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A large portion of design activity involves reuse of previ-
ous knowledge in order to solve new problems. Therefore,
facilitating eco-conscious exploration of archived designs is
needed for advancing sustainable product design. It is thus
necessary to create integrated exploration tools that share
common data representations for design and sustainability-
related product metadata. This can allow designers to ob-
serve co-variations in design data and develop engineering
intuition with regards to environmental sustainability perfor-
mance. In this work, we present a framework for relating
sustainability and product metadata using taxonomy-based
representations of lifecycle data. This facilitates simulta-
neous visualization of environmental indicators along with
part similarities. To demonstrate this framework, we im-
plement shapeSIFT, an interactive multi-dimensional visu-
alization tool for eco-conscious design exploration. Shape-
SIFT uses a visual analytics-based approach to represent
part metadata and environmental indicators. This facilitates
query-based dynamic exploration of part repositories.

Nomenclature
EI : net cradle-to-gate environmental impact calculated us-

ing the cumulative energy demand (CED) method

∗Address all correspondence dev@purdue.edu
†Address all correspondence for other issues to ramani@purdue.edu

from Ecoinvent version 1.01 within SimaPro®

e : environmental impact associated with the unit process
for material extraction

bv : blank/initial volume of material used for manufactur-
ing the specified part

pi : environmental impact associated with the ith unit man-
ufacturing process. Note that this quantity is also de-
pendent on the type of material that is manufactured

O dim
i : operating dimension associated with the ith manu-

facturing process
n : total number of unit manufacturing processes for a part
MEI ext : error in estimating the cradle-to-gate impact for

the material extraction stage
MEI rem

i : error in estimating the cradle-to-gate impact for
the ith mass removal process

MEI con
i : error in estimating the cradle-to-gate impact for

the ith mass conserving process
MEI : cumulative error in estimating the net cradle-to-gate

impact for a part
Vmesh : part volume as calculated from the mesh file
D(a1,a2) : distance measure between nodes a1 & a2
dlca(a∗1,a

∗
2) : depth (measured from the root) of the lowest

common ancestor for nodes a∗1 and a∗2
dpl(a∗1,a

∗
2) : length of traversed path (number of hops) to

reach node a∗2 from node a∗1. For computing
dpl , we allow edge traversals in all directions

mailto:dev@purdue.edu
mailto:ramani@purdue.edu


m : a material type specified using the Ashby taxonomy [1]
r : a manufacturing process plan consisting of an ordered

set of individual processes specified using the Allen and
Todd taxonomy [2]

f : a function description represented by an unordered set
of individual functions specified using the categoriza-
tion by Hirtz et al. [3]

dm(m1,m2) : scalar distance between materials m1 & m2

dr(r1,r2) : scalar distance between manufacturing process
plans r1 & r2

d f ( f1, f2) : scalar distance between function descriptions
f1 & f2

S : a pixel-based representation for an image, used for
matching a sketch input to the 2D projection of the part

x : histogram-based representation of an image S
ds(x1,x2) : scalar distance between two image histograms

x1 & x2

1 INTRODUCTION
Life Cycle Assessment (LCA) has become one of the

most objective methods for quantifying the environmental
sustainability of a product or a process. Even so, conduct-
ing a detailed LCA for every part archived in a repository is
impractical due to the amount of time and resources required.
A more manageable approach is to simplify the assessment
process by: (1) reducing the scope of the analysis, or (2) ap-
proximating materials and manufacturing by available alter-
natives from a standardized inventory [4]. Such approxima-
tions can generate environmental indicators that can be use-
ful for screening out designs with a significant negative ef-
fect on the environment [5]. An important consideration for
an environmental indicator to be applicable to product design
is automating the estimation process. This allows scaling the
assessment process to repositories that contain a large num-
ber of designs. Previous research [6] has outlined challenges
in this context, such as (1) the availability of accurate mass
and volume data, (2) levels of specificity in the description of
material and manufacturing processes, and (3) estimations of
part features relevant to process. These challenges prevent
automation as well as a more accurate computation of life
cycle impact. In this work, we overcome these challenges
through a taxonomy-based description for part attributes.

The primary contribution of this paper is a framework
that enables sustainability-aware exploration and reuse of
previous design knowledge in a 3D part repository. For
this, we develop taxonomy-based representations for design
metadata that allow automated estimation of (1) environmen-
tal indicators and (2) part similarities. We also present a vi-
sualization approach for creating a user interface that allows
querying and exploring the part repository. Our approach
also enables visualization of environmental indicators and
design metadata by encoding them as “visual variables” [7,
p. 42]. Visualizing such data via multi-dimensional repre-
sentations allows designers to develop engineering intuitions
about impact-metadata relationships that affect the design
process.

2 BACKGROUND
A significant challenge for estimating life cycle impacts

of designs archived in repositories is clearly defining the na-
ture and the quality of archived data. Although efforts such
as the National Institute of Standards and Technology repos-
itory [8] and the University of Missouri-Rolla design repos-
itory [9] have been successful at defining data standards for
design information, they are not designed to contain an ex-
haustive lifecycle inventory (LCI) that can be used for envi-
ronmental impact assessment. We review previous research
pertaining to (1) methods for estimating eco-indicators using
knowledge from existing parts, (2) similarity assessment in
design repositories, and (3) the role of information visualiza-
tion in environmental sustainability.

2.1 Estimating eco-indicators from existing part data
Previous research in sustainable design has looked at

bridging gaps in lifecycle related information using tech-
niques that leverage implicit knowledge embedded in exist-
ing parts. Approaches proposed by researchers include (1)
using surrogate measures of environmental impact, (2) de-
veloping indices that relate environmental impact to part at-
tributes, and (3) extrapolating impact on the basis of exist-
ing similar products. Sousa et al. [10] develop a method for
generating approximate life cycle assessment (LCA) metrics
through neural networks trained using pre-existing product
attributes. On similar lines, a knowledge-based approximate
life cycle assessment system (KALCAS) is discussed by
Park et al. [11]. Dewulf et al. [12] detail Eco-Pas, a method-
ology that uses “eco-cost estimating relationships” for an-
ticipative weak point analysis of a product’s environmental
impact. Huang et al. [13] establish a life cycle performance
index for eco-conscious redesign. This index is used for se-
lecting an environmentally benign material that still meets
strength and stiffness constraints. An approach for estimat-
ing life cycle impacts by correlating them with product func-
tions has been detailed by Devanathan et al. [14]. Here, the
authors develop the “function-impact matrix” that associates
impact embodied by a structure to its corresponding func-
tion. This allows designers to look at less impactful embod-
iments for realizing a specific function. Another method for
impact estimation based on functional modeling of similar
existing products is detailed by Haapala et al. [6]. The esti-
mation method discussed is scalable to large design reposi-
tories. Tagged product attributes, such as material, manufac-
turing processes, and mass, are used for estimating impact.
However, this method does not use information contained in
3D part models nor does it allow variable levels of data spec-
ification with regards to categorical product attributes, such
as material or manufacturing processes.

2.2 Similarity assessment in design repositories
Estimating similarity in design repositories necessitates

an understanding of design intent by means of coding se-
mantic information with regards to artifact features. This
is particularly true for categorical metadata, such as mate-
rial, manufacturing, or function descriptions, which cannot
be quantified on any particular measurement scale. Iyer et
al. [15] discuss a context-based inference system to capture



design intent from legacy CAD, such as 2D drawings and
3D models. The authors extract raw data from such sys-
tems, classify them, and convert them to design intent us-
ing an interactive inference system. A prevalent method for
establishing context is the classification of artifact features
either in the form of ontologies or taxonomies. This catego-
rization can be used for establishing a non-ambiguous map-
ping between features. Li et al. [16] discuss a method for
ontology-based retrieval of design information. The authors
use natural language processing and domain-specific ontolo-
gies to construct a semantics-based representation from un-
structured design documents. The constructed representa-
tion is used for indexing and retrieval of design informa-
tion. Quay et al. [17] propose a hierarchical data organization
where users can select regions of spatial, temporal, or topi-
cal interests. While these methods characterize parts based
on design attributes and/or 3D models, our goal is to explore
repositories based on a combination of shape, environmental
sustainability, and other relevant part attributes. This multi-
dimensional approach to design exploration is essential for
designers to generate insights about relationships between
sustainability metrics and traditional design variables.

2.3 Visualization in environmental sustainability
Visualization can be defined as the use of computer-

supported, interactive, visual representations of abstract data
to amplify cognition [18]. The primary objective in data vi-
sualization is to allow users to gain insight into an informa-
tion space by mapping data onto graphical primitives [19].
Visualization can act as a powerful enabler of environmental
sustainability by its ability to make data transparent. This
includes means for (1) generating awareness about specific
data, (2) making design exploration more intuitive, and (3)
facilitating better decision-making by emphasizing trends
and correlations for sustainability-related data. Creative real-
time visualizations that quantify energy consumption and
carbon loads have been used to promote resource conser-
vation [20]. Developing meaningful visualization of sus-
tainability indicators presents a challenge due to its high di-
mensionality. An interface for visualizing the QUEST en-
vironmental sustainability model is presented by Munzner
et al. [21]. The authors provide insights into the successes
and challenges in designing visualization schemes required
for engaging communities in environmental policy making.
An additional requirement for a visualization scheme ap-
plicable to 3D repositories is the ability to query and con-
vey shape information. Pousman et al. [22] discuss integra-
tion of sustainability-related visualizations for paper print-
ing. The primary goal of their work is to motivate con-
versations among community members. Providing feedback
on individual/group behavior for reducing environmental im-
pact is detailed by Froehlich et al. [23]. Marwah et al. [24]
discuss reducing the energy consumption and carbon load
of data centers. The authors provide cases that use visu-
alizations of sensor data (e.g. temperature, power load) to
understand trends and anomalies in daily operation. While
the mentioned efforts are clearly directed towards knowledge
discovery and decision-making in the context of sustainabil-
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Fig. 1. Overview of our framework for supporting sustainability-
aware design exploration in 3D part repositories. Components within
the pipeline along with their section numbers are shown in bold font.

ity, prior research has not tied such efforts with design ex-
ploration. Similarly, visualization-based methods for design
exploration in 3D repositories [25, 26] do not emphasize on
sustainable design. In this paper, we develop a framework
for bridging these domains to facilitate sustainability-aware
design exploration.

3 METHODOLOGY
A high level overview of our framework is illustrated

in Fig.1. The primary interaction mode for users of our
framework is query-based exploration of part similarities. A
range of visualizations can be designed to guide these pro-
cesses. An interface with one such visualization scheme is
discussed in this paper. We start this discussion by detailing
the methodology behind the three core modules in our frame-
work, namely the (1) environmental impact assessment mod-
ule, (2) similarity evaluation module, and (3) visualization
module and prototype interface. Applying our framework
requires access to 3D part data with metadata regarding ma-
terial, process planning, and functionality. Feature level in-
formation is often absent in existing repositories. Therefore,
we work with 3D part repositories that do not contain a direct
mapping of manufacturing processes to specific part features.
For example, if the process plan has two material removal
operations such as milling and turning, we cannot estimate
how much material was removed by milling as compared to
turning in order to produce the final shape. In order to make
our framework relatively independent of the representation
of data present in a part repository (i.e. file formats and gran-
ularity), we use low level representations that can be derived
from common high level representations of design data. This
approach allows users to adapt the developed framework to-
wards their preferred data schemes. Figure 2 illustrates the
data model for a part class contained in our framework. The
primary inputs to our framework are (1) a 3D model of the
part, represented as a mesh, (2) a material definition, (3) an
ordered list of manufacturing processes, (4) a function de-
scription of the part, and (5) part identifiers for indexing and
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}

id % unique identification number

name % part name

shape_descriptor % derived bag of words descriptor

function % functions attributed

material % material definition

manufacturing % list of manufacturing processing

3dmodel % mesh model of part

part_volume % part volume

convhull.volume % convex hull volume

bbox.volume % volume of min. bounding box

surfarea % part surface area

convhull.surfarea % surface area of convex hull

bbox.surfarea % surface area of min. bounding box

pcvector % principal component vectors

lindim % extent of linear dimensions

part

Fig. 2. Data representation model for defining a “part class” in our framework. Here, the arrows represent an aggregation relationship.
Metadata contained in the class are either specified as input data during instantiation or subsequently derived from input data. Minimum
input data that needs to be specified include (1) the part geometry in the form of a 3D model, (2) the part material, (3) an ordered list of
manufacturing processes, (4) part functions, and (5) identifiers for indexing and query.

retrieval. All other part metadata, such as the environmental
indicator, shape descriptors, and metadata similarities, are
derived from these inputs.

3.1 Environmental impact estimation
In this work, we focus on developing an automated in-

dicator for approximating cradle-to-gate impact for mechani-
cal parts. Consequently, our framework is applicable towards
parts whose lifecycle impacts are dominated by resource ex-
traction and manufacturing processes. Although this reduc-
tion in scope results in higher uncertainties in environmen-
tal impact assessment, it is necessary, since information re-
garding downstream lifecycle stages (i.e. use phase and end-
of-life) is rarely available at the design phase. Moreover,
our framework is aimed at design-phase exploration with the
goal of screening out designs with significant environmental
impact.

Given a 3D model of a mechanical part with correspond-
ing metadata, we start by extracting volumetric as well as
shape-related data as shown in Fig. 2. This information along
with process data is used for estimating the approximate en-
vironmental impact of the product. Since a mesh-based rep-
resentation of the solid model is used, feature level informa-
tion is unavailable for estimating the cradle-to-gate indicator.

3.1.1 Taxonomy-based representation of lifecycle data
Manufacturing processes are specified in our framework

as per the Allen and Todd taxonomy [2]. This taxonomy cat-
egorizes processes into 14 major families. This classification
taxonomy takes into account workpiece geometry, resulting
tolerances, workable materials, and cost. This taxonomy was
preferred as the classifications described correspond closely
with volumetric information of parts. One of the reasons for
incorporating a taxonomy-based specification for manufac-
turing is the flexibility that it allows in the level of specificity

of a process. For example, a repository might contain a part
that is described as being cast without further information
on the exact nature of the casting process (e.g. die casting,
investment casting, and sand casting). However, estimating
environmental impact data requires a more specific unit pro-
cess. In such cases, an approximate measure for environmen-
tal impact can be established by averaging the unit impacts
of the set of manufacturing process in the induced sub-tree.
Similarly, it is possible that unit process information regard-
ing a specific process is unavailable in the used LCI database.
Here, we can approximate the resulting impact by substitut-
ing it for the most similar manufacturing process that has
data available in the LCI. For this, we develop a similarity
measure among manufacturing processes based on the struc-
ture of the taxonomy.

A corresponding taxonomy for material specification
described by Ashby [1] is also incorporated in our frame-
work. Within this scheme, materials are grouped into five
classes: ceramics and glasses, fibers and particulates, hy-
brids, metals and alloys, as well as polymers. Each material
class is further classified into multiple material groups. A
complete classification scheme is available within the CES
Edupack software [27]. In addition to material and manu-
facturing taxonomies, we implement a function taxonomy
adapted from the categorization of functions by Hirtz et al.
[3]. Here, the authors develop a reconciled functional basis,
where functions are grouped into 8 primary classes. They are
further divided into multiple sub-classes. The authors also
provide a list of correspondences that allow users to correlate
their functional basis with related efforts. By implementing
this function taxonomy, we allow designers to compare and
filter parts based on similarities in part function.
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Fig. 3. Pipeline for estimating the environmental impact indicator
from a three-dimensional, mesh-based representation of the part and
corresponding input metadata. Gray squares represent reference
taxonomies and databases used for standardizing data description.

3.1.2 Estimating the cradle-to-gate indicator
The pipeline for estimating the environmental indicator

is described in Fig. 3. First, we extract volumetric proper-
ties from a 3D model of the mechanical part stored in the
database. Properties, such as volume, surface area, convex
hull volume, and minimum bounding-box volume, are cal-
culated from the stereolithography (.STL) file and indexed.
Next, we estimate the operating dimension (O dim) for each
manufacturing process associated with the part. O dim is de-
fined as the physical variable pertaining to part geometry (i.e.
volume and surface area) that is processed by a manufactur-
ing operation. Table 1 illustrates the definition of O dim for
different kinds of manufacturing processes as per the Allen
and Todd taxonomy. Thus, the O dim for a manufacturing
process can be used as a scaling factor on its correspond-
ing unit process. Scaling the impact of a unit process by
O dim results in the net impact of that unit process on the part
geometry. In an ideal setting, the operating dimension for
each process is specified as input data or encoded as shape
changes of the 3D model. Although a well-defined product
lifecycle management (PLM) system might also archive such
data, most repositories today do not provide any means for
obtaining this information. Therefore, in this paper, we esti-
mate the O dim for a specific manufacturing process based on
the following approximations.

• If the volume of the starting stock/blank is not specified,
it is taken to be equal to the smaller value of (1) the convex
hull volume of 3D part and (2) the volume of the minimum
bounding box of the 3D part.
• If there is more than one material removal operation in the
list of manufacturing processes, the total removed volume is
divided equally among these processes.
• The Allen and Todd taxonomy is used to categorize man-
ufacturing processes into one of the following four types:

→ Mass conserving volumetric (e.g. forging, annealing)
→ Mass reducing volumetric (e.g. turning, drilling)
→ Surficial (e.g. anodizing, electrocoating, dust coating)
→ Joining (e.g. welding, adhesive bonding)

Thus, any process that appears before the first mass re-
ducing process always operates on the convex hull volume
or surface area. Similarly, any process that occurs after a

Type of Manufac-
turing Process

Operating Dimension (O dim)

Mass conserving
volumetric

Volume of the part before/after
the manufacturing process

Mass reducing volu-
metric

Volume of the material removed
in the manufacturing process

Surficial
Surface area that is
coated/transformed by the
manufacturing process

Joining

Functional dimension (volume,
surface area, length, etc..) de-
pending on to the type of joining
process

Table 1. Definition of O dim based on the manufacturing process.

mass reducing process operates on the reduced volume. Al-
though units such as volume and surface area are easily com-
putable from a 3D model, extracting feature level informa-
tion for calculating the operating dimension for joining pro-
cesses present significant challenges. Therefore, information
about the operating dimension (i.e. length of weld, surface
area of bonded surfaces) is required to be specified by the
user as input to the framework. Once the O dim for each man-
ufacturing process is estimated, the cradle-to-gate environ-
mental indicator is computed as a linear sum of the impact of
material extraction and manufacturing processes (see Eq. 1).

EI = e∗bv +
n

∑
i=1

pi ∗O dim
i (1)

Approximating the O dim introduces additional uncer-
tainties in estimating the cradle-to-gate environmental im-
pact computed using Eq. 1. These uncertainties result from a
lack of detailed information pertaining to the material extrac-
tion and manufacturing stages. As discussed, the availability
of detailed lifecycle data in design repositories obviates the
need for this approximation. However, we present and dis-
cuss uncertainties for a scenario in which feature information
(that maps manufacturing process data to part geometry) is
absent from the design repository. Apart from inherent un-
certainties in the life cycle assessment process, additional ap-
proximation errors resulting from our method can be formal-
ized as follows.

• MV : the error resulting from approximating the initial
blank. volume bv by the convex hull/minimum bounding
box volume.

• Mwi : error in removed volume fraction for ith material
removal operation. This results from our approximation
that the total removed volume is divided equally among
all material removal processes.

MEI ext =MV ∗ e (2)



MEI rem
i = pi ∗

{
MV
n

+ Mwi ∗ (bv−Vmesh+ MV )

}
(3)

MEI con
i = pi ∗

{
MV (n−1)

n
− (bv−Vmesh+ MV )

i−1

∑
j=1

Mw j

}
(4)

MEI =MEI ext +

n

∑
i=1

{
H(Φi)∗ MEI rem

i +H(−Φi)∗ MEI con
i

}
(5)

H (Φ) is the Heaviside step function.
Φi = 1 if the i th process is volumetric & mass removing
Φi =−1 if the i th process is volumetric & mass conserving

Equations 2, 3, 4, and 5 represent a closed form solution
for the cumulative error in estimating EI due to approxima-
tions in estimating O dim. These equations are derived by
substituting the error terms in Eq. 1. Please note that un-
certainties with respect to surficial and joining processes are
not considered in these equations due to the dependencies of
these errors on the shape of a specific part. In this paper, we
use Eq. 1 to compute a cradle-to-gate indicator for the pur-
pose of demonstrating our visualization pipeline. For this,
the Cumulative Energy Demand (CED) is used as an indica-
tor of environmental impact. Cumulative Energy Demand for
a product is defined as the total quantity of primary energy
needed to produce, use, transport and dispose of that partic-
ular product. Previous literature has outlined the usefulness
of CED to serve as a screening indicator for environmental
performance [28]. A lookup table is hard-coded into our sys-
tem that contains CED values of unit processes for material
extraction as well as a given material-manufacturing process
combination. The data for these entries have been referenced
from the methods library available through SimaPro 7.1 [29].
Our current setup is also capable of estimating cradle-to-gate
impacts based on the Eco-Indicator 99 method referenced in
SimaPro 7.1. Developing a more holistic indicator is possi-
ble if data concerning the transportation, use-phase and end-
of-life is made available within the repository. Future im-
plementations of the shapeSIFT tool will look at providing a
choice for multiple impact estimation methods. In this paper,
we limit our focus towards enabling comparisons between a
computed environmental indicator and product attributes.

3.2 Similarity evaluation
A natural way of quantifying similarity between el-

ements of a set is by establishing a measure of similar-
ity/distance between them. The similarity between two ob-
jects is a function of the commonality and the differences
they share [30]. We capture these properties using a distance
function d : ε× ε→ ℜ that operates on elements of a tax-
onomy ε and returns a real valued (∈ ℜ) distance measure.
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Fig. 4. An example subtree from the Allen and Todd taxonomy [2]
for manufacturing processes. This figure illustrates computation of
pairwise dissimilarities among manufacturing processes using Eq.6.
We can see that this distance measure accounts for hierarchies as it
allocates a decreasing value of dissimilarity to a pair of siblings lower
down the taxonomy tree. Here, we illustrate that D(drop forging, roll
forging) < D(casting,forging) because the former pair of siblings are
at a lower depth.

Although we do not strictly enforce the distance function d
to meet the required conditions to be defined as a metric, we
develop a function that possesses the following properties:

1. Non negativity : d(e1,e2)≥ 0;{e1,e2} ∈ ε

2. Symmetry : d(e1,e2) = d(e2,e1)
3. Identity : d(e1,e2) = 0⇔ e1 = e2

We begin the discussion on similarity computation by defin-
ing the involved terms. All mechanical parts are considered
to be elements of a set ρ, with associated materials m ∈ M,
manufacturing processes r ∈ R, functions f ∈ F , and a spe-
cific shape s. Here, M, F , and R are the respective tax-
onomies adopted to represent these attributes. A manufac-
turing process r ∈ R is treated as an operator r : ρ×ρ→ P
such that it operates on a certain part and returns another
part with either same or different material and shape proper-
ties. Thus, the entire sequence of manufacturing processing
can be viewed as a composition of operators that transform
an initial blank P0{m0,s0, f0} to the final part Pn{mn,sn, fn}.
The material, manufacturing, function, and shape definition
represent significant decisions towards framing design intent.
Therefore, we interpret the similarity among parts as a com-
position of similarities in these four attributes. For this, we
define a set of distance functions {dm, d f , dr, and ds} associ-
ated with these attributes respectively. Since material, manu-
facturing and function definitions are represented using cor-
responding taxonomies, we develop a generalized similarity
measure that can be adapted to taxonomies. The distance
function for shape is defined using similarities in “shape fea-
tures” outlined by Squire et al. [31].
3.2.1 Material, manufacturing, and function similarity

Classification trees and taxonomies increase in speci-
ficity as we proceed lower down the hierarchy. Therefore, a
pair of siblings at a lower level are more similar than siblings
higher than them. For example, in a manufacturing taxon-
omy, any two types of milling processes are more similar to



each other than any two mass reducing processes. Exploiting
this property for similarity computation requires making use
of the hierarchal nature of the taxonomy. The distance mea-
sure discussed in this paper builds on concepts described in
Ganesan et al. (2003) [32] and applies them towards the used
material, manufacturing, and function taxonomies. Given
any two elements in a taxonomy, we calculate a distance
measure as follows:

• Tree Depth Equalization: When computing the similarity
between any two elements of the same tree, only elements
at the same depth from the root are evaluated. This is
necessary to account for the variation in levels of input
specificity. For example, as shown in Fig. 4, the difference
between two processes such as casting (not very specific)
versus drop forging (more specific) is essentially the
difference between casting and forging (on a similar level
of specificity as casting). Thus, the depth equalization step
normalizes the specificity of the items being compared
ensuring the validity of the distance measure. The algorithm
for the same is illustrated below.

if depth(a1)> depth(a2)
then a∗1 = ancestor(a1) at depth(a2) && a∗2 = a2
else if depth(a2)> depth(a1)
then a∗2 = ancestor(a2) at depth(a1) && a∗1 = a1
else a∗1 = a1 && a∗2 = a2

• Distance Estimation: The next step is to calculate the nu-
merical value of similarity between the entities substituted in
the first step. Our distance function is based on the general-
ized vector-space model discussed in Ganesan et al. [32, p.
71]. We focus on illustrating the applicability of this dis-
tance function to material, manufacturing and function tax-
onomies by demonstrating its hierarchy preserving behavior
on the Allen and Todd taxonomy [2]. The corresponding
distance function is defined in Eq.(6).

D(a1,a2) =
dpl (a∗1,a

∗
2)

dpl(a∗1,a
∗
2) + dlca (a∗1,a

∗
2)

(6)

As both dpl and dlca lie in the interval [0,∞), the distance
measure D is confined to the interval [0,1]. However, when
dpl = dlca = 0, the similarity measure is indefinite. These
cases occur only when comparisons are made among ele-
ments of taxonomy and its root. As these comparisons do not
hold any meaning, we exclude them from the set of allow-
able comparisons. It can be easily verified that this distance
function satisfies the non-negativity, symmetry and identity
conditions mentioned earlier. The distance between two ele-
ments in a taxonomy D(a1,a2) is equal to 1 only if dlca = 0.
In other words, two elements in the taxonomy are considered
to be entirely dissimilar if their lowest common ancestor is
the root node of the taxonomy.

Figure 4 illustrates the application of the distance mea-
sure to an example subtree. Here, the distance between cast-
ing and forging is 2/3 which is greater than 2/5; the distance

between drop forging and roll forging. This shows that the
distance function accounts for the hierarchical structure of
the taxonomy while calculating similarities. Given that we
have established a method to compute pairwise-similarities
between any two nodes in a taxonomy, we proceed to define
our method for composing a scalar distance measure for the
specified material, manufacturing, and function definitions.
The definition of a part attribute can consist of a single ele-
ment or, in other cases, a set of elements from the taxonomy.
Additionally, the ordering of the associated elements may
hold significance in cases such as the definition of a manu-
facturing process plan. Hence, we develop a measure of each
of the attributes that encodes dissimilarity as the maximum
deviation of one set of attributes from the other.

In our repository, each part is associated with a single
material type. Therefore, for any two materials m1,m2 ∈M,
the distance function, dm, is directly given by the function op-
erating on the material taxonomy as shown in Eq. 7. A manu-
facturing description r = 〈er1,er2...,ern〉, r ∈ R is considered
as an ordered n-tuple of manufacturing processes. Given
two manufacturing descriptions, r1 and r2, we define a set
r1 ◦ r2 whose elements are 2-tuples formed by the element-
wise product of r1 and r2. The reason behind performing
an element-wise operation is that, given two manufacturing
descriptions it only makes sense to compare primary pro-
duction processes with other primary processes, secondary
processes with other secondary processes and so on. For ex-
ample, consider two parts with the following process plans:
{casting, annealing} and { f orging, nitriding}. Comparing
a primary process of one part (casting) with a surface treat-
ment process of another (nitriding) will wrongly indicate that
the process plans for the two parts are highly dissimilar. In-
stead, comparing primary processes separate from secondary
processes provides a more meaningful measure. In cases
where the cardinalities of r1 and r2 are different, we restrict
the similarity computation to the first n elements, where n
is the lower of the two cardinalities. The distance function
dr is defined as the maximum possible value of dissimilarity
among the sets of descriptions as given in Eq. 8. A function
description f = {e f 1,e f 2...e f n} is considered as a set of func-
tions wherein the ordering of the elements are immaterial.
Like dm, the dissimilarity between two sets of function de-
scriptions is governed by the maximum possible value of dis-
similarity among the descriptions. Given two sets of function
descriptions, f1 and f2, the distance function d f is detailed
in Eq. 9. Here, f1× f2 represents the Cartesian product of
the sets f1 and f2. Unlike the manufacturing description, we
choose to compare all possible function pairs because there
is no concept of function ordering in our definition scheme.

dm(m1,m2) = D(m1,m2) (7)
dr(r1,r2) = max(D(r1 ◦ r2)) (8)

d f ( f1, f2) = max(D( f1× f2)) (9)

3.2.2 Estimation of shape similarity
For estimating shape similarity, we convert 3D models

into 2D projections of sketch-like renderings using “sugges-



tive contours” [33]. This allows comparing user sketches
and images to 3D models in the repository. In this paper,
we use the bag-of-features method (BoF) [31] to develop a
metric for shape similarity due to its robustness to noise in-
troduced by affine deformations. Previous literature [34, 35]
has shown that the BoF method has commendable perfor-
mance with regards to 2D shape classification and retrieval.
The core idea of the BoF method is to represent images as a
histogram of occurrences of “visual words”. The procedure
for computing shape similarity is described below.

• Feature Detection: In this step, we compute locations of
interesting features given by computing the “feature points”
on the image using the Harris Detector [36]. Finding such
discriminative locations helps in identifying differences be-
tween shapes.
• Feature Description: In this step, we compute patch de-
scriptors for each detected feature using the Scale Invariant
Feature Transform (SIFT) [37]. SIFT embeds these features
in a high dimensional space by assigning a 128 dimensional
descriptor to the features.
• Quantizing Features using Visual Vocabulary: The feature
descriptors computed using SIFT have high dimensionality
and the complexity of computation increases with the num-
ber of features that are detected. To reduce some of the in-
volved complexity, we compute a “visual vocabulary” by
clustering features in the database.
• Image Descriptor Generation: In this step, we transform
the image data into a histogram representing a count of oc-
currences of cluster center matches. Given any two his-
tograms x and y that represent two images Sx and Sy respec-
tively, a p-norm distance can be computed by Eq. 10.

ds(x,y) =

(
n

∑
i=1
|xi− yi|p

)1/p

(10)

In this implementation we use a simple L1 norm by set-
ting p = 1. Additionally, in the interest of supporting
fast retrieval, we use the fast approximate nearest neighbor
method [38] to index queries.

Thus, the overall distance between two parts is given
by {dm,dr,d f ,ds} which is a set comprising of pairwise dis-
tances among corresponding part attributes. Although it
is possible to compose a scalar pair-wise distance measure
from this set, there is a possibility that reducing the dimen-
sionality of the data might result in excessive loss of simi-
larity information. Interpreting whether two parts are more
similar due to similarities in material, function, or any such
attribute is largely decided by the context of the application
and therefore by the user. Hence, we focus on creating mean-
ingful multi-dimensional information visualization schemes
that aid users in exploring the part repository. The main idea
of our visualization scheme involves overlaying computed
environmental indicators on similarity information of part at-
tributes for enabling sustainability-aware design exploration
of part repositories.

4 IMPLEMENTATION
Although there are numerous schemes for visualizing

sustainability related data, only a handful of them merge
these visualizations with the design exploration process. For
creating an interface between the two, we develop a list of
design goals that are sensitive to needs of the designer.

4.1 Design goals
• Ability to explore product repositories from a design simi-
larity and sustainability perspective. The process of explo-
ration should allow the user to build engineering intuitions
of the relationship between shape, material/manufacturing
data, and environmental sustainability.
• Intuitive Interaction. One of our goals is to simplify the
design exploration process by providing an intuitive means
for navigating and searching for alternate design solutions
from a given part database.
• Exploration Support for Design Process. We posit that hu-
man spatial and visual reasoning skills can be leveraged for
effective exploration in the design process. An important el-
ement within developing intuitive exploration schemes is the
use of cognitively prominent visual variables such as vari-
ations in shape, size, and color. This allows pre-attentive
processing of decision variables, allowing designers to eas-
ily narrow down their focus. For developing a solution that
meets the above requirements, we develop a visualization
scheme for the shapeSIFT tool that contains the elements
discussed in Section 4.2.

4.2 Interface description
In this section, we discuss the modified interface that

was designed based on expert feedback and our learn-
ings from implementing an initial prototype. Implemen-
tation details for the intial protoype can be found in our
previous work [39]. 3D parts used for constructing our
database were obtained from the Engineering Shape Bench-
mark (ESB) [40]. The ESB contains a total of 479 models
in Stereolithography file format. Synthetic data regarding
material, manufacturing, and functionality was added to the
part data. This database is stored as an Extensible Markup
Language (XML) file and is accessed by our interface. We
reimplemented the interface on Java using Processing®, an
open source programming language that is geared towards
visual design. Our interface uses a mutually coordinated,
multi-window framework that allows users to customize the
size and position of the windows. A screenshot of the shape-
SIFT interface is shown in Fig. 5. The interface elements in
the implementation of shapeSIFT are detailed below.

• Sketch-based input: Sketching is shown to provide a visi-
ble graphic memory that facilitates creativity by providing
an easily accessible repository of generated ideas and by
stimulating building on earlier ideas [41]. Adopting sketch-
ing as one of the primary method for query gives us the
advantage of utilizing one of the dominant modes of arti-
fact creation among designers. The sketch window (Fig.5-d)
implements a canvas for creating a two-dimensional sketch
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Fig. 5. A screen capture of the modified shapeSIFT interface. It consists of a squarified (tiled) layout window that displays query results (5-a).
A control panel (5-b1) is used for setting similarity thresholds for material, manufacturing, function, and shape similarities. A text query box is
also provided for users to query part metadata. A label (5-b2) is used to display metadata information and a picture of a particular part that
is selected from the squarified layout. The similarity polygon (5-c) allows the user to obtain an understanding of the similarity attributes. The
sketch window (5-d) contains a canvas and related controls for creating/modifying the sketch, uploading an image, and querying the repository.
The object viewer window (5-e) displays a 3D model of a selected part. A demonstration video can be viewed at http://goo.gl/talfJm.

query. Also, users can upload an image onto the sketch can-
vas. The uploaded image is converted into a sketch-like rep-
resentation using a neighborhood-based high-pass filter that
performs edge detection. On submitting a query, the squari-
fied layout and other windows are automatically updated to
reflect the retrieved results.
• Squarified layout visualization: Squarified layouts are
useful for visually providing a summary of the search re-
sults. They can also provide visual cues that allow users
to aggregate and discriminate search results. The squarified
layout window (Fig.5-a) shows the retrieved results in a lay-
out in which each cell is scaled inversely to the computed
environmental indicator (see Eq. 1). Representing the indi-
cator by a prominent visual variable (i.e. size) allows us to
nudge designers away from selecting significantly impactful
parts. The coloring scheme in this layout encodes a chosen
dimension of similarity {dm,dr,d f }. Thus, parts with sim-
ilar metadata are shown using similar colors. If a particu-
lar part does not lie within the threshold set using the con-
trol panel, the corresponding cell background is grayed out.
Clicking a cell selects the part and displays it on the label,
3D object viewer, and highlights it on the similarity poly-
gon. An additional feature available to the user is changing
the reference part for similarity computation from the set of
retrieved results by right clicking a cell from this layout.
• Similarity Polygon: The similarity polygon visually repre-

sents a barycentric embedding of similarity metadata along
chosen attribute dimensions. The similarity polygon win-
dow window (Fig.5-c) implements the similarity polygon
for the set of retrieved results. Since the similarity poly-
gon uses a barycentric embedding of similarity values for
plotting, data points with the same relative weights (e.g.
{1,1,1,1} and {0.5,0.5,0.5,0.5}) are plotted at the same co-
ordinate. This makes it difficult for the user to judge the
overall magnitude of the similarity values of a part with re-
spect to the reference part. Therefore, we have implemented
a visualization scheme that scales the radius of the circle
with the total measure of similarity with respect to the ref-
erence part. We have also removed the similarity dimension
based on “part class” present in the prototype in favor of a
text query box in the control window. Selecting a part from
the squarified layout, highlights the corresponding part on
the similarity polygon. Conversely, selecting one/multiple
parts from the similarity polygon highlights the correspond-
ing cells on the squarified layout using a red border.
• Sliders for filtering similar results: Users can also fil-
ter results using sliders either by setting individual or mul-
tiple thresholds for the set of computed similarities {dm,
dr, d f , ds}. Parts that are dissimilar to the query part in
terms of these attributes are grayed out in the squarified lay-
out. The control window implements sliders as well as tex-
tual query mechanisms within shapeSIFT (Fig.5-b1). The

http://goo.gl/talfJm


control panel contains (1) sliders for setting the similarity
thresholds for material, manufacturing, function, and shape
similarity, (2) radio buttons that can be used to set the col-
oring scheme on the squarified layout based on the envi-
ronmental indicator, material, manufacturing, or function
metadata, (3) a dimension filter that screen out parts that are
larger or smaller than the reference part in terms of its max-
imum dimensions, and (4) a text query box that can be used
for querying part metadata. A dynamic label (Fig.5-b2) that
shows metadata information is also displayed here.
• 3D Model View:A 3D model of the .STL file associated
with the selected part is shown in the object viewer window
(Fig.5-e). Users can rotate the displayed model and view the
geometric parameters of the selected model on a text label
located on the top left of that window.

5 CONCLUSIONS AND FUTURE WORK
This paper has presented a new framework for

sustainability-aware selection from design repositories
through metadata visualization. Part similarities are quan-
tified on multiple dimensions, such as material, manufactur-
ing, and function, using a set of standard taxonomies. Our
framework describes methods for automating the computa-
tion of environmental impact indicators and similarities in
part attributes. This data is visualized using a squarified lay-
out which provides an overview of similar parts and their
attributes. We also develop an example interface that al-
lows visualization of part metadata, similarity metrics, and
the computed environmental indicator.

Our future work will look into methods for improving
the accuracy of environmental indicators and for estimating
corresponding uncertainties. For this, we will work towards
data representations that can map changes in feature level in-
formation in a 3D model to a specific manufacturing step.
We will also work towards quantifying and visually repre-
senting uncertainties present in impact assessment. Tech-
niques in human-computer interaction, such as perceptually
uniform color spaces [42] and human perception of rectan-
gle maps [43], can be useful in solving this problem. We
will also work on expert-based evaluation of the shapeSIFT
interface to validate its utility with designers in the industry.
For this, we plan on evaluating the usefulness of presenting
sustainability-based data in a design exploration setting and
the usability of the shapeSIFT visualizations and layout. A
significant challenge that we plan on addressing in this con-
text is the lack of a real-world design repository with data
suitable for eco-conscious design exploration.
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Consultants, Netherlands.

[30] Lin, D., 1998. “An information-theoretic definition of
similarity”. In Proceedings of the 15th international
conference on Machine Learning, Vol. 1, San Francisco,
pp. 296–304.

[31] Squire, D., Müller, W., Müller, H., and Pun, T., 2000.

“Content-based query of image databases: inspirations from
text retrieval”. Pattern Recognition Letters, 21(13),
pp. 1193–1198.

[32] Ganesan, P., Garcia-Molina, H., and Widom, J., 2003.
“Exploiting hierarchical domain structure to compute
similarity”. ACM Transactions on Information Systems
(TOIS), 21(1), pp. 64–93.

[33] DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella,
A., 2003. “Suggestive contours for conveying shape”. In
ACM Transactions on Graphics (TOG), Vol. 22, ACM,
pp. 848–855.

[34] Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray,
C., 2004. “Visual categorization with bags of keypoints”. In
Workshop on statistical learning in computer vision, ECCV,
Vol. 1, p. 22.

[35] Sivic, J., and Zisserman, A., 2006. “Video google: Efficient
visual search of videos”. Toward Category-Level Object
Recognition, pp. 127–144.

[36] Harris, C., and Stephens, M., 1988. “A combined corner and
edge detector”. In Alvey vision conference, Vol. 15,
Manchester, UK, p. 50.

[37] Lowe, D., 2004. “Distinctive image features from
scale-invariant keypoints”. International journal of computer
vision, 60(2), pp. 91–110.

[38] Muja, M., and Lowe, D., 2009. “Fast approximate nearest
neighbors with automatic algorithm configuration”. In
International Conference on Computer Vision Theory and
Applications (VISSAPP?09), pp. 331–340.

[39] Ramanujan, D., Benjamin, W., Bernstein, W. Z., Elmqvist,
N., and Ramani, K., 2013. “ShapeSIFT: Suggesting
Sustainable Options in Design Reuse From Part
Repositories”. In ASME 2013 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference, American Society of
Mechanical Engineers, pp. V004T05A041–V004T05A041.

[40] Jayanti, S., Kalyanaraman, Y., Iyer, N., and Ramani, K.,
2006. “Developing an engineering shape benchmark for cad
models”. Computer-Aided Design, 38(9), pp. 939 – 953.

[41] McKim, R. H., 1972. Experiences in visual thinking.
Brooks/Cole Pub. Co, Monterey, CA.

[42] Paschos, G., 2001. “Perceptually uniform color spaces for
color texture analysis: an empirical evaluation”. Image
Processing, IEEE Transactions on, 10(6), pp. 932–937.

[43] Kong, N., Heer, J., and Agrawala, M., 2010. “Perceptual
guidelines for creating rectangular treemaps”. Visualization
and Computer Graphics, IEEE Transactions on, 16(6),
pp. 990–998.


	INTRODUCTION
	BACKGROUND
	Estimating eco-indicators from existing part data
	Similarity assessment in design repositories
	Visualization in environmental sustainability

	METHODOLOGY
	Environmental impact estimation
	Taxonomy-based representation of lifecycle data
	Estimating the cradle-to-gate indicator

	Similarity evaluation
	Material, manufacturing, and function similarity
	Estimation of shape similarity 


	IMPLEMENTATION
	Design goals
	Interface description

	CONCLUSIONS AND FUTURE WORK

