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Kinetogami: A Reconfigurable,
Combinatorial, and Printable
Sheet Folding

As an ancient paper craft originating from Japan, origami has been naturally embedded
and contextualized in a variety of applications in the fields of mathematics, engineering,
food packaging, and biological design. The computational and manufacturing capabil-
ities today urge us to develop significantly new forms of folding as well as different mate-
rials for folding. In this paper, by allowing line cuts with crease patterns and creating
folded hinges across basic structural units (BSU), typically not done in origami, we
achieve a new multiprimitive folding framework such as using tetrahedral, cuboidal, pris-
matic, and pyramidal components, called “Kinetogami.” “Kinetogami” enables one to
fold up closed-loop(s) polyhedral mechanisms (linkages) with multi-degree-of-freedom
and self-deployable characteristics in a single build. This paper discusses a set of mathe-
matical and design theories to enable design of 3D structures and mechanisms all folded
from preplanned printed sheet materials. We present prototypical exploration of folding
polyhedral mechanisms in a hierarchical manner as well as their transformations
through reconfiguration that reorients the material and structure. The explicit 2D fabri-
cation layout and construction rules are visually parameterized for geometric properties
to ensure a continuous folding motion free of intersection. As a demonstration artifact, a
multimaterial sheet is 3D printed with elastomeric flexure hinges connecting the rigid
plastic facets. [DOI: 10.1115/1.4025506]

1 Introduction

Origami originally was developed as a paper craft in the 17th
century AD that allowed the diversity of representative 3D objects
with individual unit arrangements and explicit folding processes
from 2D sheets of paper. Artistic origami designs reveal the
rudimentary characteristics of paper folding: inexpensive, light-
weight, compact, and combinatorial. During the last 40 yr, “Why'’s,
What’s, and How’s” of different origami tessellations and struc-
tures have been geometrically and symbolically described by the
underlying mathematical rules governing the creases, such as flat
foldability [1] and “folding any polygonal shape” [2]. With the
marriage of computational geometry and origami, systematic stud-
ies have been carried out recently (TreeMaker [3], Origamizer [4]).

Our analysis of past work in origami and folding structures
shows that its applications are limited by the following character-
istics: (1) A number of developments have the typical goal of
achieving a desired folding-state that renders functionality, i.e.,
the extended solar panel or the wrapped gift package. (2) In the
previous work, continuous skin-based models and patterns are
achieved by task-oriented operations (Miura folding [5] as well
as patterns represented in airbag [6], stent [7], sandwich core
structures [8], and cartons [9]). (3) Recent advances in modular
origami [10] as well as its variation modular kirigami [11] for
polyhedral models use separate pieces of paper for each compo-
nent or function. The designers still face the uncertainties of build-
ing combinatorial systems out of single folded sheets, and of
placing material where they desire it.

Recent literature has shown and proved that a linear chain of
polygonal or polyhedral modules can be folded into any arbitrary
3D shape [12,13] and reach many general families of hinged dis-
section [14,15]. Our vision herein is to enable a new multiprimi-
tive folding framework with analogous 3D folding schemes and

Contributed by the Design Automation Committee of ASME for publication in
the JoURNAL oF MECHANICAL DESIGN. Manuscript received February 1, 2013; final
manuscript received September 4, 2013; published online October 8, 2013. Assoc.
Editor: Alexander Slocum.

Journal of Mechanical Design

Copyright © 2013 by ASME

2D fabrication routines, to specifically fold closed-loop(s) polyhe-
dral mechanisms (linkages) with multi-degree-of-freedom and
self-deployable characteristics, we call “Kinetogami.” We coined
the word “Kinetogami” inspired by the Greek root “Kinetikos”
and the Japanese word “kami”, literally meaning that the polyhe-
dral mechanisms and structures in motion are made by a single
sheet of paper.

Polyhedral mechanisms are spatial mechanisms where vertices,
edges and facets of the polyhedra are embedded into fundamental
kinematic linkages and closed chains [16]. In physical kinematic
linkage design, each link is modeled as a rigid body and these
individual links are jointed together in closed form(s) to provide a
particular determinate motion. We specifically investigate sets of
periodic polyhedral pairs with reflectional symmetry and adjacent
hinge axes with skew perpendicularity in the kinematic chain(s).
In an analogous manner, we fold and close polyhedral facets to
construct “Basic Structural Units” in a way that each individual
polyhedron can be represented as a rigid link while maintaining
the hinge axes orientations. These folded “links” are structural
with empty volume enclosed instead of solid rods. The resulting
mechanisms can reconfigure and manifest different functions
afforded by the new configuration. Our design methodology
allows manufacturing in 2D and folding in 3D.

Our design construction theories and specific procedures for
our systematic folding framework are sequenced as follows:

(1) forming a class of elementary BSUs using tetrahedral,
cubic, prismatic, and pyramidal components (Sec. 2);

(2) synthesizing the 2D crease-cut-attachment patterns for each
BSU and moditying the design parameters to allow reconfi-
gurability (Secs. 2 and 4);

(3) linearly extending a single BSU unfolded pattern along the
long strip of sheet and sequentially folding each pattern up
into a string (Sec. 5);

(4) threading the string through an Eulerian cycle where the
generalized algorithm is verified (Sec. 5), and

(5) attaching all the compound joints together while closing
each individual loop (Sec. 5).
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Hence, by synthesizing and modifying the geometric features
embedded in the 2D crease-cut-attachment patterns, we hierarchi-
cally change the kinematic performance of the single/multiclosed-
loop reconfigurable polyhedral mechanisms to be folded, and
finally, provide the capacities for rendering different functional-
ities by changing locking/unlocking, loading/unloading, and
locomotive behaviors from a mechanical engineering design point
of view. The use of paper-like, multimaterial substrates via 3D
printing further achieves efficient fabrication and packaging
(Sec. 6). To the best of our knowledge, such hierarchical and
multiscale mechanism constructions through folding and reconfi-
guration have not been envisioned or explored earlier.

2 Formation of Basic Structural Units

In the past, the nature of paper sheets was deterministic with
regard to the conventional rules of origami such as when folding
without cutting. We strive toward exploring the heterogeneous,
structural, and reconfigurable characteristics of paper by allowing
preplanned cuts with crease patterns and creating folded hinges
across basic structural units, typically not done in Origami.

In our work, nondeformable paper sheets are used to construct
the basic structural units. We model the creases as revolute joints
(hinges), the increased facets as polyhedral surfaces and closed-
form surfaces as component links. Line-cuts are necessitated for
silhouetting the unfolded pattern of each polyhedral linkage and
the attachments on each unfolded BSU pattern are considered as
the post processing to close physical volumetric unit as a rigid
body. Generally speaking, a BSU consists of a pair of mirror-
image polyhedra coupled with a common hinge. Furthermore, the
BSUs can be folded and strung up from extending crease patterns
laterally on a single flat sheet of paper. Here, we demonstrate four
representative BSU’s: tetrahedral, cuboidal, prismatic, and pyram-
idal (shown in Fig. 1) stemming from the folding-cutting-joining
processes on 2D sheets.

Our BSU folding approach provides advantages such that: (1)
The hinges are inherently embedded as the creases on the 2D
pattern. Hence, no assemblages of separate joints are needed to
construct the mechanism. (2) The internal space inside each BSU
can be utilized for added functions, such as enclosing electronic
and battery components for actuation. (3) Affording opportunities
for planning anisotropic material properties on a unfolding pattern
while the reconfigurability in mechanisms reorients the material
and structure and thereby changes functionalities.

2.1 Tetrahedral BSUs. Four triangular facets and six edges
comprise a tetrahedral unit. In order to form a closed tetrahedron,
each set of unfolded triangle patches needs to maintain (a) the
edge-length consistency: any side length of each triangle must
agree with the one to be joined from the other three triangles,
respectively (i.e., in Fig. 2(a): a=d',b =b',c = '), and (b) the
vertex-angle consistency: the sum of angles spanned by adjacent
edges emanating from the vertex must be less than 27, i.e.,
o+ f+y < 2m. This arises from the fact that if the sum is equal to
27, a tetrahedron converts to a plane; and if greater than 2, a tet-
rahedron is not formable.

(@) (b) © (d)

Fig. 1 Four representative ((a): tetrahedral; (b): cuboidal; (c):
prismatic; (d): pyramidal) BSUs folded from a single sheet.
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Fig. 2 (a) 2D-3D formation of a single tetrahedral unit. (b) Self-
overlapping on a unfolded tetrahedral BSU pattern.

Coupled mirror-image tetrahedra with a common hinge are
labeled as a tetrahedral BSU. In general, while flattening each
BSU, single paper consumption requires none of any two neigh-
boring facets overlaps upon each other (dotted areas in Fig. 2(b)).
By unfolding a single polyhedral unit, we allow only 2 hinge
edges on the pattern such that one hinge connects to the previous
unit and the other connects to the next unit. Therefore, we predes-
ign the hinge edges in a parallel manner and the unfolding net of
each current unit is in between the adjacent hinges. Given that
BSUs with reflectional symmetry are periodically chained
together, we are guaranteed to avoid self-overlapping pairs of
adjacent facets after opening polyhedral BSUs into a 2D plane.

Figure 3 shows 3 representative tetrahedral BSUs where each
sides’ geometry are: all isosceles triangles (shown as a: isosceles
tetrahedron); all right-angle triangles of which edges are in the
ratio of 1:v3:2:v/5:2:1 (b: skew tetrahedron); and the one
having isosceles, equilateral and right-angle triangles with edge
ratios of 1:2:v/5:2:v/5:2 (c: isos-equal tetrahedron). Their
corresponding 2D crease patterns are shown in Fig. 3.

A closed loop of serially connected BSUs (necessarily identical
to each other) is defined as a BSU ring. In this kinematic chain,
any two neighboring polyhedra can be viewed as a BSU. Geomet-
rically speaking, in a tetrahedral BSU ring, 2 adjacent hinge axes
are skew perpendicular, and 2 alternate ones intersect at a com-
mon point. More complex tetrahedral mechanisms with multiple
degrees of freedom can be achieved using serial, parallel, and
hybrid assemblies of BSU rings in a hierarchical manner.

2.2 Cuboidal BSUs. A number of engineering design
practices [17,18] have been recently revisiting the simple, combi-
natorial, and space-efficient structure: the cuboid. Each cuboidal
unit (including the cubic one) contains 12 edges and 6 surfaces
while its flattened pattern opens up to 14 edges along the path

2D Pattern Synthesis

with Cuts Ori-Model

v

Folding + Joining

3D Digital Model

(©)

Fig. 3 (a) Isosceles tetrahedral BSU; (b) skew tetrahedral BSU;
(c) isos-equal tetrahedral BSU (red: overall cuts; black: folds;
blue: the fold that functions as a common hinge; shaded area:
attachments)
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Fig. 4 54 unique 2D crease patterns with attaching facets for a
cuboidal unit (6 parent patterns with a corresponding child pat-
tern are shown)

surrounding the area. In accordance with 11 different planar nets
of a cube [1], we start with various 2D patterns for constructing a
single cuboidal unit (cuboidal edges are in the ratio of 3:2: 1)
and embed them with the attaching facets for gluing. When con-
sidering a cross-like shape as a parent pattern, we obtain six dif-
ferent layouts by arranging orientations of the top middle
rectangles in grey (we call the base, shown in Fig. 4 (1-6)). Each
layout yields 11 unique child patterns (see Figs. 4(a)—4(k) for the
parent 5) referring to the same base’s orientation. Note that the
parent patterns are the patterns with the same net while altering
the shape of each base rectangle. The child patterns are the ones
with the same base rectangle while altering the nets. We eventu-
ally generate a total of 66 2D crease patterns in general to fold a
cuboid with 12 patterns forming identical pairs.

The displacement and orientation arrangement of each attach-
ing facet are based on the premise that we minimize the overall
paper consumption (envelope size of each pattern) as well as the
number of attaching facets. For instance the pattern (a) in Fig. 4,
the two same colored edges (nonadjacent sets in red (a,d’), blue
(b,b"), green (c,c’), and adjacent ones in yellow) coincide with
each other after folding the net up to a closed cuboid. We arrange
and extend 3 attaching facets out of nonadjacent sets so that the
cuboid can be enclosed efficiently without any curled-up corner.

Similar to the tetrahedral BSU formation, the net pattern for a
cuboidal BSU can be eased out of a single piece of paper when
(1) the hinge to be chosen out of three nonadjacent sets on one
cuboidal unit pattern matches the one on the coupled pattern; (2)
no self-overlapping occurs after combining two individual nets to-
gether; and (3) two built-up cuboidal units are symmetric about
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Fig. 5 Net patterns of cuboidal BSU using three different
edges as hinges (red: overall cuts; black: folds; blue: the com-
mon hinge)
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Fig. 6 (a) Triangular prismatic BSU; (b) rectangular pyramidal
BSU; and (c) pentagonal pyramidal BSU

the common hinge axis. We synthesize 3 net patterns by picking
an edge along the length, width, and height individually as the
common hinge. We use the most compact envelop area by brute-
force searching to chose candidates from a total of 54° combinato-
rial possibilities for attaching-facet arrangement. Figure 5 also
shows the hands-on prototype corresponding to each cuboidal net
pattern. Note again that a cuboidal BSU ring is a closed-loop
chain with coupled cuboidal BSUs and in which the adjacent
hinge axes are skew perpendicular to each other.

2.3 Prismatic and Pyramidal BSUs. Another two represen-
tative modules in the family encompass prismatic and pyramidal
BSUs. Consider the (a) triangular prismatic, (b) rectangular, and
(c) pentagonal pyramidal BSUs in Fig. 6, each BSU consists of
two mirror-image units with n-sided polygonal bases. In each
unit, either a side edge or a base edge with skew perpendicularity
can be selected as the common hinge edge. Observe that in these
unfolded nets, the attaching areas are extended from a single side
of each prism face and faces surrounding the apex in pyramidal
BSUs.

3 Hierarchies and Combinatorics of Depolyable
Kinetogamic Derivatives

Schatz [19] in 1929 first invented the single closed chain with
an even number of symmetric tetrahedra. Schattschneider and
Walker later decorated the tetrahedra chains and called it
Kaleidocycle [20]. A ring hinged with 3 tetrahedral BSUs can be
simplified into 6 rigid rods, the deployable mechanism is named
threefold symmetric Bricard linkage with 1 DOF [21]. The paral-
lel mechanism with multiple loops, however, becomes a challenge
for engineers to synthesize and even to perceive.
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Fig.7 Kinematical combinatorics of tetrahedral BSUs

In the formation Sec. 2, the representatives for each primitive
BSU were geometrically chosen based on a main feature that the
two adjacent hinge axes in each unit are skew perpendicular to
each other. Next, we sequentially connect mirror-image BSUs
into closed loop(s) so that each loop fulfils the plane-symmetric
and trihedral linkage conditions [22,23], and accordingly, results
in a deployable kinematic property. We demonstrate herein the
hierarchical architecture of reconfigurable polyhedral mechanisms
derived from BSUs. Starting from a single BSU, higher level loco-
motion is enabled by using serial, parallel, and hybrid assemblies.
Each derived structure and mechanism can be considered as a new
BSU to repetitively or cumulatively achieve more complicated
ones, while at each generation the construct is capable of self-
reconfiguring among multiple configurations and folding states.

For an explicit demonstration, skew tetrahedral BSU (we call
stBSU, see Fig. 3()) as a basis turns out to be combinatorial and
topological in both structural and kinematic perspectives. The
shown white and blue units are mutually symmetric in a BSU. By
connecting three skew tetrahedral BSUs in a serial closed loop
(we call 3stBSU), we form a equilateral-triangle-like structure
(see “Single closed loop” in Fig. 7). Hinging six 3stBSUs serially
further gives a closed-surface hexagon-like structure shown in
“Multi-Serial-Loops” of Fig. 7 and the paper model in Fig. 8(b).
The 3stBSU can be reconfigured to a zigzag mechanism and
the hexagram-like mechanism with unfilled central space (see
“Multi-Serial-Loops” in Fig. 6 and the paper model in Fig. 8(f)).
By initializing one configuration of each reconfigurable BSU and
building them up cumulatively, it gives rise to versatile rigid
structures and movable mechanisms, i.e., the closed-surface
sphere in Fig. 7 with overall 540 tetrahedral BSUs with paper
model shown in Fig. 8(¢), and the skeletonized morphing ellipsoid
with overall 216 stBSUs (see the paper model in Fig. 8(h)).
Given a total of 180 stBSUs, we also achieved a closed-surface
ellipsoid in Fig. 8(d) with varying compliance in different

111009-4 / Vol. 135, NOVEMBER 2013

sections. Eventually, moditying the size of BSUs enables different
solid structures with overall 192 tetrahedral BSUs to be transformed
as well (see the derivatives in “Structural Modification” section of
Fig. 7). Gao et al. [24] presented a hexapod locomotive robot by
stringing up 3 skew tetrahedral BSUs as each limb and connecting 6
3stBSUs serially. Three potential gaits patterns are also simulated
for the robot: squatting/rising, squirming, and slithering.

The analogical closed-loop(s) mechanism construction and self-
deployable kinematic characteristics are also investigated using
cubic BSUs. Many algorithmic and programmable approaches
have considered how to fold a linear chain of cubes and achieve
any polycube shape [12,13]. The work demonstrated here is dif-
ferent because our approach lays out hinge orientation on 2D,
folds cubic BSU strings into closed loop(s) to construct kinematic
mechanisms. Starting from a single cubic BSU, one can join n
identical BSUs in a closed loop while alternating successive hinge
orientations with a degree of perpendicularity. By satisfying the
plane-symmetric and trihedral linkage conditions [23], it gives
construction of serial cubic mechanisms that reveal the same self-
deployable properties (case n =3 are show in Figs. (8(i) and 8(j))
and case n =4 are show in Figs. (8(k) and 8(/)). In Fig. 8(m), the
mechanism consisting of 3 cuboidal BSUs (cuboidal edges are in
the ratio of 3:2:1) is able to deploy (see Fig. 8(n)) into the
triangle-like configuration in Fig. 8(0). The same self-deployable
performance is exploited using the prismatic and pyramidal BSU
rings shown in Figs. 8(p)-8(s)). Therefore, we show the proof of
concept of our prototypical experiments and we will detail the
kinematic analysis of each polyhedral mechanism in our subse-
quent work.

4 The Synthesis of Reconfigurability

The advantages of reconfiguration in “Kinetogami” are twofold
and highly coupled. It is based on both the ease of fabricating in
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Fig. 8 Prototypical Kinetogamic derivatives from 4 BSUs:
(a)—-(h) constructs using tetrahedral BSUs. (i))—(0) constructs
using cubic/cuboidal BSUs, (p) and (q) constructs using pris-
matic BSUs, (r) and (s) constructs using pyramidal BSUs

2D followed by folding to 3D, and the highly efficient reconfigu-
ration between mechanisms and structures, which provides affor-
dances for changing behaviors, such as load carrying capacities or
locomotion capacities. Locking the global or the local zones
provides both mobility and rigidity of 3D mechanisms in scalable
engineering systems. Folding mechanisms are used initially with
cutting and gluing to form the baseline topology of the device,
and unfolding and ungluing can be used during operation of the
device to change the baseline topology. We now develop the
methodology to map mechanism’s reconfigurability into 2D
crease-cuts-attachment layout designs and pipeline systematic
procedures to complete our folding framework.

Itisadifficulttask todescribe and predictthe possible variation of con-
figuration states (Q) during the folding operation on flat sheets. Continu-
ous, restricted, and prohibitive rotations were observed within
Kaleidocyclestructures. Wetherefore propose apredictorofreconfigur-
ability by concentrating on spatial perception and engineering-domain
knowledge. The reconfigurability here is defined as the ability of a BSU
ring to perform the “full body” rotation. Thus, one can design a desired
motion of morphing structures and reconfigurable mechanisms using
measurable designparameters.

The synthesis rules are processes developed by evaluating the
vertex angle of each side of an isosceles tetrahedral BSU. For a
tetrahedral BSU ring, each tetrahedral unit is interpreted as a com-
mon normal of its two skew perpendicular joint axes, called a
“rotating rod” represented as the dashed red line segment EF in
Fig. 9).

This predictor of reconfigurability, 0, is an intrinsic and
measurable characteristic parameterized in the flat pattern with
four identical isosceles triangles, as shown in Fig. 3(a). It can be
defined if a single closed BSU ring is able to rotate continuously,
with a limited range or become a rigid structural body by the
following reasoning: Let the half base length (AB/2 or CD/2) be
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Fig. 9 Geometric parameters for determining variation of con-
figuration states

x, and equal side length (AC, AD, BC, BD) be y, therefore
0 = 2 arcsin(x/y). Identification of 6 arises by solving equations
in two particular cases shown below, while increasing the vertex
angle 0 from zero

e if the angle ® = /(AB,ACD) remains larger than the thresh-
old value 360 deg /2n (see Eq. (1)), where n is the number of
isosceles tetrahedral BSUs in the ring, then the single ring is
capable of performing a full body rotation. This arises
because the mechanism can pass through its singular configu-
rations when all the tetrahedra gather toward the center. The
threshold value for @ is represented as

X 360

Dpresnold = arccos ————— = — (1)
y:—x2 2n

Afterward the ring performs a to-and-fro motion (no “full
body” rotation) until the dihedral angle ¥ = /(ABC,ACD)
rises to 360 deg /2n. A rigid-body state is achieved right at
the threshold value being satisfied (see Eq. (2)). It’s because
when the ring is folded, all internal tetrahedral surfaces meet
and interfere with each other. The threshold value for ¥ can
be represented as

yvy? —2x2 360
Y —x2  2n

@

Whreshold = arcsin

These two equations lead to two threshold values for the predic-
tor. For instance, the boundaries of the vertex angle in a chain of 3
isosceles tetrahedral BSUs are 53.13 deg and 70.53 deg for identi-
fying and predicting a fully reconfigurable, limited reconfigurable
or rigid body states (see Fig. 10(a)).

Extremal reachable values of 0 allow us to define the range of
3 reconfigurable states, which are summarized as below in
Egs. (3)—(5) and lead to the corresponding plot in Fig. 11.

Rigid Body State

cot @ tan @ 3)
n n

0 = 2 arcsin

Limited Reconfigurable State

! 1
——————— < () < 2arcsin Cotﬁtan% )
180 n n

tan? — + 2
n

2 arcsin
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0< 8= 53.13°

Rigid Body State

53.13° < 8 < 70.53° 8 =70.53°

Fig. 10 Prototypical demonstration of fully, limited reconfigur-
able, and rigid-body state: single ring (a) with 3 isosceles tetra-
BSUs, (b) with 4 isosceles tetra-BSUs, and (c) with 5 isosceles
tetra-BSUs
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Fig. 11 Thresholds of fully, limited reconfigurable, and rigid-
body state

Fully Reconfigurable State

0<0< 2arcsin; (5)

1
tanzﬁ+2

The plot shows a monotonically increasing region of the gen-
eral reconfigurable state. Naturally, the final specification of the
predictor 0 depends on the choices of n. With the increase in the
number of isosceles tetrahedral BSUs, one can expect a slow-
growing space of fully-reconfigurable-states, and the rigid-body-
state threshold for 0 approaches (but never reaching) 90deg. In
general, the isosceles tetrahedral BSU string cannot be ringed if
one continues to increase O after reaching the rigid-body-state
threshold. Note that the corresponding dihedral angle ¥ inside our
presented cubic, prismatic and pyramidal units are fixed to be 7/2,
thus Eq.(2) indicates that a closed loop suffices to be formed given
that the number of BSUs in the ring 7 is greater than 2.

S 2D Fabrication Principles and 3D Multimaterial
Printing

5.1 Planning, Construction, and Folding. We develop con-
sistent fabrication principles that can be applied to a flat sheet

111009-6 / Vol. 135, NOVEMBER 2013

while exploring reconfigurable properties. Our folding approach is
deployed on a single compact sheet to achieve Kinetogamic poly-
hedral mechanisms. We introduce the cuts into the crease pattern
to provide skeletal structures therefore multiple folding states are
enabled by configuring. Generalized reasoning and fabrication
procedures are demonstrated in the case studies of constructing
(1) a hexagram-like mechanism previously shown in Fig. 8(f)
using stBSU, and (2) a deployable ring using cubic BSU.

5.1.1 Finding an Eulerian Cycle. In our multiprimitive fold-
ing scheme, all folded polyhedral mechanisms originate from a
single linear BSU string. At this point, we first achieve the gener-
alization of producing an Eulerian cycle that travels each BSU
(linkages) exactly once for any kinetogami-derived polyhedral
mechanism.

Cyclic hinged dissection has received multiple studies on find-
ing a traceable path to form any polypolyhedra shape [14,15].
When considering the kinematic linkages, we start identifying
the configuration space of the closed loop(s) polyhedral linkages.
Milgram [25] discussed that closed loop revolute mechanisms
have at least one planar configuration, a configuration that lies
entirely in a single plane R?> C R3. Hence, the topological relation-
ship of unfolded configuration of closed loop(s) polyhedral mech-
anisms can be described using a planar connectivity graph G. In
the graph, polyhedral links are denoted by edges () and hinge
joints (H) are denoted by ordinary nodes (O). Each ordinary node
connects 2 links (edges) and it allows 1 rotational degree-of-free-
dom. When k(k > 2) linkages are joined together while sharing a
single hinge joint, this compound hinge joint (CH) is denoted by a
complex node ((9)) and it allows k — 1 revolute mobility. Each sin-
gle basic-structural-units B; is composed of two adjacent
links Bi_; and Bi_, coupled together. If n basic-structural-units
By,B,,...,B, are chained in a single closed loop shown in
Fig. 12(a), it is defined as an elementary-single-loop. By picking
arbitrary node(s) on each of m elementary-single-loops and
joining them again to form compound hinges further give us a
multiloop in the order of m. The multiloop construction guaran-
tees nonintersecting edges given that each graph is a planar graph.
Finally, we define that at any complex node, the two adjacent
BSUs in the same elementary-single-loop are noted as a pair
BSUs, such as B; and B; in Fig. 12(b), and the adjacent ones in the
different elementary-single-loops are considered as a dual BSUs,
such as B; and B,. Thus, at each complex node, on one side of any
BSU must be its pair and the other side must be its dual.

The problem herein is described as follows: given a connectiv-
ity graph of multiloop in the order of m, where each elementary-
single-loop consists of many basic structural units, to produce an
Eulerian cycle which visits each BSU linkage exactly once. In
order to tackle the problem, two operations are demonstrated as
follows:

Operationl opl(CH;): Split each complex node (by the afore-
mentioned multiloop definition, complex node is the compound
hinge that couples k£ BSUs, & is even and k > 4) into k/2 divisions
where the dual BSUs are connected together. The set of all newly-
created ordinary nodes at each complex node position are defined

(@) (b)

Fig. 12 (a) Elementary-single-loop with n basic-structural-
units By, B, - - -, By, (b) multiloop
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as a complex set(CH;). Hence, multiple cycles connecting nodes
and edges will be generated.

Operation2 op2(CH;): In an arbitrary complex set(CH;), replace
each BSU’s connection to its dual back with a connection to its
pair.

Algorithm 1. Find an Eulerian cycle that visits each BSU only
once
Input: Given a connectivity graph G;
Step:
1: Find all the complex nodes in G
2: for each complex node (CH;) do
opl(CH;)
end for
3: for each complex set (CH;) which is from different cycles do
op2(CH,)
end for

Based on these two operations, our method to find an Eulerian
cycle is summarized in Algorithm 1. The following is the detailed
proof of the algorithm:

Proof. Recall that in each connectivity graph G, each ordinary
node connects only two edges. Since the connectivity graph is a
planar graph, we have the following two explicit results: (1) For
Operation1, each newly created vertex where dual BSUs are jointed
at in a complex set (CH;) connects only two edges and it becomes
an ordinary node. The process retains the planar properties. (2) For
Operation 2, each newly created vertex after pair BSUs are coupled
back also connects only two edges. These vertices become an ordi-
nary node and it also retains the planar properties.

After Step 2 completes (for each complex node (CH;), we do
the Operation 1), given that each node in the obtained graph G
connects two edges, the obtained graph G only comprises of one
or multiple cycles connecting nodes and edges. In each cycle,

Fig. 13 Eulerian cycle generation for
mechanism

a hexagram-like

Journal of Mechanical Design

every node connects only two edges. Because the connectivity
graph is a planar graph and the Operation] retains the planar prop-
erties, these cycles do not intersect with each other. Then, we pro-
ceed to Step 3.

Note that each newly created node after Operation 2 still con-
nects two edges. Therefore, after step 3, all the ordinary nodes in
the obtained final graph G’ still have only two edges connected on
each side. That is, G’ is composed of one or multiple cycles. How-
ever, since the original connectivity graph contains only one con-
nected component, step3 ensures that it results in only one single
non-intersecting cycle. This is due to the fact that if there exist
multiple cycles, then we can return back to Operation 2 to merge
them. Thus, the resulting final graph G’ by this algorithm is a sin-
gle Eulerian cycle without self-intersection. Figure 13 shows the
hexagram-like mechanism previously illustrated in Fig. 8(f),
which has a total of six complex nodes CHs, where four BSUs,
such as By, Bz, B4, and Bs, are hinged together at each CH. Step 2
isolates 2 dual BSU pairs (By, B4 as a dual and B3, Bs as another)
and generates 2 new cycles where each ordinary node connects
only two edges. Finally, replacing each BSU’s connection back to
its pair (B; hinges to B3, and By hinges to Bs) results in an Euler-
ian cycle for the mechanism.

As for the time complexity of this algorithm, it is O(m + n),
where m is the number of the nodes and n is the number of edges
in G. Therefore, once again, any resulting connectivity graph can
become a single closed cycle and the Eulerian path is found with
a long nonintersecting BSU string.

5.1.2  Fundamental Reasoning. For both of these case studies,
the construction rules are generalized through the following
sequences:

(1) Duplicate the single crease pattern of skew tetrahedral BSU
(see the grey area in Fig. 14(a)) and cubic BSU given in
Fig. 15(b) so that one can linearly extend them along a strip

Fig. 14 Fabrication and construction rules for building a
hexagram-like mechanism
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Fig. 15 Fabrication and hinge selection for cubic derivatives

of sheet, then fold each pattern up and obtain a long BSU
string shown in Fig. 14(b).
(2) Deploy the polyhedral mechanism into a planar configura-
tion: the hexagram-like mechanism into its configuration
with six 3stBSUs laying down in Fig. 14(c), and the serial
cubic ring configuration itself. Then, we select the adjacent
hinges based on the skew perpendicularity.
¢ Tetrahedral BSU has the least hinge selection options in
the fact that each tetrahedron is composed of only 2 skew
edges. Recall that we geometrically demonstrate 3 repre-
sentative BSUs with skew perpendicular hinges and their
corresponding creases on 2D are synthesized to be line-
arly arrayed (see the blue lines in Fig. 14(a)).

¢ Unlike tetrahedral BSU patterns, 2 sets of 4 edges on
each current cubic BSU pattern (see Fig. 15(a)) can be
chosen for the hinge coupling the previous BSU pattern,
denoted as /; 534, and the hinge, which is coupling the
next one, denoted as O, 3 4. Folding a single cubic BSU
pattern gives rise to 3 different spatial hinge-hinge rela-
tions defined as follows: (1) coplanar parallel: 2 edges
functioning as hinges on each cubic unit are within the
same surface plane while parallel to each other, such as
1y and O, or I and O»; (2) diagonal parallel: 2 hinges are
parallel to each other but sitting along the diagonal direc-
tion in a cube, such as I, and O3; (3) skew perpendicular:
2 hinges on each cubic unit are neither parallel nor inter-
secting, but perpendicular to each other, such as /; and
O,. Table 1 provides a summary of hinge-hinge spatial
geometric relations covering all possible combinations of
I; and O;, where i, j=1, 2, 3, 4. To ensure a specific
deployable kinematic performance, we choose the hinge-
hinge combination that results in the skew perpendicular-
ity of adjacent hinge axes. The whole configuration space
is enlarged as well by 4 types of different sequential
mountain and valley folding at the common hinge of one
cubic BSU (Fig. 15(d)).

(3) Find an Eulerian cycle starting from one BSU to travel and
visit each polyhedral BSU exactly once inside the unfolded
configuration. We herein demonstrate again the cycle for

the hexagram-like mechanism using aforementioned Algo-
rithm 1 (shown in Figs. 13 and 14(c)).

(4) Thread the long folded BSU strings along the path, attach
entire disconnected compound joint together, and close all
the loops into the final constructs.

Design for Intersection-free Folding Motion: After the Euler-
ian cycle is generated for a connectivity graph, we cut the cycle at
an arbitrary node so that the closed path can always be opened
into a straightened string without self-intersection. When consid-
ering the volumetric polyhedral linkages instead of edges of negli-
gible thickness, the appropriate synthesis of the predictor of
reconfigurability allow us to ensure every continuous folding
motion free of intersection. Recall in Sec. 4 that (1) if staying
below the rigid state threshold of the vertex angle, the string of
tetrahedral BSUs has been proven to be ringed; (2) while enabling
the number of BSUs greater than 2, the strings of cubic, prismatic
and pyramidal BSU have also been proven to be ringed. That is to
say, the intersection between adjacent BSUs occurs if and only if
the rigid-state-threshold is designed to be exceeded and units are
still chained together in a closed loop. Otherwise, each neighbor-
ing BSUs in the Eulerian cycle are sufficient to fit into any local
turning or straightening scenario. According to the formation prin-
ciples, we have discussed for the connectivity graph in Sec. 5.1.1,
each constructed polyhedral mechanism is composed of single or
multiple loops that topologically allows only ordinary nodes and
complex nodes, and geometrically requires adjacent joint axes
with skew perpendicularity. Hence, given a specific topological
configuration in the connectivity graph, by finding the elementary
single-loop with the least edges and constraining the vertex angle
from going beyond the rigid-state-threshold, we are guaranteed
that the physical BSU string can be folded from a straightened
configuration and ringed into loop(s) without intersecting any
other BSUs.

5.1.3  Amelioration for Compact Layout Planning. As dis-
cussed, each depolyable polyhedral mechanism derived from 4
BSUs reconfigures into a long BSU string and eventually yields a
lengthy strip of paper. Hence, we start modifying and re-initiating
the 2D layout design on an ideal rectangular-size paper rather

Table 1 Spatial hinge-hinge relation of cubic BSU
Combination 0,/0, 03 Oy
I coplanar parallel skew perpendicular skew perpendicular
I, skew perpendicular diagonal parallel skew perpendicular

skew perpendicular

skew perpendicular coplanar parallel

111009-8 / Vol. 135, NOVEMBER 2013

Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigital collection.asme.or g/ on 12/02/2013 Terms of Use: http://asme.or g/terms



than an interminable strip. The fabricating strategies are com-
pleted involving another three preparation steps:

(1) As illustrated in Figs. 16(a) and 16(b), expanding the BSU
crease pattern laterally and vertically on a sheet, apply cuts-
creases arrangements to each row and zigzag turns between
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Fig. 16 Ameliorated processes for a compact 2D pattern
layout

Journal of Mechanical Design

rows. The overall cuts-crease pattern is represented in col-
ors and the operations will proceed in sequence: to cut
along red lines, fold black lines for construct polyhedral
links, fold blue dashed lines for enclosing additional surfa-
ces, and attach shaded regions for adhesion).

(2) Attach 3 sheets together where the top layer remains
the original pattern with green-red-purple turning areas,
while the rest two layers without the turning areas (see
Fig. 16(c)).

(3) After cutting, stack down each row gradually by folding the
green areas backward and then red areas downward shown
in Figs. 16(a) and 16(b) and eventually lining up a long
strip (sequences shown in Fig. 16(d)), then folding BSUs
into a long string.

In step ii, the purpose of the 3-sheets adhesion is to balance the
thickness of each polyhedral surface because the turning areas are
stacked upon each other three times in the third step as per the
row above. We maintain the rectangular paper intact by allowing
only line cutting so that: (1) no paper material is wasted (occurs if
hollowing out), and (2) the assembly facets are attached inside the
tetrahedra and the surface thickness can be increased to enhance
structural characteristics such as stiffness and load carrying
capacities.

5.2 Multimaterial Printing. The design theories and fabrica-
tion concepts of Kinetogami have been proved on the paper sub-
strate. Considering its application in an engineering context, we
further explore an alternative substrate which contains anisotropic
material properties such as stiffness in planes and high flexural
characteristics about hinges. 3D printing technology enables us to
achieve this versatile material printed substrate.

Besides paper, a wide variety of nonwovens open up the possi-
bilities for exploring the substrate selection and surface properties
(wettability, creasability (wrinkle-resistance), adhesive properties,
and stiffness) for a variety of future applications. Flexure
joints [26] have been frequently applied in engineering such as
self-folding morphing mechanisms [27] and robotic origami
[28]. Figure 17(a) shows the printed multimaterial sheets where
flexural hinges merge with rigid polypropylene facets as produced
particularly by Objet Connex 350. The net build size is
320mm X 108 mm x 1.5mm and it can be folded fully into a
52mm x 108 mm x 9 mm package (see Fig. 17(b)) without crack-
ing and springing. Deploying the crease pattern and refolding it
along with the predesigned snap-fits give one a rotating tetrahedral
BSU ring in Figs. 17(c¢) and 17(d). Compared to flat contact
between the plates and the hinge, the interconnecting cross section
shown in Fig. 17(e) resolves fatigue cracking and provides more
flexibility in the elastomeric joints.

Flexible Hing

Y & A

KD

Rigid Facets

Snap Fit

Fig. 17 (a) 3D Printed multimaterial sheet, (b) compactly flat-
folded configuration, (c) folded into 6 tetrahedral BSUs in a
ring, (d) morphed among configurations, and (e) flexure hinge
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(b)

Fig. 18 Visions of (a) a multimaterial-printed table reconfigures into a chair (b) a

hexapod robot with multiple gaits

6 Conclusions and Discussion

In this paper, we have presented a novel folding framework,
called “Kinetogami”, with multihierarchical and foldable units for
the creation of polyhedral mechanisms. We built combinatorial
morphing systems by varying the design of individual components
in 2D while folding and reconfiguring in 3D. Furthermore, our
approach allows designers to synthesize desired reconfigurable
motion using measurable design parameters, as the resulting
fundamental mathematical basis and spatial perception become
accessible. Finally, multimaterial printing technology allows us to
integrate rigid facets with interconnecting flexible joints as an
alternative material construction that can be folded. The following
is our vision of further studies on Kinetogami:

(1) The abilities of Kinetogami enable mechanistic designs by
varying layouts, materials on 2D, and hence, providing
multiple functionalities in 3D. We find this aspect of
applications in the structural and robotic designs to be of
great relevance. A vision of a multimaterial printed table
mechanism using isos-equal tetrahedral BSUs is shown in
Fig. 18(a). It can deploy into a chair while reorienting its
surface materials to adapt to different load carrying capaci-
ties. Another vision of a multigait reconfigurable robot with
various locomotive capabilities has been discussed in our
previous work [24] (see Fig. 18(b)).

(2) One can extend computer support to ease the realization of
this new science-based art form. We have demonstrated the
foldable and reconfigurable mechanisms using a hands-on
construction. Computational algorithms and tools can fur-
ther help one unfamiliar with the geometric nuances to
design, analyze, and optimize Kinetogamic structural and
mobile forms, as well as the folding process plan.

(3) Through explorations at the intersections of art-science-
geometry and digital information technologies, we intend
to promote imagination and critical thinking.
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Nomenclature

0 = measurable vertex-angle variable in isosceles
tetra-facets
n = number of isosceles tetra-BSUs in a single
closed loop
a, f, 7 = the vertex angle in each side of the tetrahedron
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