perceived as being too easy, too hard, or not impor-
tant [5]. This may simply be because engineers use design meth-
ods opportunistically [6], are taught conflicting definitions of
“function” [7], or find competing claims to the “right” approach
[8]. One approach to improving adoption is educating engineers
as to when and why functional decomposition is most effective.

While prior literature explores why functional decomposition is
important, there is virtually no discussion of when proposed meth-
ods are best for various tasks. These include early design, product
dissection, reverse engineering, and modeling. In addition to task,
there are several other parameters that have not been explicitly
studied. These include the level of expertise, the level of training,
the diagram type, and the strategy used to discover functions (see
Table 1). This paper contributes the first comparative empirical
study of different identification methods, as well as defined
parameters by which other studies may be compared to this one. It
also offers some insight into why functional decomposition may
be difficult for novice engineers to understand and adopt [5].

The primary focus of this study is the difference between meth-
ods used to identify functions in product dissection tasks. The
methods found in this study correspond with common methods

taught in design text books and found in industry [9]. Accord-
ingly, we keep the other parameters constant, including using the
same type of function diagram for each identification method.
This paper will describe the experimental design to test these
methods. We report quantitative, mixed-methods, and qualitative
results, and offer interpretations of these results.

1.1 Definitions. We define functions as “the solution-neutral
(or embodiment-neutral) detailed description of what are the
intentions for the products” [10]. When we use the term “method,”
we mean the strategy an engineer uses to identify a function.
Energy-flow is defined as tracing material, information, and
energy flows through a device and mapping functions to changes
in these flows. Top-down is defined as the process of determining
the overall function, followed by decomposing this into subfunc-
tions, and continuing until functions are defined on the part level.
Enumeration is defined as writing out whatever functions come to
mind, with no specific strategy for identifying them. We consider
these methods as independent of the diagram used to record the
functions [9].

“Functional analysis” is used to mean the process of identifying
functions for an already existing artifact or concept [1] (i.e.,
reverse engineering or dissecting products). “Functional syn-
thesis” is defined as identifying functions in design where no arti-
fact or embodiment exists (i.e., pre-ideation). We consider
synthesis and analysis to be two different types of problem solving
[11], and their related tasks to be unique types of problems [12].
Additionally, we agree that there is no single, correct function
structure for synthesis or analysis [13,14]. Hence in this paper,
“functional decomposition” describes both synthesis and analysis.

2 Background

Experimental findings by Eckert et al. found that engineers tend
to use an energy-flow, top-down, or enumeration strategy for iden-
tifying functions in an unknown product, with some minor varia-
tions. Additionally, the participants in their study tended to
analyze only as much as they needed, often mixing methods to
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suit their purposes [9]. Consequently, we searched design text
books (Table 2) and literature to find what function identification
methods are taught. We assume that there is a core set of princi-
ples to decomposition that accepts multiple definitions of function
and implementation, but ignores methodological differences
between them [7]. We organized the methods in literature into
three groups based on the identification methods in Eckert et al.
[9]: energy-flow, top-down, and enumeration (see Table 2). One
text included a method which did not fit in our classification
scheme [10]. While this method is not considered in this study,
we explored it in a separate paper [11].

2.1 Methods Found in Literature and Usage. The most
common method found in the literature search was the “energy-
flow” approach, sometimes called “black-box” [1,14,15–19,21].
This method is unique from the top-down and enumeration
approaches because it primarily focuses on “horizontal” relation-
ships between functions and explicitly considers material, energy,
and information flows through a system [29]. Most authors recom-
mend creating multiple flow diagrams, each at a different level of
abstraction. In a function tree, each flow diagram constitutes a sin-
gle level of the function tree. Some versions of the “black-box”
approach do not emphasize the types of flows and instead focus
on steps in a process.

The second most commonly described method was enumera-
tion [15,24–28]. In these citations, the authors gave no specific
direction regarding how to identify functions other than to simply
list them out. Various sources pair enumeration with a list, func-
tion tree, or function-means tree.

The least commonly described method was the “top-down”
approach [13,15,23]. This method works by selecting the top-most
function and breaking each function down into relevant subfunc-
tions. This method explicitly explores the “vertical” relationships
between functions, and thus aims at recording hierarchical infor-
mation [29]. This approach is sometimes paired with structure dia-
grams as a function-means tree. These hybrid diagrams seem to
be used for design tasks only [15,30], but could potentially be
used to describe a product.

One textbook describes a method called the “subtract and oper-
ate method” [22], though we identify this as the “bottom-up meth-
od” due to its similarities to the heuristic of the same name. This
method is considered opposite to the top-down method, but
considered to produce the same results [22,31]. Bottom-up asks
engineers to consider the individual functions of parts. The
bottom-up method is not examined in this paper. In another paper,
we found that the cognition between the bottom-up and the meth-
ods in this paper appears to be different [32].

The majority of these texts describes functional decomposition as
a step prior to concept generation. However, the same methods are
sporadically applied to other design activities, such as reverse engi-
neering (see Table 2), task analysis and failure modes and effects
analysis [17,28], functional allocation [14], axiomatic design [27],
and cost analysis [19]. The terminology used between all these sour-
ces is also inconsistent. For example, the terms “functional decom-
position” and “functional analysis” are sometimes used to refer to a
design task only [16,17,21,26–28], a reverse engineering or product
dissection only [23–25], or both [1,13–15,18]. In another example,
some authors use “reverse engineering” and “product dissection”
interchangeably [15,18], whereas others do not [24].

Table 2 Engineering design textbooks and their treatment of functional decomposition

Authors Method Reverse eng. Design Wording used in text

Dym and Little [15] Energy-flow x x Black boxes/transparent boxes
Ulrich and Eppinger [14] x x Functional decomposition
Cross [16] x Functional analysis
Stoll [17] x Functional analysis/decomposition
Ullman [18] x Functional modeling/decomposition
Pahl and Beitz [1] x x Establish function structures/analysis of existing systems
Ullman [18] x Product decomposition
Dieter [19] x Functional decomposition
Dieter and Schmidt [20] x Functional decomposition
Hyman [21] x Functional analysis
Otto and Wood [22] x x Functional modeling
Dym and Little [15] Top-down x Function-means tree
Cunniff et al. [13] x x Functional decomposition/reverse eng.
Phillips [23] x Functional decomposition
Otto and Wood [22] x x Function trees
Dym and Little [15] Enumeration x x Enumeration of functions
Dym and Little [15] x Reverse engineering/dissection
Horenstein [24] x Reverse engineering
Sheppard [25] x Mechanical dissection
French [26] x Functional analysis
Magrab [27] x Functional analysis/decomposition
Priest and S�anchez [28] x Functional allocation
Otto and Wood [22] x the FAST method
Otto and Wood [22] Other x the subtract and operate

Table 1 Parameters used by this study and the levels chosen for the study, in gray

Eng. expertise Training Scale Complexity Strategy Diagram type Design task

Novice None Component Low Enumeration Function Tree Product dissection
Graduate Introductory Product Medium Energy-flow Function-means Reverse engineering
Professional Some System High Top-down FFBD Ideation
Expert Practiced Bottom-up Flow-chart Eng. modeling

Expert List FMEA
FAST Cost allocation

081101-2 / Vol. 137, AUGUST 2015 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 07/28/2015 Terms of Use: http://asme.org/terms



Only a few authors cite more than one method, and only two of
the books we reviewed identified all three [15,22]. These two are
also among the few to describe more than one type of function
diagram. We also note that between texts, the diagram type rec-
ommended for an identification method is not always consistent.
In all, this seems to speak to the several traditions surrounding
functional decomposition [8].

2.2 Related Work. Significant past work has focused on
improving the energy-flow method. Examples of this research
focus on improving taxonomy structures [33,34], the functional
basis [35], and instructional methods [36]. Several studies have
compared functional decomposition with axiomatic design [30],
explored functionality in bio-inspired design [37], or applied func-
tional decomposition techniques to analogical design [38]. How-
ever, to the best of our knowledge, there are no empirical studies
comparing energy-flow, top-down, and enumeration for product
dissection. We also failed to find studies that test which methods
are best suited for other tasks [39].

3 Methodology

This study aimed to evaluate which methods are most effective
for product dissection. Product dissection is used in industry and
academia to understand new or competitor products or help new
employees learn about a company design. However, for the pur-
poses of this study, “most effective” is defined as providing the
best understanding to a student of how a device works. This led to
our first research question. We developed our second question to
understand what is most difficult for engineers about the process.
We explore this question to build on prior efforts in teaching func-
tional decomposition [36]. This question is also important because
industry adoption remains low [5]:

(1) Which functional decomposition methods are most effec-
tive for students?

(2) Which aspects of functional decomposition in general
prove to be most difficult for students?

Several metrics are used to approximate if students understand
how something works. The number of functions is used as a proxy
for the level of detail a student used to examine a device. The
number of unique functions is used to approximate how compre-
hensive the understanding was. Other metrics are used to explore
function tree shape and errors, which give an approximation of
understanding of the method itself.

3.1 Design of Experiment (DOE). In order to answer the
first research question, we used an explanatory sequential mixed-
methods approach [40] where each participant would create a
function tree based on the given artifact. To maximize the use of
the students, we used a three-level, within-subject DOE (i.e.,
3� 3 Latin square), where each student used a different method
on each artifact. This DOE is common in product comparison
studies [41] and has the advantage of multiplying the number of
samples. It also reduces the effect of uncontrolled variables, such
as self-selection bias [42]. One negative effect of this experimen-
tal design is that some effects are conflated. In this case, effects
due to the product dissected are conflated with the session num-
ber. This means that in the statistical analysis, we cannot distin-
guish learning effects from those due to the product.

The first research question was then converted into four alter-
nate hypotheses, below. Due to the prior literature, we expected
the top-down method to have more vertices on each tree level,
and generally larger function trees, as measured by geodesic dis-
tances (GDs) and total number of vertices. However, we expected
the energy-flow strategy to have more unique functions and fewer
errors. We also expected the enumeration method to have the few-
est unique functions. Finally, we expected to see better results
from participants who were a higher class level or had prior

experience with functional decomposition. These and other met-
rics are described below in Sec. 3.5, with a detailed description of
the “unique function” metric in Sec. 3.5.2:

• H0: there is no difference between the energy-flow, top-
down, and enumeration methods

• H1: there is a difference between the energy-flow and top-
down methods

• H2: there is a difference between the energy-flow and enu-
meration methods

• H3: there is a difference between the top-down and enumera-
tion methods

• H4: the more experienced students will perform better than
the less experienced students

3.2 Procedure. Participants were asked to dissect three prod-
ucts (see Fig. 1). All groups dissected the same product for the
same session. For example, all participants dissected a power drill
for their second session. For each product, they used one of three
methods for determining the functionality of those products. Each
student ended up using all three methods (see Table 3). The pur-
pose of dissecting products was to help students learn “how it
works” (point 1, in Ref. [5]). All sessions were held on Thursdays
and group A met at 9:30 a.m., group B at 11:30 a.m., and group C
at 1:30 p.m. each week.

Each session followed these steps:

(1) (2 min) Introduction, explanation of the task, and handing
out presurvey (first session only) and instruction materials
(every session),

(2) (6 min) Description of what a function is and instructions
on how to create a function tree,

(3) (7 min) Instructions on how to use the function identifica-
tion method assigned for the session, followed by an exam-
ple of the method using a simplified lobe pump drawing,

(4) (45–60 min) Time for students to individually disassemble
product and create function tree,

(5) (20 min) Turn in function trees, return to course instruction
(product description), reassemble products, and complete a
postsurvey.

In addition to instruction on how to make a function tree, stu-
dents were also instructed to make a rough draft. For energy-flow,
they were told to map out the energy, information, and material
flows in a flow diagram on a rough draft, and to recursively break
each function into subfunctions [1]. They were told to place these
functions into a tree diagram. For enumeration, students were
instructed to list out the functions and then organize these into a
tree, while also filling in gaps. For the top-down method, they
were told to identify the overall function and then break each par-
ent function into children functions.

In order to ensure consistency between instructions in each ses-
sion, we provided written instructions on how to accomplish these
steps. These described what a function is, how to create a function
tree, an example function tree, instructions on how to use each
method, and instructions on how to convert their rough draft into
a function tree. Students were also provided with the pruned func-
tion verb list [33] to aid them when choosing verbs for their
functions.

3.3 Population. Participants were selected based on their par-
ticipation in a product dissection class at Purdue (ME 297). The
class focuses solely on product dissection in 2 hr lab sessions. Par-
ticipants were told that the research activity would help them pre-
pare for the final project in the class, where they have to describe
how a product of their choosing works.

Each group consisted of varying numbers of participants due to
how scheduling for the class was conducted. Group A had 8 par-
ticipants; group B had 12 participants; and group C had 6 partici-
pants. Over all sections, ten students identified as sophomores,
eight as juniors, and seven as seniors with one not reporting and
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no freshmen, although the class is open to them. All participants
were studying mechanical engineering.

3.4 Independent Variable—Identification Method. The
independent variables used were chosen due to their common
usage by engineering professionals [9]:

• Energy-flow: identify the flow of energy, mass, and informa-
tion through a system. Each transformation of these flows is a
function. This should be done separately on various levels
before constructing a tree, breaking each function into a
group of functions.

• Top-down: start with the highest level of abstraction (the
whole machine) and determine overall function. Break down
into subsystems and determine functions of each of these sys-
tems. Iteratively become more detailed for each level. Write
these functions into a tree.

• Enumeration: write down relevant functions as they seem
appropriate in whatever order they come to mind. Organize
these into a tree. Participants were told that the name of this
method was “important things first” [9].

3.5 Dependent Variables. Appropriate metrics for this study
were drawn from prior studies (Table 4). We added a unique func-
tions metric to this set to measure the comprehensiveness of each
tree and replaced one metric (M2) with two: the average and max-
imum GDs. We did not include other graph metrics due to lack of
relevance for hierarchies. We did not use the metrics used by
Nagel et al. [36], since these are specific to the energy-flow

process only. We also did not use the standard function taxonomy
[35], since it is limited to energy-flow only [46] and it is intended
for generating machine-readable diagrams, rather than evaluating
natural-language data [47].

The dependent variables are related to prior metrics (from
Table 4) and include:

• Vertices (M1): the total number of phrases on a diagram, all
of which are treated as functions.

• Number of unique functions (Uniq. Func.): the number of
nonredundant phrases in a diagram. More details below.

• Tree efficiency (efficiency): the ratio of unique functions to
vertices. This shows how much of the tree is nonredundant.

• Maximum GD (MGD, M2): the largest of all the shortest
paths in the diagram. More details below.

• Average GD (AGD, M2): the average of the shortest paths
between all nodes in the diagram. More details below.

• Number of syntax errors (Errors, M4): the number of phrases
left blank or not written as a verb-phrase. More detail below.

• Error ratio: the ratio of errors to vertices.
• Number of vertices on a hierarchy level (Func. Lvl. X, M3):

the number of phrases on each hierarchy level.
• Perceived usefulness of activity (Survey): student responses

of how useful each method was on a scale of 1 (low) to 10
(high).

3.5.1 GD Metrics. The combination of the average and maxi-
mum GDs measures the “flatness” and “bushiness” of the trees. A
pair of low GDs indicates flatness, and a pair of high GDs indi-
cates bushiness. These metrics allow us to distinguish between flat
and bushy trees whereas simply counting the number of levels in
a tree does not (Fig. 2). This metric is also meaningful for non-
hierarchical diagrams, such as network maps, where the number
of levels is meaningless (Fig. 2). A few diagrams in our dataset
had nodes with more than one parent, making them no longer
“trees.” These metrics are robust to these irregularities. Finally,
using two metrics instead of one allows us to distinguish between
two tree geometries when one of the two metrics is shared
(Fig. 3).

Fig. 1 A hair dryer, power drill, and toy dart gun

Table 3 Experimental layout by group

Session 1 Session 2 Session 3

Dryer Drill Dart gun
Group A Top-down Energy-flow Enumeration
Group B Enumeration Top-down Energy-flow
Group C Energy-flow Enumeration Top-down

Table 4 Metrics used in prior research on functional
decomposition

Name Metric type

Conformance metric [43] Raw count (M1)
Exact/approximate scoring [33] Raw count (M1)
Unit of information [44] Raw count (M1)
# spoken functions [10] Raw count (M1)
# levels of abstraction [10] Qualitative
# levels of hierarchy [10] Tree depth (M2)
# func. on a hierarchy level [10] Branch width (M3)
Completeness of func. analysis [10] Raw count (M1)
Rubric (energy-flow only) [36] Error count (M4)
# parts exposed [45] Raw count (M1)
# same features [45] Raw count (M1)

Fig. 2 The pair of GD metrics (AGD and MGD) is lower for the
flat tree than for the bushy tree, even when the number of tree
levels is the same. This approach is also robust to nonhierarchy
diagrams.
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3.5.2 The Syntax Errors Metric. Measuring syntax errors is a
convenient, objective way to indicate phrases that are not func-
tions. It is an approximation, but is not subject to bias due to qual-
itative judgments. We found that nodes with syntax errors reliably
correspond with other types of information such as design require-
ments, user actions, or part names. Errors include phrases that
begin with an adjective (C3.3.2, Table 5), a noun (C1.3.1,
Table 5), or other nonverb parts of speech. We also counted
phrases beginning with generic verbs such as “to provide” or “to
be” as errors. Only 1.00% of phrases coded as a syntax error were
actually functions.

In conducting this analysis, we first used WORDNET in PYTHON to
calculate tokens and parts of speech. Since WORDNET defaults to
nouns rather than verbs, we then manually corrected the output
based on our experience with the products and context of the
class. In our manual analysis, we biased toward assuming each
phrase began with a verb.

3.5.3 The Unique Functions Metric. The number of unique
functions refers to the number of functions that are semantically
different in an individual’s function tree. Functions created by the
participants are manually grouped based on semantic similarity
and observations in the class. This is different than simply omit-
ting identical phrases. By using semantic similarity, we can distin-
guish functions whose meanings may overlap with similar
functions but indicate a different part, step in the operation, or
purpose. This metric is used because it allows us to get an idea of
how well the participant understood the device. This metric is
very expensive to generate and relies heavily on the experience of
the coder to decipher natural-language meanings.

The subjectivity of this metric is similar to that of an ethno-
graphic research approach. In our analysis, we biased ourselves
toward considering all phrases as distinct. We only grouped them
if there was clear evidence that they described the same function
and corresponded to the same structure as another phrase.

We also did not attempt to create a master tree and compare the
trees to this template. The reason we did not do this is there is no
a single, unique solution that is most appropriate [13,14] and
doing so would make the experiment prone to errors of omission
by the researchers who prepare the tree. Instead, we used the num-
ber of unique functions as a relative measure to compare each par-
ticipant with the others.

3.6 Controlled Variables and Covariates. We held several
variables constant in our study. Since we considered each function
identification method to be independent of the diagram used, we

held the diagram type as constant. We chose the function tree as
the fixed diagram type. We chose the tree over other types
because engineers tend to mix and match methods [9]. We also
controlled for variations in instruction by having a researcher pro-
vide the intervention, rather than the class instructors. Further, the
amount of time and emphasis placed on each set of instructions
was held constant for each method. We could not control other
variables, and so we recorded these as covariates. These are:

• class level: freshman, sophomore, junior, or senior
• how often participant dissects things on their own: never/

rarely, sometimes, often
• prior experience with dissecting this product: yes/no
• learned functional decomposition before: yes/no

3.7 Analysis Procedure. We followed a specific process to
gather and synthesize the data prior to the statistical and qualita-
tive analyses. This began by transcribing the function diagrams
and surveys into EXCEL. Then, we used the following steps:

(1) Convert each function tree into an outline numeral system
(e.g., root node¼B7, branch nodes¼B7.1, B7.2, etc.). If a
branch is not connected to the tree, put an “x” in place of
the parent indicator (e.g., B7.X.1).

(2) Determine the part of speech (POS) of the first word of
every phrase using WORDNET. When a POS is ambiguous
(e.g., “drill”), assume verb unless the context clearly shows
otherwise (see Table 5).

(3) Determine the unique functions manually

(a) Group all phrases by similar meaning and define a label
for each function group

(b) Review each group type for repetitions, and combine
groups if meaning is repeated

(c) Sort all functions by group and review each phrase
to make sure all phrases in the group share the same
meaning. Split groups into two meanings as necessary
(Table 6).

(d) Sort all functions by tree and review each phrase to
make sure its assigned meaning fits its context. Define
new groups if necessary (Table 7).

(e) Repeat steps (c) and (d) at least three times.

After we conducted the semantic grouping, we calculated the
nongraph metrics per participant, per session (i.e., vertices, num-
ber of unique functions, errors, error rate per level, etc.). In order
to calculate the graph metrics (AGD and MGD), we used NODEXL,
a plug in for EXCEL. Since the graph metrics require a complete
diagram, we inserted blank nodes or unconnected branches using
a placeholder node.

4 Quantitative Results

Several examples of the function trees produced by students are
found in Fig. 4. Examples of data from a few other participants
can be found in Table 8. Since a within-subject experimental
design was used, a general linear model was performed in SAS

with the session group and the device/week factor as blocking fac-
tors. Only main effects were considered.

Assumptions for analysis of variance (ANOVA) were met for
most variables, based on tests in SPSS. A few variables are
borderline-normal, but we treat them as normal anyway. The

Fig. 3 The pair of GDs (AGD and MGD) is still lower for the flat-
ter trees even when one of the two is the same

Table 5 Examples of functions and the POS associated with
the first word of the node

Func. ID Submitted phrase POS

B9.1 Meow Blank
C3.3.2 Protective screens and housing Adj.
B8 Drill Verb
A6.1.1.1 Switch directions Verb
C1.3.1 Switch moves back and forth Noun

Table 6 Vertices sorted by generalized functions

Func. ID Submitted phrase Func. group

B12.1.3 Push air out by propeller Move air
B13.1 Intake air Move air
B14.1 Provide air Move air
A1 Provide a flow of heated air Move hot air
A2 Supply hot warm air Move hot air
A7.2 Eject hot air Move hot air
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near-normal variables have a higher chance of detecting a statisti-
cal difference where there is none [48]. Due to this, there is a
slightly increased risk of a type-I error for the vertices metric.
Assuming an alpha of 0.05, all the dependent variables except the
number of vertices met the variance criteria. Since the dependent
variables are probably not independent of each other, we analyzed
each separately to satisfy the independence assumption.

4.1 ANOVA Results and Discussion. There are no signifi-
cant effects by the method used on most of the measured
responses (alpha¼ 0.05, see Table 9). Effect size is not reported
since the sample size (n¼ 78) is less than 100 and statistical sig-
nificance is not sufficiently affected by n. There is a significant
difference in the number of functions on level 3 (p¼ 0.035) and a
nearly significant difference for the MGD (p¼ 0.051). With more
samples, these may test as significant. However, the differences in
the functions on each tree level are probably meaningless since
consecutive levels were not significant as well. Also, there does
not appear to be any practical difference between the averages for
each method (see Table 10).

A few covariates were significant (p< 0.05) or near-significant
(0.05< p< 0.10). Those who had taken the device apart before
also perceived the activity as less useful (p¼ 0.045). These also
made more syntax errors (p¼ 0.003), such as naming parts. How-
ever, these results are probably less meaningful since related met-
rics are not significant, such as error rate and unique functions.
The error ratio by class level (p¼ 0.071) was near-significant. We
observed that the syntax error rate was 18.4% for second year stu-
dents, 14.7% for third year, and 5.4% for fourth year. However,
class level did not produce a difference in the raw number of
errors. This variable may become significant with more data or a
population with a wider range of experience. Additionally, more
than half the participants (14) reported not having learned func-
tional decomposition before. Many of these were juniors and
seniors, who had been taught functional decomposition in a
required sophomore design class. This supports findings that engi-
neering students often forget methods demonstrated early in their
education [49].

Table 7 A portion of the function tree for participant B2. Node
B2.2.1.1 was changed from “control flow rate” due to context.

Func. ID Submitted phrase Function group

B2.1 Provide comfort Spread forces over hand
B2.2 Move air Move air
B2.2.1 Input air Move air
B2.2.1.1 Turn on fan Drive fan
B2.2.1.1.1 Spin blades Drive fan
B2.2.2 Output air Move air
B2.2.3 Adjust air flow Control flow rate

Fig. 4 These three function trees are digitized submissions of raw data collected from three participants. All three of these
trees are for the toy dart gun, but each tree is generated using a different function identification strategy.

Table 8 An excerpt of data gathered for three participants. TD,
top-down; EN, enumeration; EF, energy-flow.

Participant code A7 B2 C3

Method TD EN EF
Class level Sen. Jun. Soph.
Dissect things on own? Rarely Rarely Often
Taken apart device before? No No No
Used func. decomp. before? No No No
Postsurvey 5 5 9
Unique functions 7 7 12
Vertices 13 14 16
Edges 12 13 15
MGD 8 7 4
AGD 3 3.18 2.69
Syntax errors 0 0 9
% Syntax error 0.0% 0% 56.3%
Functions level 1 1 0 1
Functions level 2 3 2 4
Functions level 3 5 5 11
Errors level 1 0% 0 0
Errors level 2 0 0 0
Errors level 3 0 0 9

Table 9 Significance of main effects (methods) on various
dependent variables. Nonsignificant level responses omitted.
Significant values in dark gray and near significant values in
light gray.

Response DF F value P value
Vertices 2 0.7 0.504
Uniq. func. 2 0.21 0.815
Efficiency 2 0.17 0.847
MGD 2 3.21 0.051
AGD 2 2.21 0.122
Errors 2 0.47 0.631
Error Ratio 2 0.85 0.436
Func. Lvl 3 2 3.65 0.035
Func. Lvl 6 2 2.58 0.088
Postsurvey 2 0.55 0.582

Table 10 Average values by method for selected variables. EF,
energy-flow; TD, top-down; EN, enumeration.

Vert. Uniq. Fn. Eff. (%) MGD Err. Rt. (%)

EF 11.57 9.32 77.68 4.780 17.37
TD 12.95 9.20 75.93 4.959 12.37
EN 13.24 9.52 78.24 6.115 12.73
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We did detect a possible learning effect over the testing period;
however, this effect cannot be distinguished from the effects due
to the device. The tree efficiency increased each week
(p< 0.0001) from 65.7% to 79.8% to 86.3% in the last week.
However, the error rate and other significant measures did not
show a consistent trend. This may correspond to prior findings
that practice improves performance [36].

4.2 Hypotheses Summaries. Hypotheses H1–H3 are rejected
because there is not enough evidence that there is a significant dif-
ference due to the method used. If there were undetected statisti-
cal biases in the analysis, these would be likely to produce a false
difference [48]. The p-values for these tests are high enough to
fail to reject the null hypothesis. The error rate committed by dif-
ferent class levels decreased with more experience, but the result
is above the 0.05 level (p¼ 0.0706). The practical difference
between these is significant. Thus, we would expect a statistical
difference with a larger sample size. H4 is tentatively accepted:

• H0: (failed to reject) there is no difference between the
energy-flow, top-down, and enumeration methods

• H1: (rejected) there is a difference between the energy-flow
and top-down methods

• H2: (rejected) there is a difference between the energy-flow
and enumeration methods

• H3: (rejected) there is a difference between the top-down and
enumeration methods

• H4: (tentatively accepted) the more experienced students will
perform better than the less experienced students

This result differs slightly with that of Eckert et al. In their
study, they found that professional designers using top-down and
energy-flow approaches found more functions than enumeration
approaches [9]. This seems to indicate that level of expertise is an
important effect when evaluating the different methods.

5 Qualitative Results and Discussion

The second research question was explored by asking partici-
pants what was the hardest part of the dissection activity. The par-
ticipant responses were qualitatively categorized by content and
compiled into a few categories describing the nature of the com-
ment. We report the percent students who made a particular com-
ment in Secs. 5.1 through 5.7. We also exclude discussion of
46.8% of the comments, as these have to do with the physical dis-
assembly, such as frustration with stripped screws, or having diffi-
culty keeping parts from rolling off the table.

5.1 Difficulty With Generating Functions—18.2%. The
most numerous comments related to functional decomposition
described difficulty with generating functions. Among this group,
students often described the difficulty of breaking a parent func-
tion into children functions. One student reported difficulty with
“Coming up with subfunctions and sub-subfunctions.”

5.2 Difficulty With Diagramming—13.0%. Many other
participants also commented that the hardest part about the ses-
sion was “the function tree.” Some said, “I understand the compo-
nents by taking it apart, not by writing about it.” Another said, “I
really don’t like this. It’s much easier for me to just write it down
in traditional writing or explaining it to somebody. I’m always
just worried about if I’m doing it right.”

These individuals seemed to be inhibited by the requirement to
create a diagram. Also, we had encouraged students to create
rough drafts, but we found very few of these. It seemed most stu-
dents preferred to do the tree in one step, or reorganize in their
head. This seemed quite difficult in the case of energy-flow, since
energy-flow is better with horizontal (flow) diagrams than vertical
ones (trees) [29] and may have added an extra mental step. This

may have been alleviated if students had been given multiple dia-
gram types to work with, or if rough drafts had been enforced.

5.3 Difficulty With the Syntax—6.5%. We observed that
many students struggled maintaining the verb-phrase syntax. Of-
ten, participants conflated parts and functions, despite a strong
emphasis on distinguishing between parts and functions during
the instructions. Some reported struggling with “Separating state-
ments about what components are in the device from function
statements.” It seems that the functions associated with certain
parts are so obvious that engineers find it difficult or superfluous
to create a function-phrase to describe it (e.g., “motor” versus
“generate rotational forces”).

Related to this, some student struggled with “coming up with
good verbs to describe functions.” It seems that they did not use
the list of common function verbs provided [33]. This seems to
indirectly correspond with findings that reduced function taxono-
mies lead to easier use and interpretability [33]. In a different
study of ours, whose data are not presented in this paper, we asked
one student why he did not use the list. He said he had forgotten it
was even there. This study did not explore why these lists were
not used, but this would be for future work.

5.4 Difficulty With the Methods—6.1%. While few partic-
ipants commented on the function identification methods, one
brought up that “(I) did not understand the distinction between
the last approach (enumeration) and this one (top-down).”
Another described difficulty with “recognizing what the
energy-flow is (i.e., tracing the energy-flow) in the NERF
gun.” These comments suggest that the identification methods
may not have been sufficiently clear for the participants,
though it is hard to say how common this was. Many partici-
pants did not seem to understand the energy-flow method well,
although there is evidence that many attempted to identify
flows through the device.

5.5 Scope of the Diagram and Stopping Point—
3.7%. Many participants struggled with knowing the scope of the
assignment. Some mentioned “trying to decide what is worth
mentioning.” One struggled with “Knowing when a function was
decomposed fully—(it) seems to just keep going.” There seemed
to be a general sense that too great of detail was not necessary.
Dym and Little state that diagrams do not need to be too detailed,
and doing so may not improve functional understanding [15]. This
may also correspond with too many functions inhibiting the inter-
pretability of the tree [33]. Most of the participants that made
comments of this nature also produced large and complete func-
tion trees, with very few syntax errors. These trees were among
the best submitted.

5.6 Mechanical and Electrical Components—3.9%. 3.9%
of participants reported difficulty with understanding mechanical
and electrical components. Some of this may simply be due to the
lack of exposure to hardware among lower class years. This seems
to suggest that engineers with less experience with hardware and
components would have a more difficult time analyzing a device.
This corresponds with findings that younger engineers struggle
more with identifying parts [9].

5.7 Other Issues Reported—11.7%. We also observed that
some students did not see the point of functional decomposition,
sometimes complaining about it. This corresponds with prior
papers on this topic [5]. In this particular experiment, this could
also have to do with the particular motivations the students had in
participating. Several students had taken the class to have fun, and
the additional workload may have seemed a burden to some of
them.

The study did not find qualitative differences between the func-
tions trees generated by each method. Each method seemed
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equally likely to produce a core set of functions. The diagram
types found in each method were also similar to the others. Over-
all, there is not enough qualitative evidence to conclude that there
is a difference between the trees generated by the various meth-
ods. This supports the quantitative results from this study.

6 Implications

These results imply that top-down, enumeration, and energy-
flow methods perform the same for novice designers. Since some
of these methods take significantly more effort to learn, this fur-
ther implies that simpler methods are preferable at an early stage
of learning design. There may be several reasons for why no dif-
ference was found between the methods: prohibitive cognitive
loads, lack of mechanical knowledge, lack of practice using the
methods, mental set fixation, or any combination of these. Addi-
tionally, for some students, certain methods may be harder to use
because they conflict with their learning style. Also, if product
complexity is a factor, it may be that certain functional decompo-
sition methods work better for complex products than for simpler
ones (as used in this study), or designs which are not mature and
are still developing. On the other hand, these methods may also
perform the same for either of these situations.

6.1 Cognitive Loads. The students described several tasks
which were especially difficult, which may signify high cognitive
loads. These include generating functions, diagramming, distin-
guishing parts from functions, and understanding the methods.
Cognitive load theory may explain some of these observed prob-
lems. There are three categories of cognitive load [50]. Intrinsic
cognitive load (ICL) is high when the complexity of the task is
high. Extraneous cognitive load (ECL) results when the learning
material is difficult to follow. Germane cognitive load (GCL) rep-
resents the level of expert skill.

It is most likely that each of these played a part in the observed
effects [51]. We observed many students attempted to generate
functions in one step, without creating a rough draft. This prob-
ably contributed to cognitive load. The students complained of
both not knowing some parts and having difficulty with creating
the tree, forming verbs, etc., corresponding with a ICL effect [4].
Low motivation also contributes to a high ICL, and it is possible
that this affected the student performance [5]. Some students also
complained that they did not understand the methods, and our
instructional period may not have been sufficient, as mentioned
before. This would contribute to the ECL. It is also possible that
when students did not understand a method for identifying func-
tions, they made their own [52].

Finally, the lack of expertise, lack of familiarity with the
method, and abstract nature of the task would all contribute to the
GCL [12]. One evidence of this is that Eckert et al. found that top-
down and energy-flow approaches generated more functions than
enumeration approaches [9]. They also report that those who used
systematic methods identified new functions at a steady pace,
whereas those who used enumeration identified functions all at
the beginning or at the end of the session. Because we collected
our data in bulk, we do not have temporal data associated with
each function. However, based on the results from Eckert et al.,
we hypothesize that at low levels of expertise, the rate at which
functions are identified is equally inconsistent between methods.

6.2 Instruction Methods. Since our instruction followed the
interventions used at many universities, and those described in
textbooks, this study may suggest the need to revise these models.
Specifically, changes should include more discussion of the differ-
ence between functions and other types of information, such as
design requirements or part names. This can be reinforced using
practice [50] and guided examples [36,50].

6.3 Purpose of Task and Complexity of Product. The pur-
pose of the task and product complexity may have influenced our

results. Since the purpose of the task was to understand “how it
works,” it is possible that the effort many students put forward
was superficial. Also, the products may not have been complex
enough to benefit from more systematic methods like energy-flow
or top-down. However, this may also indicate that for this type of
task, a complicated function diagram is not necessary [1].

If these explanations are true, further studies would be needed
to distinguish what activities need a certain level of detail,
method, or type of diagram. We do not expect that functional
decomposition methods would behave the same in a design task
as it would in a product dissection task. These methods probably
also perform differently under different parameters (see Table 1).
Diagram types probably perform differently. In the study by
Nagel et al., for example, function diagrams were judged on the
basis of completeness and conservation of flows [36]. This level
of rigor may not be necessary before ideation [1,15]. However, a
comprehensive flow block diagram may be more appropriate than
a tree or a list during detailed design after a concept has been cho-
sen or when reverse engineering a competitor’s product.

6.4 Other Implications. In this study, it was seen that partici-
pants tend to fixate on the name of the part, rather than actually
determining its function or meaning within the entire system. For
some parts, the name itself may imply the function (e.g., “motor”)
and may lead some engineers to simply write the part name
instead of translating it into a function. This may be further com-
pounded by known parts that have unknown or assumed functions.
Therefore, the students may have seen a part and simply ignored
its functions because they already felt they had a grasp on what it
does. This seems to correspond to a tendency in young children to
name and categorize unknown objects by their functions or pur-
pose [53,54]. While untested, it is reasonable to hypothesize that
the fixation on part names is a vestige of this early developmental
cognition.

Another possible reason for the observed results is different
methods may perform better for people with certain learning
styles. Since functional decomposition is a form of abstraction
[1,15] and abstraction is the deepest level of learning [4], it fol-
lows that learning styles may have an effect on individual per-
formance with a particular method. Other possible explanations
include mental-set fixation [3], which could potentially reduce
performance over a long session. However, we did not have any
clear indication that this was occurring in our study.

7 Conclusions

The results of this study suggest that for novices doing product
dissection, there is no difference between energy-flow, top-down,
and enumeration methods for identifying functions. For design
theory, this suggests that any method is equally effective at low
levels of expertise, but enumeration should be avoided because it
leads to fewer identified functions at higher levels of expertise [9].
Our data point to a high cognitive load in novice engineers using
functional decomposition. Based on this conclusion, we recom-
mend any systematic methods, such as top-down or energy-flow,
for design education and practice. However, for future studies of
product dissection with novice engineers, it appears that the
method used to identify functions is not a significant factor.

The cognitive load in novices seems to obscure differences
between the methods. This may be due to a few reasons. Our sur-
vey data may point to a lack of expertise with the methods and/or
a lack of experience with the components. Other explanations
include the complexity of the artifact and the instruction on how
to use the methods [36]. For example, it is possible that some stu-
dents did not understand a method and made their own up [52]. It
is also possible that for the purpose of simply understanding how
something works, each method will perform the same.

The survey results also have implications for education. Partici-
pants reported difficulty with generating functions and drawing a
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diagram. We also observed that there was a high rate of confusing
functions with part names or design requirements. These issues
suggest that students do not understand the distinction between a
function and a design requirement, or how to translate between
the two. Based on these results, we recommend additional training
on how to use diagrams to map out different design ideas. We
also recommend focusing on the concepts of functionality and dia-
gramming first and introduce specific identification methods later.

There are some limitations to this study. The results of this
study should not be extended to other design tasks, levels of
expertise, or other parameters levels from Table 1. In addition,
this study only used one type of diagram, which may have
imposed too much extra work when using the energy-flow or enu-
meration methods. Additionally, the statistical analysis cannot
separate the effects due to time/learning and the effects due to the
artifacts. Finally, the purpose of the task used in this study was to
create a generic description of a product. This may have affected
the quality of the diagrams. Other studies argue for the merit of
functional modeling in a specific design context, such as defining
a mechanical design space [34], decision making [55], or satisfy-
ing customer needs [56].

The results of this work can improve future studies on cognition
during functional decomposition. Future work should focus on
determining (1) how different levels of expertise affect cognitive
load and the rate of function identification [9], (2) how different
diagrams work in conjunction with each method, (3) how these
methods perform in other design tasks. Future studies should also
explore improving instruction for functional decomposition. Table
1 shows the parameters laid out for this study and the levels we
chose. We recommend that future researchers use these or similar
parameters to define their studies so future work in decomposition
can be compared, and we can identify gaps in knowledge,
pedagogy, and theory. We also noted that many students used
phrases that are not strictly functions. We recommend that future
studies make particular emphasis on the difference between func-
tion and other types of information, such as requirements or user
actions.
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