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ABSTRACT
The purpose of this study is to continue to explore which

function identification methods work best for specific design
tasks. Prior literature describes the top-down and bottom-up
approaches as equivalent methods for functional decomposition.
Building on our prior work, this study tests the bottom-up method
against the top-down and enumeration methods. We used a 3-
factor within-subject study (n=136). While most of our diagram-
oriented metrics were not statistically different, we found sta-
tistical support that: 1.) students reported that the dissection
activity was more useful when using bottom-up, and 2.) that stu-
dent engineers committed many more syntax errors when using
the bottom-up method (by listing parts instead of functions). We
believe that both these results are due to the increased focus on
individual parts. We do not know if an increased attention to the
parts would increase novelty or fixation, and recommend future
studies to find out.

1 INTRODUCTION
Functional decomposition is an important process for sup-

porting early design abstraction prior to concept generation and
when dissecting or reverse engineering a product [1]. Our prior
work began exploring functional decomposition in product dis-
section tasks, and found no difference between the energy-flow,
top-down, and enumeration methods [2]. This paper seeks to
test an additional method, bottom-up, which is noted to perform
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the same as top-down methods [1]. When viewing product dis-
section as a cognitive activity, we find that decomposition tasks
are the same as the “divide and conquer” heuristic described in
cognitive science [3]. Psychologists further describe two distinct
cognitive sub-strategies for using divide and conquer: top-down
and bottom-up [4], which appear to correspond to the functional
decomposition methods of the same name. The top-down ap-
proach is largely driven by prior knowledge, whereas bottom-up
is usually driven by what a person can sense. The mixing of
these models and other problem solving strategies is called “op-
portunism”, and closely mirrors descriptions of the enumeration
approach [5]. Further, prior studies have found that the bottom-
up problem solving strategy is generally used by novices, and
top-down or opportunistic strategies are used by more experi-
enced problem-solvers [4, 6]. Thus, we hypothesized that given
the same conditions, that a novice engineering population would
perform better with a bottom-up approach than an enumeration
or top-down approach.

The results of this paper serve to define the tasks for which
certain strategies work best. Functional decomposition is often
used prior to concept generation [7], but is also applied to it-
erative design and reverse engineering, when a design already
exists [1]. Many design theorists treat these tasks the same
when applying functional decomposition methods [2], although
we believe they represent different problem types [8]. Therefore,
this study only evaluates methods for product dissection tasks.
This paper discusses background information on the bottom-up
method for functional decomposition, a study conducted to eval-
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uate differences between the bottom-up method and others, and
discussion of results and interpretation. The paper concludes
with recommendations for future work.

1.1 Definitions
Bottom-up is defined as a function identification method

where an engineer determines functions for individual parts,
groups these functions into meta-functions, and continues this
process until defining the overall function. Top-down is defined
as the reverse process, where an engineer determines the overall
function, decomposes this into sub-functions, and continues until
functions are defined on the part level. Energy-flow is defined as
tracing material, information, and energy flows through a device,
and mapping functions to changes in these flows. Enumeration
is defined as writing out whatever functions come to mind, with
no specific strategy for identifying them.

This paper regards design to be primarily an engineering ac-
tivity which solves ill-structured problems [8], and reverse en-
gineering to be a specific design task that represents a well-
structured problem. Functions are defined as “the solution-
neutral [or embodiment-neutral] detailed description of what are
the intentions for the products” [9]. “Methods”, as described in
this paper, refer to strategies for identifying functions in a given
functional decomposition task.

Except when discussing terms used by other authors, “func-
tional analysis” is used to mean identifying functions where a
design or concept already exists (i.e. well-defined problems),
and “functional synthesis” means identifying functions for an
original design where no prior design or concept exists (i.e.
ill-structured problems.) “Functional decomposition” describes
both synthesis and analysis simultaneously, and is defined as the
general method of identifying functions (for new design, iterative
design, reverse engineering, etc.).

2 BACKGROUND
Functional decomposition is an important design tool since

design problems are largely ill-structured [10]. Engineers use
decomposition methods to break an ill-structured problem into
well-structured problems which helps them make sense of a dif-
ficult design problem [11]. Cognitive psychology can be em-
ployed to help describe engineering problems [8]. Cognitive sci-
ence describes a number of problem-solving strategies, including
divide and conquer [3], morphological analysis [12], and oppor-
tunistic problem solving (also known as Multi-attribute Utility
Theory) [13]. The divide and conquer method is composed of
two sub-strategies [4]. The first of these, top-down, is charac-
terized by relying on prior abstract knowledge and using this to
make sense of the given task. The second, bottom-up, relies on
what is perceived by the senses to construct a total understanding.
The opportunistic approach combines these and other strategies,
borrowing what is necessary when it is necessary [4]. Experts
tend to favor top-down approaches, whereas novices, bottom-

up [4,6]. This result from cognitive science seems to correspond
with engineering studies of product dissection [5].

The four engineering function identification methods closely
mirror cognitive problem solving strategies. Morphological anal-
ysis (not the ideation technique) considers every system element
and every input and output in that system before using these to
calculate a whole [12], and corresponds with the energy-flow ap-
proach used by many design authors. The bottom-up and top-
down approaches [1] match the divide and conquer heuristic [3],
as described above. Finally, the enumeration method lacks spe-
cific directions [7, 14], and is therefore opportunistic [15].

We only found one design textbook that describes a bottom-
up method for functional decomposition (the Subtract and Oper-
ate method [1]). In this process, a designer removes a random
component from a device and sees what functions fail to oper-
ate. Repeating this method over several components, a designer
may reconstruct the functional interactions between all the parts.
This method is recommended for tasks where a concept or actual
design already exist.

In this same text, Otto and Wood also describe a top-down
method (the FAST method). To use this method, an engineer first
identifies an overall function and then brainstorms a ”spine” of
primary functions. These primary functions may relate to an ex-
ternal, required function such as providing electricity. A string of
secondary functions may be strung from any function along this
spine. This method also distinguishes between one-time func-
tions such as packaging, and functions which are concept depen-
dent. These are drawn into a FAST diagram. In this study, we
use the top-down method as described by Eckert [5] instead of
the FAST method.

The engineering texts that do discuss the bottom-up method
state or imply that top-down methods are equally effective to
bottom-up methods [1, 16]. Otto and Wood state that top-down
and bottom-up methods are inferior to the energy-flow method,
since these first two are more subjective and may miss impor-
tant details [1]. Schmekel and Sohlenius do not make any di-
rect equivalence claims, but they implicitly treat the top-down
and bottom-up methods as interchangeable [16]. We failed to
find other mechanical engineering references to the bottom-up
method or any empirical comparison between the bottom-up
method and other function identification approaches.

3 METHODOLOGY
We found in our prior study that the literature on functional

decomposition was inconsistently applied to a variety of engi-
neering tasks [2]. Accordingly, we began testing various meth-
ods in different contexts to see which performed best. This study
extends our prior work to include the bottom-up method. We
hypothesized that the bottom-up method would perform best be-
cause it tends to be adopted by novices [4], and participants could
manipulate parts and discover for the interactions for themselves
(i.e. build their own schema [17]).
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• Does the bottom-up method help students identify more
functions or gain a greater understanding than other func-
tional decomposition methods?

3.1 Design of Experiment
In order to answer our research question, we used a quan-

titative design of experiment, while also utilizing survey meth-
ods for understanding the students’ thinking. The research ques-
tion was converted into testable hypotheses. We decided to omit
the energy-flow method because our prior results found that it
was not different from the other methods, and because our qual-
itative observations suggested students struggled the most with
this method. Consequently, we limited our study to top-down,
bottom-up, and enumeration. Our hypotheses are:

• H0 - There is no difference between the bottom-up, top-
down, and enumeration methods

• H1 - There is a difference between the bottom-up and top-
down methods

• H2 - There is a difference between the bottom-up and enu-
meration methods

• H3 - There is a difference between the top-down and enu-
meration methods

The differences between these methods are measured using
the following metrics: the total number of functions, number
of unique functions, the efficiency of the diagram (unique func-
tions / total functions), number of errors, error rate (errors / total
functions), average and maximum geodesic distances, number of
syntax errors, the ratio of errors to total functions, number of
functions on each hierarchy level, the number of errors on each
hierarchy level, the ratio of errors on each level divided by the
number of functions on each level, and perceived usefulness of
the method as measured on a 10 point scale. Since it is unknown
which method would perform better than the others, a two-tailed
test will be used. However, we expected the bottom-up method to
perform better than other methods at generating more functions,
identifying the greatest number of unique functions, having the
fewest syntax errors, and proving the most effective as measured
by students.

To test the hypotheses, a 3-level, within-subject design of
experiment was used. This design is commonly used in human
factors and product comparison studies [18], and has the advan-
tage of multiplying the number of samples and reducing some
types of sample bias and the effect of uncontrolled variables such
as the time of day and self-selection bias [19]. One negative ef-
fect of this experiment design is that some effects are conflated;
in this case, the product and time effects are conflated, meaning
that we cannot distinguish between learning effects or fatigue ef-
fects and effects due to the specific product dissected.

FIGURE 1. A hair dryer, power drill, and NERF blaster

TABLE 1. Experimental Layout Over 4 Week Period; EN = Enumer-
ation, TD = Top-Down, BU = Bottom-Up

Hair Dryer Power Drill N/A NERF

Week 1 Week 2 Week 3 Week 4

Group A EN TD N/A BU

Group B BU EN N/A TD

Group C TD BU N/A EN

3.2 Procedure
Participants were in the course ME 297 (How Stuff Works)

at Purdue University. They were asked to dissect three products
(see fig. 1), over the course of four weeks, and use three meth-
ods for determining the functionality of those products (see tab.
1). All participants dissected a hair dryer on week one, a power
drill on week 2, and a NERF blaster on week 4. Data was col-
lected over a four week period in February and March 2013. All
sessions were held on Thursdays and group A met at 9:30AM,
group B at 11:30AM and group C at 1:30PM each week.

Each session began with instruction on how to create a func-
tion tree, characteristics of a function, the distinction between a
function, behavior, and part, and instruction on how to use the
decomposition method. Functions for this activity were defined
as a verb followed by a phrase or noun. This instruction lasted
approximately 10 minutes. Participants were then asked to phys-
ically dissect a product and determine its functionality using a
top-down, bottom-up, or enumeration approach. After disassem-
bly, students were asked to diagram a function tree describing
the functions of the dissected product. Students also completed
an initial survey to determine basic demographic information and
a post-survey to evaluate the perceived usefulness of the activity
and prior exposure to disassembling the product. After the func-
tion trees were submitted, the products were reassembled and
participants were shown how the product works and relevant en-
gineering equations relating to certain aspects of each product.
Participants were given surveys before and after the session, and
open interviews were held with a few students after sessions.

In order to ensure consistency, each participant received pa-
per copies of all instructions, examples, and definitions men-
tioned above. Participants were also provided with a list of func-
tion verbs. The function verb list was taken from the pruned
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function list by Caldwell et al. [20] though the hierarchy of the
verbs was not retained. Participants were also given a packet ex-
plaining how to perform the method for the experimental session.

Qualitative data from the study consisted of casual observa-
tions made by the authors and other test administrators. Observa-
tions were recorded immediately after testing periods. No formal
protocol was used to complete the observations. Only field notes
and debriefing notes were recorded. These observations were
made at the length of the study.
3.3 Population

Participants were selected based on their participation in a
product dissection class at Purdue (ME 297) in Spring 2013, and
thus is a convenience sample. This sample is distinct from that
taken in our prior work [2]. Students in the class are not taught
any method to analyze functions, nor taught what a function is.
Participants were told that the activity would help them prepare
for the final project in the class.

Each session consisted of varying numbers of participants
due to how scheduling for the class was conducted. Group (sec-
tion) A had 18 participants; group B had 17; and group C had
18. Over all groups, 10 students identified as freshmen, 28 as
sophomores, 10 as juniors, and 5 as seniors. Slightly more than
half of the participants (26 out of 51) identified as being in me-
chanical engineering. Other majors were generally engineer-
ing, and included aerospace, electrical, computer, materials sci-
ence, biomedical and agricultural engineering, with five students
not reporting. Most of these categories only had two to three
students. More than half (40) participants reported not having
learned functional decomposition before, many of which had al-
ready taken a required course that covers functional decomposi-
tion. This corresponds with findings in other studies that students
often forget methods taught early in their education [21].
3.4 Independent Variable - Abstraction Method

The independent variables used are:

• Bottom-Up, manipulate each part and define a function for
it. Combine these functions into groups. Continue until all
functions are grouped under a single function.

• Top-Down - Start with the highest level of abstraction (the
whole machine) and determine overall function. Break
down into sub-systems and determine functions of each of
these systems. Iteratively become more detailed for each
level. Write these functions into a tree.

• Enumeration - Write down relevant functions as they seem
appropriate in whatever order they come to mind. Organize
these into a tree.

3.5 Dependent Variables
We used the same dependent variables we had used in our

prior work [2]. These build on metrics used in other functional
decomposition studies, as seen in table 2. The dependent vari-
ables we use include:

TABLE 2. Metrics used in prior research on functional decomposition

Name of Metric Metric Type

Unique functions [2] Refined count (M5)

Conformance metric [22] Raw count (M1)

Exact/approximate scoring [20] Raw count (M1)

Unit of information [23] Raw count (M1)

# spoken functions [9] Raw count (M1)

# levels of abstraction [9] Qualitative

# levels of hierarchy [9] Tree depth (M2)

# func. on a hierarchy level [9] Branch width (M3)

Completeness of func. analysis [9] Raw count (M1)

Rubric (Energy-Flow only) [24] Error count (M4)

# parts exposed [25] Raw count (M1)

# same features [25] Raw count (M1)

• Functions (Func., M1) - the total number of phrases in a
diagram and gives an very rough idea of how detailed the
student investigated the device

• Number of unique functions (Unq. Fn., M5) - the number
of non-redundant phrases in a diagram. This helps measure
how broadly the student understood the device.

• Tree efficiency (Eff., M5) - the ratio of unique functions to
total functions. This shows how redundant a tree is.

• Maximum Geodesic Distance (Max GD, M2) - the largest
of all the shortest paths in the diagram. It serves to detect
diagram errors and tree size (level depth) when compared
with the average geodesic distance.

• Average Geodesic Distance (Avg GD, M2) - the average of
the shortest paths between nodes in the diagram. When com-
pared with max GD, it can help distinguish a tree that is both
”tall” and ”bushy” from a tree that is simply ”tall”. This
helps detect diagram errors, such as when a portion of the
tree is used as a flow-chart rather than a hierarchy.

• Number of syntax errors (Errors, M4) - the number of
phrases not written as a verb-phrase or left blank. This ap-
proximates how many phrases are actually functions, and
helps measure how well a method aides functional thinking.

• Error ratio (Err Rate) - the ratio of errors to total functions.
This normalizes the syntax error for each participant.

• Number of functions on a hierarchy level (Fn. Lvl X, M3) -
the number of phrases on each hierarchy level. This tells us
how detailed and deep the tree goes.

• Error ratio on each hierarchy level (Err. Lvl X) - the ratio of
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errors on each level to functions on each level. This indicates
if certain levels are used more often for non-function entries.

• Perceived usefulness of activity (Survey) - student responses
of how useful each method was on a scale of 1 to 10 (high).

3.6 Covariates
• Class level - freshman, sophomore, junior, or senior.
• Learned functional decomposition before - yes / no.
• Frequency of disassembly outside of class - never / rarely,

sometimes, often.
• Prior experience with disassembling a hair dryer, power drill

or NERF gun - yes / no.

We chose these covariates on the basis of perceived rele-
vance to the study. We are not aware of functional decompo-
sition studies that have used these covariates, however similar
studies have. Class level can affect performance in specific de-
sign tasks [26], and prior experience is well known to affect per-
formance [27]. It is not known if any of these factors directly
influence performance in functional decomposition.
4 QUANTITATIVE RESULTS

Since a within-subject experimental design was used (n =
136, 23 samples not used), we ran a univariate ANOVA in SAS
with the participant code and the device/week factor set as block-
ing factors. We only considered main effects due to the experi-
mental structure.
4.1 Validation of ANOVA Assumptions

ANOVA-family analyses require that the data must be nor-
mal, satisfy the homogeneity of variance criteria, and that de-
pendent variables are independent of one another [28]. The de-
pendent variables were tested for normality by comparing their
histograms to a normal curve. A few variables are skew right,
including the functions on levels 5 through 7 and the number of
errors on every level. These variables are not considered to be
important unless several of them are found to be significant since
they would be biased toward finding a significant difference [28].
Non-parametric tests would be used in the case of several being
significant. All the dependent variables met the variance criteria
(alpha = 0.05). The variables are tested separately to satisfy the
independence criteria.
4.2 ANOVA Results

A significance of 0.05 is used to determine significance, and
each dependent variable was tested separately. Following the
ANOVA, we used Tukey’s least means method of multiple com-
parisons to determine how the independent variables and covari-
ates were grouped.

The ANOVA showed a statistically significant (p < 0.05) or
near-significant (0.1 > p > 0.05) difference between the meth-
ods for the student perception of usefulness of each method (F
= 3.06, p = 0.0522), the number of syntax errors (p = 0.0025)
and the error ratio (F = 6.45, p = 0.0261), and the error rate
on the top level of the tree hierarchy (F = 9.49, p = 0.0002).

TABLE 3. Differences between top-down and bottom-up methods:
Post-hoc significant (< 0.05) and near-significant (< 0.10) differences
in mean using Tukey comparisons and the Tukey-Kramer adjusted p.

Effect Est. t Value Adj P

Errors -1.827 -2.74 0.0202

Err Rate -0.1685 -2.13 0.0899

Err Lvl 1 -0.3278 -3.82 0.0009

TABLE 4. Differences between enumeration and bottom-up methods:
Post-hoc significant (< 0.05) and near-significant (< 0.10) differences
in mean using Tukey comparisons and the Tukey-Kramer adjusted p.

Effect Est. t Value Adj P

Errors -2.3107 -3.39 0.0031

Err Rate -0.2095 -2.6 0.0299

Err Lvl 1 -0.3331 -3.77 0.001

Err Lvl 3 -0.1425 -2.14 0.0885

Survey -0.8537 -2.3 0.0614

The Tukey comparisons (see table 3) show that the bottom-up
method is significantly different from other methods. When we
examine the averages for each of these variables (see table 2),
we see that bottom-up scored the worst on the number of er-
rors and the error rate, as well the rate of errors on each level
of the tree hierarchy. The perceived usefulness results, however,
showed that students rated the activity as more useful when they
used the bottom-up method compared to enumeration and possi-
bly top-down. The number of functions on level 6 are greater for
the top-down method than for the enumeration and possibly the
bottom-up method, but other levels were not significant.

The device-used / week-tested covariate tested significant
for several graph related metrics including the number of func-
tions, tree efficiency, maximum and average geodesic distance,
and the number of functions on several levels of the tree hierar-
chy (see table 4). In each case, the averages for these metrics
decrease with time (figure 3); however, it is not certain if this is
due to learning effects or the device used. Since there is a clear
pattern, we assume learning effects.

The average function tree had 11.42 functions, 8.24 of them
which were unique. The average tree efficiency was 66.9%. The
average geodesic distance was 2.4 and the maximum was 4.7.
The average tree had 2.6 syntax errors, meaning the average tree
had an error rate of 28.3%. The average number of functions on
each level, starting at 2 and going to 7, was 3.1, 4.2, 1.2, 0.3,
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Lvl 1 Lvl 2 Lvl 3 Lvl 4

TD 6.52 2.86 25.1% 0.31 13.3% 30.2% 19.1% 25.7%

EN 6.36 2.47 19.0% 0.06 15.9% 22.8% 13.5% 20.3%

BU 7.17 4.42 39.7% 0.13 46.5% 37.8% 26.9% 35.9%

Avg Errors on Tree Level 

EF = Energy-Flow; TD = Top-Down; EN = Enumeration; BU = Bottom-Up

Fn. Lvl 6Err RateErrorsSurvey

FIGURE 2. Average values for significant variables by method, darker values higher. See section 3.5 for definitions of variables.

Lvl 1 Lvl 2 Lvl 3 Lvl 4 Lvl 5

HD 14.46 0.68 5.75 2.82 0.98 4.46 2.10 0.65 13.0%

PD 11.92 0.75 5.00 2.54 0.88 3.92 1.35 0.33 26.3%

NG 11.67 0.91 4.91 2.53 0.83 3.46 1.00 0.28 22.0%

Avg Functions on Tree Level

HD = Hair Dryer; PD = Power Drill; NG = NERF Gun

Avg GDMax GDEff.Avg Func.

FIGURE 3. Average values for significant variables by device/time, darker values higher. See section 3.5 for definitions of variables.

0.1, and 0.1. Most errors were committed on the top levels with
1 error on average in the second and third levels. The average
reported perceived usefulness of the activity was 6.7 out of 10.

Some metrics were not analyzed due to low sample size. For
example the error rate and number of functions on specific lev-
els of hierarchy were not evaluated for levels 5-7. These were
omitted since the number of samples were too small to do an
appropriate analysis. Very few function trees extended beyond
level 4, with especially few having levels as deep as 6 or 7.
4.3 Reanalysis Including Data from Prior Study

To be certain that our values were accurate, we also re-
analyzed the data including the data from our prior study [2].
We used the same ANOVA approach and Tukey analysis, and
the metrics met the assumptions in the same way as described
above. Although energy-flow and bottom-up were not consistent
between the two studies, it allowed us to make tentative compar-
isons between the two.

Except for a few unimportant differences, all the same vari-
ables were significant as in the first analysis. While the majority
of the results are not presented here due to repetition, it is inter-
esting to note that despite including energy-flow, the bottom-up
method still shows the same differences. Students are more likely
to rate the activity as useful when using bottom-up, but are also
much more prone to syntax errors. See figure 4 for more details.
5 DISCUSSION OF QUANTITATIVE RESULTS

While diagram-oriented metrics (e.g. unique functions,
functions, max. geodesic distance) are virtually the same for the
bottom-up and other methods, other measures are not. A near-
significant ANOVA result for the survey results suggests that
students who use bottom-up are more likely to report a better ex-
perience with the dissection activity, suggesting that they prefer
that method over others, or that it makes sense to them [4]. How-
ever, students who used bottom-up committed significantly more

syntax errors than when using other methods. In general, and
qualitatively, these syntax errors were due to using part names
rather than explicit functions. As mentioned before, the syntax
errors and error ratio are slightly skew right, but the p-values are
consistent for both analyses and are rather low, suggesting to us
that these are truly significant, and not simply biased.

We believe that these data mean that when student engineers
use bottom-up, they focus far more on parts and less on function-
ality. For example, figure 5 shows a diagram made by a student
using the bottom-up method (digitized in NodeXL). While this
particular student had a low syntax error rate (0%), all the func-
tions are clearly written with a particular part in mind. On the
other hand, figure 6 shows an example made using the enumera-
tion method (where the student had used the bottom-up method
the week before). In this example, the functions are clearly less
oriented toward parts, and describe systems or particular types of
outcomes rather than particular actions accomplished on a part
level. The difference is subtle but important.

We should point out that an increase in errors does not nec-
essarily mean that the students did not gain an understanding of
how the device works. The students using bottom-up identified
just as many unique functions as other students. For example,
they may have also simply skipped the step to convert all of the
parts into functions.

However, in a practical sense, while students may under-
stand the design as well as using other methods, the increased
focus on parts may serve to fixate students, or fail to help them
abstract the actual functions of the device. The purpose of func-
tional analysis is to determine its functionality independent of
form [5], and not simply to make a part hierarchy. This the func-
tion represents a more abstract concept that simply listing the
part name and its physical connectedness, discovering functions
represents deeper learning [27]. This would suggest that function
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Lvl 1 Lvl 2 Lvl 3 Lvl 4

EF 6.05 2.00 17.6% 4.08 16.7% 14.6% 12.6% 19.4%

TD 6.46 2.76 21.9% 5.63 14.5% 26.2% 16.9% 22.3%

EN 6.59 2.14 16.1% 5.25 16.2% 17.4% 12.8% 14.0%

BU 7.17 4.42 39.7% 5.75 46.5% 37.8% 26.9% 35.9%

EF = Energy-Flow; TD = Top-Down; EN = Enumeration; BU = Bottom-Up

Avg Errors on Tree Level
Err Rate Fn. Lvl 3ErrorsSurvey

FIGURE 4. Average values for significant variables by method using data from this and prior study [2]. Darker values higher. See section 3.5 for
definitions of variables

FIGURE 5. An example of a function tree created by a student for the power drill using the bottom-up method

FIGURE 6. An example of a function tree created by a student for the power drill using enumeration (with prior exposure to bottom-up)

trees might be preferable to part trees. Further, in a design con-
text, the lack of a functional understanding could lead to reduced
creativity and increased fixation when generating concepts [29].

On the other hand, some recent studies by Toh and Miller
have found that when students dissect products and only create
a bill of materials (BOM), they are more creative than if they
diagram the layout of all the parts. They hypothesize that since
the BOM did not show interactions between the parts, the stu-

dents did not retain those connections when improving the de-
signs later [30]. It is therefore possible that an increased focus
on parts independent of their relationships is desirable, and there-
fore should be promoted. However, our study did not explore this
aspect of functional decomposition.

Regardless of whether an increased focus on parts is desir-
able or not, we cannot conclude that top-down and bottom-up are
equivalent methods. The two almost certainly represent different
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Difficulty with Disassembly
34.44%

Difficulty with Generating Functions 
19.09%

Difficulty with Drawing Diagram 
17.01%

Blank 14.11%

Lack of Mechanical Knowledge 6.22%

Difficulty with Syntax 4.98%

Other 4.15%

C
o

m
m

e
n

t 
Ty

p
e

s 
b

y 
%

FIGURE 7. Aggregated comments by percentage over all sessions

modes of cognition, in accordance with descriptions in cogni-
tive science [3, 4]. Students who use bottom-up are more prone
to identify parts than when using top-down, and are much more
likely than when using enumeration or energy-flow. This is also
observed on the top level function when using bottom-up. We
consider the differences between the number of functions on var-
ious levels of the tree to be inconclusive, although more data may
show some differences. Thus, we reject the null hypothesis, but
do not accept all the alternate hypotheses.

• H0 (Rejected) - There is no difference between the bottom-
up, top-down, and enumeration methods

• H1 (Accepted) - There is a difference between the bottom-
up and top-down methods

• H2 (Accepted) - There is a difference between the bottom-
up and enumeration methods

• H3 (Rejected) - There is a difference between the top-down
and enumeration methods

6 QUALITATIVE RESULTS AND DISCUSSION
The qualitative data from this study was already reported

jointly with our prior study [2], but it is reviewed in brief. In each
session, participants were asked, ”What was the hardest part of
the dissection activity?”. The participant responses were quali-
tatively categorized by content and compiled into categories de-
scribing the nature of the comment, as seen in figure 7.

After disassembly, the students seemed to struggle most with
generating functions and drawing the diagrams. Other aspects
such as not having enough mechanical knowledge or difficulty

adhering to the syntax were not mentioned frequently, but qual-
itatively, we noted that these were issues too. Perhaps these are
secondary tasks, and they are less represented because the more
important tasks were difficult for many students. We also noted
that many students did not see a direct benefit of functional de-
composition. This may be due to lack of experience with it, or
poor educational experiences with it.
6.1 Qualitative Evaluation of Function Trees

The function trees that were submitted often lacked certain
types of functions. One of these types were parts that do not
have an effect on the operation of a device, including aesthetic
parts, redundant systems, redundant support structures, etc [1].
For example, on the NERF gun trees, we observed that very few
identified functions filled by parts such as the clip on the top (for
attachments) or the orange tip which fills a legal function (for
identifying the gun as a toy). We also noticed only one partici-
pant described the loop on the power cord for hanging up the hair
dryer. The omission of these parts is likely due to the perceived
relevance of these parts and their functions. The loop on the hair
dryer is non-essential to the operation of the hair dryer, and not
perceived as relevant.

We further observed that function trees frequently omitted
deeply buried parts such as the torque limiter in the NERF gun.
The torque limiter was shown to the students, but few students
recorded their related functions. We suppose that the amount
of effort to individually retrieve certain parts also influences the
depth of effort reflected on the function tree.

7 IMPLICATIONS
Our results show that the bottom-up approach is cognitively

different from other approaches, where students who use it are
more likely to commit syntax errors, but also more likely to
perceive the method as useful. We believe this means that the
method pushes them to focus on the parts more than the func-
tions. If this is true, this would confirm that the bottom-up
method may be a good link to combine function activities with
part identification activities, if followed with more detailed func-
tional decomposition methods, such as energy-flow [1].

Because the students reported the activity to be more use-
ful when using bottom-up, we can presume this means that they
felt that they learned more. While the other variables, such as
the number of unique functions, do not support the idea that the
students identified more functions, the act of examining parts
may have served to develop a mental model of how the device
works [17], which our metrics may have missed. If the students
have a better mental model, this might explain why students rated
bottom-up as more useful.

If this is true, we need to explore the bottom-up method from
learning theory and cognitive science perspectives. Since design
can be viewed as a particular type of learning activity [8], we
can similarly view functional analysis as a type of activity some-
where between well-defined (since there is an existing product
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and the parameters are well set) and ill-structured (since nearly
any reasonable tree is correct). These types of problems require
more abstract thinking than for other problems [10].

Bloom’s theory and constructivism are both helpful for ex-
plaining the optimal pattern for abstracting. Bloom’s theory [31],
and related theories such as Skill Theory [32] suggest that there
are various stages of learning, starting at concrete facts and mov-
ing toward deeper learning or abstraction. By starting at the
individual parts, rather than the abstract, overall function, the
bottom-up approach may take advantage of the natural learn-
ing process. Furthermore, contructivism asserts that each learner
must develop his or her own schema and mental model of what
he or she is learning through experiential learning tasks [17, 33].
The bottom-up approach would aid in this building of a mental
model by explicitly encouraging students to manipulate individ-
ual parts and observe the responses.

If these are the active learning mechanisms behind the
bottom-up approach, we would expect students to report more
success with a method like bottom-up. If this is true, the bottom-
up method may be a good initial activity for learners who do
not have much mechanical knowledge, or for designers who
are unfamiliar with the product. After a bottom-up approach is
used, then a more sophisticated approach could be used, such as
energy-flow, if needed [1].

8 CONCLUSIONS
The results of this study suggest that there is a cognitive

difference between the bottom-up method for functional decom-
position and other methods, confirming prior work in cognitive
psychology [4]. Novice engineers who use the bottom up are sig-
nificantly more likely to make syntax errors, which are usually
equivalent with listing parts or behaviors instead of functions.
However, students who use the bottom-up approach also report
finding product dissection activities more useful. This result dif-
fers from prior descriptions of these methods [1]

These results may be directly due to an increased focus on
parts, which may either fixate novice engineers on a few em-
bodiments [29], or may help them consider new ideas by seeing
abstract connections [25]. We suspect the second case is true,
and we hypothesize that the bottom-up approach may be more
successful at helping engineers use natural learning patterns to
understand an existing design more thoroughly. If this is true,
the bottom-up method may be especially well-suited to design-
ers who are unfamiliar with a particular design. Therefore, the
increased number of errors may not be bad, and may simply rep-
resent a different mode of cognition.

There are some limitations to this study. There was an ob-
servable learning effect throughout the study, and that may have
influenced some of the data. Additionally, the combined analyses
with our data from this study and our prior studies may have ob-
scured some of the results regarding the number of functions on
each tree level, which could be useful information if one method

tends toward “leafier“ trees. We also did not follow the FAST
method of product tear-down [1], which may have yielded dif-
ferent results than what we found.

The scope of this study is also limited. No professional
level engineers were tested, and thus the results of this study are
only informative of novice designers. Some of the engineers in
the study were in fields where functional decomposition is not
widely used, which may have also biased the study. Finally,
given the fact that the participants represent a convenience sam-
ple, there may be an undetected bias in the results.

Further research should determine whether the bottom-up
method and its increased focus on parts is beneficial or inhibitive.
Studies should also be conducted to validate the results of this
study and other functional decomposition methods. We are of
the opinion that each of the methods are useful for particular pur-
poses and tasks, and future research should explore which tasks
are best suited for which situations. Additionally, insights from
psychology should be incorporated into this work to enrich our
understanding of how functional decomposition affects thinking
in the design process. Two potential factors include learning
styles and personality.
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