
Devarajan Ramanujan
School of Mechanical Engineering,

Purdue University,

West Lafayette, IN 47907

e-mail: dramanuj@purdue.edu

William Z. Bernstein
School of Mechanical Engineering,

Purdue University,

West Lafayette, IN 47907

Jun-Ki Choi
Department of Mechanical and

Aerospace Engineering,

University of Dayton,

Dayton, OH 45469

Mikko Koho
Department of Production Engineering,

Tampere University of Technology,

Tampere FI-33720, Finland

Fu Zhao
School of Mechanical Engineering,

Purdue University,

West Lafayette, IN 47909

Karthik Ramani
School of Mechanical Engineering,

Purdue University,

West Lafayette, IN 47907

Prioritizing Design for
Environment Strategies
Using a Stochastic Analytic
Hierarchy Process
This paper describes a framework for applying design for environment (DfE) within an
industry setting. Our aim is to couple implicit design knowledge such as redesign/process
constraints with quantitative measures of environmental performance to enable informed
decision making. We do so by integrating life cycle assessment (LCA) and multicriteria
decision analysis (MCDA). Specifically, the analytic hierarchy process (AHP) is used for
prioritizing various levels of DfE strategies. The AHP network is formulated so as to
improve the environmental performance of a product while considering business-related
performance. Moreover, in a realistic industry setting, the onus of decision making often
rests with a group, rather than an individual decision maker (DM). While conducting in-
dependent evaluations, experts often do not perfectly agree and no individual expert can
be considered representative of the ground truth. Hence, we integrate a stochastic simu-
lation module within the MCDA for assessing the variability in preferences among DMs.
This variability in judgments is used as a metric for quantifying judgment reliability. A
sensitivity analysis is also incorporated to explore the dependence of decisions on specific
input preferences. Finally, the paper discusses the results of applying the proposed
framework in a real-world case. [DOI: 10.1115/1.4025701]
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1 Introduction

DfE involves the systematic evaluation of design performance
with respect to environmental, health, and safety objectives
over the entire product life cycle. Establishing appropriate DfE
strategies is critical for improving the environmental aspects of a
product [1]. The process of establishing such strategies requires
simultaneous consideration of environmental as well as business
concerns using the concept of MCDA for selecting relevant DfE
strategies [2]. However, product designers often lack access to
reliable data regarding the environmental impacts of products and
processes, which are essential for making decisions involving
complex trade-offs between competing objectives [3]. Although
data gathered for life cycle impact assessment offers one way to
bridge this knowledge gap, problems are often compounded by
unfamiliarity with environmental issues among product develop-
ment personnel. Arguably so, the process of product design,
development and management, usually incorporates environmen-
tal considerations as a regulation/compliance issue which leads to
a failure in proactively adopting DfE practices. In order to instill a
proactive approach among designers, an MCDA framework
should be based on quantitative measurements of a product’s envi-
ronmental performance obtained from a validated sustainability
assessment tool.

On a coarse scale, tools that assess the environmental
sustainability of a product or process can be categorized into vari-
ous levels based on the nature of assessment, i.e., (a) qualitative/
quantitative, (b) on temporal/spatial scales, and (c) on their
integration of environmental, economic and social systems. From

a systems perspective, an ecologically sustainable society is
defined as that state (condition) of society in which nature is not
subject to systematically increasing (a) concentrations of substan-
ces extracted from the Earth’s crust, (b) concentrations of substan-
ces produced by the society, (c) degradation by physical means,
and (d) society needs [4]. However, in regards to product design,
the system boundaries for assessing a product’s environmental
sustainability must be objectively defined and are usually much
smaller in scope.

A few earlier studies [5,6] have reviewed approaches for envi-
ronmentally sustainable product design. Masui [7] developed the
QFD for environment by incorporating environmental aspects into
quality function deployment (QFD) to handle environmental and
traditional product quality requirements simultaneously. Brezet
and Hemel [8] developed the life cycle design strategy wheel
method and considered the impacts of a product or service across
different levels: product component, product structure, and prod-
uct system. Keoleian et al. [9] suggest a method to identify
all design requirements in the form of a matrix that allows the
designer to decide so-called must requirements and want require-
ments. However, these studies do not incorporate quantitative
models in the product development process. Also, checklist type
design guidelines may overwhelm product designers. There
have been some frameworks that have proposed solving design
problems with mathematical modeling [10–12]. However, these
techniques have not been extended to specifically address the
environmental aspects of product design. For doing so, the key
environmental design drivers of a product must be identified
quantitatively and correlated with corresponding traditional
design drivers (i.e., from a bottom-line perspective). Some useful
approaches have been studied in reference to the mentioned
framework in related domains. Thurston and Srinivasan [13] pres-
ent a framework for employing mathematical decision modeling
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via a constrained optimization approach as applicable to green
engineering. Michalek et al. [14] propose a methodology to solve
multi-objective formulations involved in marketing, manufactur-
ing, and engineering design decisions with concurrent engineering
strategies. Skerlos and Zhao [15] apply optimization algorithms
for assessing the economics of metalworking fluids recycling.
However, in most of these studies quantitative LCA studies are
not conducted for identifying environmental hotspots (problem
areas) within a product system. The widespread use of easy-to-
use, computer-based commercial LCA packages makes it possible
for DfE practitioners to analyze the environmental impacts of a
product without necessarily having an in-depth understanding of
LCA methodologies [16].

Most of the applications of decision analysis in conjunction
with LCA have been confined to the weighting of inventory data
issues [17–22]. Few papers, discuss the integration of LCA and
MCDA either for ranking alternative processes or for prioritizing
strategies that enable environmentally sustainable product design
(ESPD) [23–27]. This is primarily due to the fact that LCA has
been developed without an explicit link to a specific decision
analysis framework. Weil et al. [28] and Xiong et al. [29] address
integrating MCDA within the LCA framework while considering
uncertainties in the input data, for robust selection among given
alternatives. The focus of these papers is not on facilitating deci-
sions in regards to environmentally sustainable product design.
Moreover, the expressed preferences in these MCDAs are implic-
itly assumed to be deterministic as scenarios with independent
evaluations by a group of experts are not accounted for. Huang
et al. [30] discuss a framework for material selection in environ-
mentally conscious design using an MCDA similar to the TOPSIS
method. They also consider uncertainties in inventory data as
well as a judgment criterion using an entropy based approach. A
review in regards to the applications of different MCDA methods
towards environmental decision making can be found in Ref. [31].
Methods for addressing uncertainty related to product design are
discussed in Refs. [32–34], but issues related to ESPD are not
considered. Duncan et al. [35] extensively discusses modeling
uncertainties for environmentally benign decision making using
the information gap decision theory (IGDT). Uncertainties in life
cycle inventory and those that arise in the process of applying
IGDT for design decision making are considered. Whenever mul-
tiple decision makers are involved, additional analyses regarding
the combined consistency of the group’s evaluations and the rela-
tive importance of the each specific judgment is required [36].
Additionally, conducting a sensitivity analysis on the alternatives
may help the decision makers refine their judgments.

In this paper, a framework for integrating LCA with a sto-
chastic MCDA is illustrated in order to facilitate rational de-
cision making with regards to aiding ESPD. Sometimes, a
deterministic single score may mislead the designer, especially
when competing DfE criteria have similar scores as indicated
in the author’s previous study [37]. Therefore, uncertainty and
sensitivity analyses are incorporated through a Monte Carlo
simulation (MCS) within the decision making process to pro-
vide a spread of feasible decision criteria. Although different
companies have different strategies and criteria, a general
framework will allow companies to systematically prioritize
DfE strategies enabling more robust decisions for ESPD. The
remainder of this paper proceeds as follows. Section 2
describes the proposed methodology, including an LCA mod-
ule, a DfE module, and an MCDA module with uncertainty
analysis. Section 3 describes the process of applying the pro-
posed framework to a real world case study. This case study
involves prioritizing DfE strategies for the redesign of a sur-
face drilling rig within leading mining equipment manufac-
turer based in Finland. Section 4 summarizes the results and
discusses the statistical testing methods necessary for making
statistically sound decisions with the resulting stochastic data.
Section 5 concludes the paper and sets the direction for
future research.

2 Methodology

The general framework for eliciting expert preferences and pri-
oritizing corresponding DfE strategies using the AHP from an
individual DM has been presented in the author’s previous work
[37]. The proposed framework involves conducting an LCA of a
product to identify environmental hotspots throughout the prod-
uct’s entire life cycle. The results from the LCA provide informa-
tion about the most significant life cycle stages in terms of
specific environmental impacts. Then, various levels of DfE strat-
egies involved in the specific life cycle stage are prioritized using
an AHP to assist the designer in identifying the relative impor-
tance of environmental and business-related performances within
that product. The current paper aims at extending the earlier
framework by (1) including the case of independent evaluations
by multiple DMs (2) incorporating uncertainty and statistical test-
ing methods in the prior methodology to aid better decision mak-
ing. Uncertainties resulting from DM’s preferences in the AHP
are characterized using Bootstrap re-sampling. (3) And finally,
this paper validates the overall methodology by applying it within
a real-world industry setting.

The process diagram of the general framework used for priori-
tizing DfE strategies is shown in Fig. 1. First, the LCA module
identifies the environmental impact of the specified product sys-
tem. There are various types of LCA: traditional SETAC LCA or
a process based LCA [38], economic I/O (input/output) based
LCA [39,40], and a hybrid LCA [41]. Each LCA has a scope that
defines the system boundaries. SETAC LCA provides the most
accurate result in the finest level within limited system boundaries
while an economic I/O based LCA provides the most comprehen-
sive result on an aggregated economic sector level perspective. A
hybrid LCA combines these two types to mitigate the weaknesses
of each methodology. Since the proposed framework is intended
for application in a business setting, there are severe constraints
on available resources and time which require the set system
boundaries to be relatively fine. Therefore, a SETAC LCA is pre-
ferred. Also, the use of existing life cycle inventory databases
greatly simplifies the life cycle inventory analysis.

Fig. 1 Schematic diagram of the proposed framework for
integrating an sAHP based MCDA with a traditional LCA
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Although life cycle inventory analysis provides insight regard-
ing the environmental hotspots of the product system, it cannot be
applied directly to judge the environmental performance of a
product system due to the lack of specific judgment criteria.
Therefore, life cycle impact assessment is conducted to convert
the inventory results to normalized environmental impact results.
Once the inventory parameters are classified into impact catego-
ries, the relative contribution of each inventory parameter to a
given impact category is quantified using a characterization factor
[42]. The next step in the methodology is life cycle interpretation
where key issues such as the activities, processes, materials, com-
ponents, and life cycle stages are identified [43]. Each life cycle
stage has a set of associated DfE strategies each contain various
sub-criteria for improving the environmental aspect of a product
system as shown in Fig. 2. Within a DfE module, the DMs analyze
the LCA results to determine how the corresponding sub-criteria
should be prioritized. The AHP is used in this study for prioritiz-
ing DfE strategies. AHP, developed by [44], is a flexible MCDA
tool for complex problems where both qualitative and quantitative
aspects are considered. It helps the analyst organize the critical
aspects of a problem into a hierarchical structure similar to a fam-
ily tree. Key elements in traditional AHP are shown in the follow-
ing equations. Equation (1) calculates the consistency index (CI)
between decision criteria and provides a confidence level of the
decisions provided by the subjective experts and Eq. (2) calculates
its consistency ratio (CR). Equation (3) calculates the global
weight of each sub-criteria and Eq. (4) captures the global priority
score which provides a deterministic, single value of the relative
importance of each DfE strategy.

C:I ¼ ðWmax � NÞ=ðN � 1Þ (1)

C:R ¼ C:I=R:IN (2)

GWj ¼ LWi � LWj (3)

GPSk ¼
X
ðGWj � RSj;kÞ (4)

People lacking experience in the fundamentals of AHP might
encounter difficulties when directly inputting ambiguous judg-
ments into the preference matrix. Questionnaires provide a
more systematic approach for constructing the AHP matrix. Struc-
turing a questionnaire includes defining the main elements of the

hierarchy at each level and eliciting their importance through spe-
cific questions. It is important to avoid possible misunderstandings
with the respondent, as the phrasing of the questions and record-
ing of the answers could influence the final result. The perceived
direction of the objectives (i.e., positive or negative) plays an
important role within the design of the questionnaire. All the
objectives on a common level should share a common perceived
direction. For example, objectives such as improved use of
recycled material for the raw material criteria and enhanced sup-
plier relationship need to have a positive direction with respect to
the external driver. In this study, the following items are included
along with the questionnaire: a cover letter expressing the purpose
of the survey, brief instructions for filling out the survey, a graphi-
cal representation of the decision hierarchy and a copy of the
report on the LCA of the product. The main contents of the survey
contain comparison-based questions regarding each criterion in
each level of the decision hierarchy. Subjective data from the
questionnaires is used for the construction of pair-wise compari-
son matrices and then eigenvalue problems are solved to provide
the CI and CR of each pair-wise comparison for each criterion.

Although a traditional AHP can be a useful tool, it requires
DMs to translate ambiguous judgments into a deterministic prefer-
ence values for estimating pairwise comparisons of objectives and
decision alternatives. The accuracy of the comparisons of all pairs
of criteria and the resulting decision alternatives may be signifi-
cantly influenced by the information available to the DMs, their
understanding of the problem under consideration, as well as their
previous perceptions [45]. These issues are especially a concern
when dealing with a complex, global issue such as DfE. Miscon-
ceptions based on media outlets and specific design experiences
can greatly affect decisions within sustainable product develop-
ment [46]. Moreover, design decisions within an organization are
taken by a group of DMs. It is reasonable to assume that each DM
in a group has a different value scheme that may significantly
deviate from the value scheme held by another DM in the group.
This assumption is especially true when considering decision
groups for DfE which are usually formed from people belonging
to diverse work groups i.e. product designers, financial managers,
environmental engineers, suppliers etc. By adopting a determinis-
tic weighting scheme in the AHP, any resulting uncertainties or
valuable information about individual preferences of the team
cannot be analyzed. Therefore, for robust decision making, the
AHP should incorporate means for statistical testing or signifi-
cance comparison among alternatives. The priority ranking of
alternatives resulting from the AHP should also be analyzed for
variation with respect to uncertain input data.

As constructing a closed-form analytic model to represent out-
put uncertainties as an explicit function of input uncertainties
entails significant complexities previous research has approached
this problem by incorporating methods such as probabilistic
judgments, interval analysis and fuzzy theory within the AHP.
The methods described above aid DMs in reaching a statistically
significant conclusion regarding their decisions. However, the
above methods are limited by the fact that they need a large sam-
ple size of decision weights and consequently DMs. An additional
problem when dealing with purely probabilistic judgments is the
fact that the small sample size of input data prevents accurate
parameterization of this data by a statistical distribution [47]. The
modified analytic hierarchy process (MAHP) developed by
Ref. [48] tries to address the above issues and also considers man-
agement related factors in decision making. The MAHP makes
use of a MCS through random sampling of an estimated statistical
distribution of input preferences. Uncertainties associated with the
model are propagated through the decision making framework. It
should be noted that an MCS based approach can be considered
the most effective quantification method for uncertainties and var-
iability among the tools available for environmental system analy-
sis [49]. However, the MAHP is limited by the fact that it forces
the DMs to parameterize decision weights using a triangular dis-
tribution. Although the assumption of a triangular distribution forFig. 2 List of DfE strategies in a typical product life cycle [8]
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decision weights works well when they converge to a unique
modal value, this assumption may not be valid in cases where
they are uniformly distributed across a range or multimodal. The
process of surveying a small sample of DMs can be considered as
polling a subset of expert DMs from the available population.
Using a triangular parameterization prevents DMs from making
inferences about the population as a whole. To overcome the
above limitations, the proposed MCDA framework incorporates a
stochastic analytic hierarchy process (sAHP) that uses Bootstrap
re-sampled decision weights. Bootstrap re-sampling is applied in
this case as it (1) is nonparametric in nature (i.e., it does not
assume that the data is representative of a specific statistical distri-
bution) and (2) allows for measuring the variability of input data
by independent and identically distributed (i.i.d) sampling. Also,
the resulting bootstrap distribution is centered on the expected
value of the true distribution and thus, the performed sAHP analy-
sis will be centered on an AHP analysis conducted by averaging
individual preferences.

In a sAHP, instead of deterministic preference values of a tradi-
tional AHP, an (i.i.d) sample ðbijðmÞÞ is drawn from a set of pref-
erence values. The expected value of these preference values (bij)
from all the parameters are plugged into a pair-wise comparison
matrix, producing a possible prioritization of the alternatives
under consideration. Repeated calculations (“N” times) produce a
distribution of the predicted output values reflecting combined
parameter uncertainties. Thus, this process is akin to performing a
MCS with bootstrap re-sampling. It should be noted that uncer-
tainties in the LCA can influence the results of the sAHP. Even
though our proposed framework does not explicitly model
uncertainties in LCA, a highly uncertain LCA will cause a large
variance in priority weights which will, in turn, result in overlap-
ping preference values.

Figure 3 illustrates the difference between the deterministic and
the stochastic AHP. In a traditional AHP, the pairwise comparison
matrix contains deterministic values that indicate how much more
important the ith criteria is than the jth criteria. On the other hand,
the pairwise matrix of a sAHP contains one of the many possible
expected values of that criteria weight. The sAHP leads to the
construction of a set of priority vectors corresponding to each pos-
sible evaluation of importance criteria. Consequently, the sAHP
generates a statistical distribution of prioritized alternatives
and their consistency ratios (CR). While conducting an MCDA
involving independent assessments by a group of DMs, it is also
essential to identify the decision variables that can significantly
affect the final outcome. In the present study, this is achieved by
performing a sensitivity analysis on the model. A sensitivity anal-
ysis reduces the evaluation space, and thus, the amount of time
necessary to refine evaluations. In the context of this paper, the
term sensitivity can be defined as the degree of correlation
between the renormalized DfE preference values and the input cri-
terion of the sAHP.

The specific steps for incorporating an sAHP with regards to
DfE are detailed below:

(1) Conduct a LCA of the product to discover life cycle stages,
design decisions, and specific parts/operations that have
significant environmental impact. Using the above data,
construct a set of recommendations that enable redesign for
environmental sustainability

(2) Develop a list of specific DfE strategies using [8]. The
selected set of DfE strategies will be evaluated for feasibil-
ity of implementation using the sAHP framework

(3) Construct the corresponding AHP hierarchy, where prioriti-
zation of a particular DfE strategy from the prementioned
DfE list is placed on the first level of the hierarchy. The
second level of the hierarchy provides the local weights
of environmental and business-related criteria. Each crite-
rion consists of sub-criteria which represent the desired
improvement options and thus provide local weights for
sub-criteria. The lowest level of the hierarchy consists of
the alternatives, namely the different designs for environ-
mental strategies. Refer Fig. 5 for details

(4) Construct a survey to evaluate pairwise weights relevant to
the AHP hierarchy. This survey is then distributed to a
group of expert DMs that have sufficient knowledge of the
life cycle of the product as well as an understanding of its
environmental impacts. It is recommended that individuals
are drawn from different organizational divisions such as
design, management, maintenance etc.

(5) Set up the sAHP process where each pairwise weight is an
i.i.d sample drawn from the set of all such pairwise weights
obtained from the survey. Evaluate priority vectors and
principal eigenvalues and screen out runs which do not
meet the desired consistency ratio. Generate a set of global
priority scores obtained from multiple runs of the above.

(6) Generate a ranking scheme for the DfE strategies using
confidence bounds of the normalized preference for each
DfE strategy.

(7) Perform a sensitivity analysis to evaluate the variance of
the ranking scheme with respect to variation in input data.

A detailed explanation of the above in addition to the method
for performing sensitivity analysis is explained in the context of
the case study in Sec. 3.

3 Case Study

The proposed methodology was applied within a leading manu-
facturer of mining equipment (henceforth titled “Company A”)
based in Finland. “Company A” manufactures a wide variety of
drilling rigs among which a hydraulic, surface drilling rig (hence-
forth titled “Product 1” for confidentiality) was earmarked for
environmental assessment based on the principles of life cycle
assessment. It should be understood that “Product 1” is an assem-
bly of over 5000 individual parts and conducting an extensive
LCA requires accessing material and design specifications from
highly confidential inventory data. Therefore, the present study is
based on a prior LCA conducted internally by the company on
“Product 1”. The authors were directly involved in interpreting
the results of the conducted LCA and designing the DfE and the
MCDA module as per the company requirements.

3.1 LCA Module. The LCA on “Product 1” was conducted
according to the ISO14040 and 14044 standards on environmental
management. The LCA includes the following stages of the
life cycle: raw material acquisition, part manufacturing and
assembly, transportation, use phase, maintenance, and the prod-
uct’s end-of-life. The end-of-life phase examines scenarios of
remanufacturing, reuse, disassembly, recycling, and disposal. It
should be noted that the review of post-use phase is largely based
on qualitative inputs due to nonavailability of real world data.

Fig. 3 Structure of the pairwise comparison matrix of a deter-
ministic AHP and the proposed sAHP
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Listed below are the definitions of the conducted life cycle
assessment.

(1) Goal and Scope: The LCA in the present case is an explora-
tory study of the life cycle resource consumptions and
emissions of “Product 1”. The primary goal of the LCA is
to develop and implement practical guidelines that mini-
mize impacts resulting from the production processes as
well as the product itself. The intention is to use this
method to identify business-related risks and strategies
from an environmental point-of-view to aid future purchas-
ing decisions and incorporate recommended design changes
or improvements. The short term goal is to improve the life
cycle resource efficiency of “Product 1” and to implement
cleaner, less expensive, and smarter solutions in the busi-
ness process. This involves discovering the factors of envi-
ronmental impact which are not only the most significant
but also exhibit economically feasible redesign opportuni-
ties. The long term goal is to gain useful information for
future product planning to make all products more
eco-friendly. A special point of interest within the LCA is
evaluating the feasibility of a selective take back program
and a systematic disassembly scheme.

(2) Functional Unit: The functional unit is defined as the pro-
duction, use and disposal of one drill rig which fulfills the
functional requirements set to its life time service and
which is constructed with inputs (material and energy) of as
low environmental impact as possible. Expected service
life is taken into account. The product’s lifetime under nor-
mal conditions of utilization and maintenance is expected
to be 25 yr.

(3) Reference Flow: The reference flow of this LCA study is
the manufacture of one “Product 1” drill rig containing
mainly steel and hydraulic parts.

(4) Impact Categories Selected and LCIA Methodology: The
used impact categories are climate change, acidification,
eutrophication, toxic effects on humans and ecosystems,
ozone formation, depletion of fossil fuels, and minerals.
The used LCA methodology is comprehensive and follows
standards of LCA using the EcoInvent database for inven-
tory analysis [50] and the EI99 scheme provided by
SimaProTM[51]

(5) Allocation Procedures/Boundaries in Relation to Other Life
Cycles: Allocation is avoided by splitting the process in
specific separate processes. The manufacturing process
does not include any clear co-processes or co-products

(6) Intended Audiences: The LCA of “Product 1” is to be used
for internal purposes.

(7) Report Generation: The report of the LCA follows the
requirements of ISO 14048 LCA data documentation for-
mat. The documented report contains LCA data, tables, and
figures.

3.2 LCA Results. The results of the conducted life cycle
assessment revealed the following significant details:

(1) The most significant life cycle phase from an environmen-
tal perspective is maintenance and use. Close to 95% of the
life cycle impact of “Product 1” is due to high diesel fuel
consumption and resulting emissions. Figure 4 outlines the
normalized LCA result outlining the impact contribution of
this stage.

(2) Oil consumption along with maintenance of change rods
and crowns also contribute toward significant use phase
impacts.

(3) There is a strong potential for reducing end-of-life environ-
mental impacts by pursuing strategies related to substitution
with recyclable materials and elimination of toxic
materials.

(4) Planning for disassembly is a key criterion for enabling
better management of the end of life of “Product 1”. This
process should be coupled with consumer awareness
programs.

(5) Design for durability can greatly aid in reducing use phase
impact by reducing the frequency of oil and part changes.

(6) Reducing material flow and waste at the assembly plant
could lead to significant savings.

Based on the results of the LCA the following specific recom-
mendations were made in order to reduce the life cycle impact of
“Product 1”:

(1) Reduce use phase oil consumption.
(2) Reduce the percentage of Nickel and Chromium in the steel

mixture of “Product 1”.

Fig. 4 Figure outlining the significance of use and maintenance phase in the LCA
of “Product 1”
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(3) Increase part reliability to minimize the number of part
replacements over the lifetime of the product.

(4) Incorporate a recycling program for minimizing the end-of-
life impacts of the product.

(5) Reduce consumption of drilling consumables.
(6) Reduce part count of the product one through design for

manufacturing strategies.
(7) Reduce assembly phase consumables in the plant, including

electricity and water.
(8) Reduce use phase noise pollution.

Although the above recommendations would greatly help in
reducing the life cycle impact of “Product 1”, the feasibility of
implementing these strategies or their effect on the business per-
formance of the company were not analyzed within the life cycle
assessment.

3.3 DfE and MCDM Module. Figure 5 illustrates the overall
hierarchy structure of MCDA conducted within “Company A”. In
this case, the AHP hierarchy is constructed as per the procedure
detailed in the methodology section. For this case study, the list of
DfE strategies is chosen from an exhaustive list compiled by
Ref. [8] as shown in Fig. 2. However, conducting an AHP based
on the entire set of strategies is time and resource intensive (n DfE
strategies with m assessment criteria will require n2m/2 evalua-
tions). Thus a pre-assessment of DfE strategies is performed for
narrowing the selection before incorporating them within the AHP
hierarchy. Within this case study, product managers from the
company ranked the criteria as per their relevance to the project
and its applicability. Two product managers of “Product 1” inde-
pendently ranked the DfE criterion on a Likert scale ranging from
very important (9), to least important (1). The top eight DfE crite-
ria were chosen for detailed analysis based on the sAHP. It should
be noted that the number of DfE strategies selected for final evalu-
ation is a function of available project resources (time, applicabil-
ity of the DfE strategies in the context of the product, relevance of
DfE strategies to company goals, etc.) and the outcome of the
rankings. Although the pre-assessment of DfE strategies reduces
the scope of the final evaluation, strategies that are of most inter-
est to the company with regards to feasibility of implementation
pass through the pre-assessment stage. If these strategies do not
correspond to specific recommendations made after the LCA, the
company can choose to re-evaluate their selection methodology at
the pre-assessment stage and re-select better candidate strategies.

After performing the DfE pre-assessment module, a pair-wise
comparison survey was set to fifteen personnel involved in life
cycle planning and environmental assessment for “Product 1”. Of
these, ten complete responses were returned. Each survey was
accompanied with supporting documents as detailed in the meth-
odology section. The survey template was designed on Microsoft
Excel

VR

for ease of distribution and data extraction. The respond-
ents were required to allocate pair-wise weights within the survey
based on the LCA results and their inherent knowledge about the
feasibility of the design process. These sets of ten unique pair-
wise weights for a specific comparison factor were used for data
re-sampling through the sAHP. For conducting the sAHP, a
custom simulation tool was created using Visual Basic for appli-
cations in Microsoft Excel

VR

.

4 Results

Figure 6 illustrates an example of the results of the simulation
(n¼ 1500) run of the sAHP. A frequency distribution of the
normalized preference of the DfE strategy ensure efficient distri-
bution is plotted on the left and the overall consistency ratio of the
sAHP is plotted on the right. Each bar on the plot of the overall
consistency ratio is analogous to the likelihood of having a given
consistency ratio. The spread of the overall consistency ratio’s is
between 0.035 and 0.07, which is well below the acceptable score
of 0.1 as defined by Saaty. The variance of the normalized prefer-
ence values represents the variability in the input preference
weights combined with the errors resulting from bootstrap
re-sampling. Similar results can also be obtained for all the other
DfE strategies. Figure 6 also visualizes all the DfE strategies plot-
ted on the same scale by smoothing the resulting histograms using
a normal kernel density estimate. The kernel density estimate is a
probability density estimate of the sample, based on a normal
kernel function evaluated at 100 equally spaced points that cover
the range of the data. As all the DfE preferences are plotted on a
normalized scale, the magnitude of the expected value of each
DfE distribution gives a measure of its overall preference. For
example, from Fig. 6 it is evident that minimize consumption and
efficient distribution are the most and least preferred DfE strat-
egies, respectively.

Figure 7 compares the results of the sAHP with the preference
values obtained by conducting a deterministic AHP by averaging
the pairwise comparisons provided by the ten DMs. As seen, the
mean value of normalized preferences in the sAHP is

Fig. 5 Structure of the overall AHP network used for prioritization of DfE strategies

071002-6 / Vol. 136, JULY 2014 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/29/2014 Terms of Use: http://asme.org/terms



approximately equal to the former, the difference resulting from
errors in the process of bootstrap re-sampling. The sAHP frame-
work allows for estimating the variability in the resulting prefer-
ence values due to differences in pairwise comparisons by
multiple DMs. On the other hand, this information is lost while
averaging the weights a priori for the sake of conducting a deter-
ministic AHP.

To ensure that the decisions made based on the results of the
sAHP are statistically valid, (1) a measure of confidence bounds
for characterizing the error due to bootstrap re-sampling is incor-
porated, and (2) the difference in the normalized preference values
of the DfE alternatives is verified to test statistical significance
(p¼ 0.05). For characterizing the error in bootstrap re-sampling, a
95% bootstrap percentile confidence interval (i.e., the interval
between the 2.5% and 97.5% percentiles) of the statistic is gener-
ally used. However, when the resulting bootstrap distribution has
a small bias and approximates a Gaussian distribution, the confi-
dence interval can be approximated as shown below [52].

½BCIh;BCIl� ¼ lþ t�S (5)

In the given case, a Lilliefors test is performed to confirm the
normality of the resulting bootstrap data. The Lilliefors test is a
two sided goodness of fit test that tests the hypothesis that the
sample data comes from a distribution in the Gaussian family
against the possibility that the sample data does not come from a

Gaussian distribution [53]. To compute whether the means of the
preference values are statistically significant, the differences in
the means of DfE alternatives are computed and as shown in
Eq. (6), i.e., inspecting whether this difference is greater than the
maximum value of bootstrap standard error.

l1 � l2 > t�ðS1 þ S2Þ (6)

This analysis is performed for each of the DfE alternatives with
respect to all the other seven DfE alternatives. The results of this
analysis are displayed in matrix form within Fig. 8 where a “1”
indicates that the null hypothesis, l1 � l2 can be rejected at a
significance level of 5%. Figure 8 also shows that the DfE princi-
ple of minimizing consumption has the highest mean, and thus, is
the most preferred alternative. Efficient distribution is the least
preferred alternative.

Although, the above analysis is sufficient for ranking the alter-
natives in the sAHP, it is important to characterize the sensitivity
between the various alternatives with respect to the input data
in the sAHP model. More specifically, the Spearman’s rank
correlation coefficient, a non-parametric measure of the statistical
dependence, is used. The null hypothesis is that the rank of the
normalized preference value of the DfE alternative does not
co-vary with the rank of the values of a particular sAHP input. A
high value of the Spearman coefficient along with a p-value of
less than 0.05 rejects the null hypothesis. The DfE alternatives in

Fig. 6 A snapshot of example results from the sAHP framework
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the present case study are the most sensitive to the input weight of
low production waste. Figure 9, visualizes the sensitivity plot.
Therefore, the DM team may wish to investigate this criterion
further in the hopes of reducing its uncertainty involved in con-

structing a pairwise comparison matrix. A similar analysis can be
performed for all the factors present in the sAHP.

The final recommendations made to “Company A” based on
the results of the LCA with MCDA pipeline proposed in this paper
are shown in Fig. 10. The feasibility of adopting a particular rec-
ommendation made using the results of the LCA are rated accord-
ing to the rankings of the corresponding design for environment
strategies as per the sAHP. The results show that minimizing con-
sumption of assembly phase consumables and teducing use phase
oil/noise consumption are the most feasible recommendations.
However, they account for a minor fraction of the overall life
cycle impact for “Product 1”. Conversely, use phase impacts
(including operation and maintenance) amount to nearly 95% of
the total impact. The corresponding DfE strategies i.e., designing
for energy efficiency and low impact operation are viewed by
“Company A” as mid-level feasible. Therefore, it was suggested
that “Company A” immediately address the issue of reducing as-
sembly phase impacts and develop a long term strategy to rede-
sign “Product 1” for lower operation phase impacts. Upcoming
European Union energy regulations such as the energy using prod-
ucts (EuP) further strengthen the cause for such a long term goal.
Reflecting on the least favored strategies namely ensure efficient
distribution and safe disposal, it can be hypothesized that
“Company A” has little or no control over the sustainability prac-
tices of its suppliers and end users. Since drilling rigs operate in
remote areas, product recovery is a formidable task. Furthermore,
these two stages do not significantly contribute to the overall life
cycle impact of ‘Product 1’. The primary motivation for pursuing
one of these strategies would be to comply with possible regula-
tions in the domain. The above discussion makes a case for adop-
tion of the presented decision framework within the industry to
abate environmental impact of their products in cognizance of the
company’s goals, business needs, and resource constraints.

5 Conclusions and Future Work

An MCDA based tool that allows designers’ to balance business
decisions, process feasibility, and environmental considerations is
likely to enhance the willingness of decision makers to pursue
ESPD. Although there are numerous business vendors within
design and engineering solutions/services that package individual
modules such as LCA, AHP, and Monte Carlo simulation, the real
challenge is to develop an easy-to-use, holistic platform which
integrates all these modules in order to facilitate systematic deci-
sion making for ESPD. This paper details a framework for address-
ing the above, with the primary goal of improving the

Fig. 7 Comparison of the normalized preference values of the
sAHP with the deterministic AHP

Fig. 8 Results of the hypothesis testing

Fig. 9 Sensitivity of alternatives for an example sAHP input

Fig. 10 Recommendations for adopting LCA strategies based
on DfE rankings
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environmental aspect of the product through DfE whilst integrating
business and feasibility parameters. The proposed framework inte-
grates the qualitative and quantitative aspects of decision making
by correlating LCA with an AHP based stochastic analysis. It is a
qualitative method in the sense that it utilizes subjective data col-
lected from experts through a developed questionnaire. At the
same time, it is a quantitative method since it calculates the global
priority scores (GPS) and estimates the eigenvalue/eigenvectors
for each decision criteria which are based on a LCA of the product.
Furthermore, the process for solving eigenvalues and eigenvectors
of each pairwise comparison matrix evaluates that the data pro-
vided by the design team is logically consistent, facilitating a
rational decision making process. One of the major contributions
of this paper is the integration of an uncertainty analysis module
within this integrated framework through the use of a stochastic
AHP with bootstrap re-sampling. Additionally, statistical signifi-
cance testing and a sensitivity analysis enable decision makers in
taking robust decisions as well as refining the accuracy of the
analysis.

Methods for designing the questionnaire, constructing the pair-
wise comparison matrix, and calculating GPS are also illustrated
in order to understand the proposed methodology. Finally, the
implementation of the methodology within “Company A” verifies
its ease of applicability in a real-world industry setting.

Although an integrated framework that incorporates environ-
mental and business considerations was presented, it should be
understood that the method only identifies management level
strategies to support ESPD. Decisions that support ESPD activ-
ities need to consider product information from both a company
level as well as the product component level perspective. Future
research will focus on extending this framework so as to translate
the presented DfE strategies to the product component level with
the goal of generating specific redesign instructions.

6 Supporting Information

For the sake of brevity, supporting information, including the
original dataset from the ten surveys and the Microsoft Excel

VR

based
survey, is not comprehensively described in the paper. Interested
readers can download this content from the following webpage.1
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Nomenclature

BCIh ¼ upper bound of the bootstrap confidence interval
BCIl ¼ lower bound of the bootstrap confidence interval

C.I ¼ Saaty’s consistency index
C.R ¼ consistency ratio of the pair-wise comparison matrix

GPSk ¼ global priority score of kth DfE strategy
GWj ¼ global weight of jth criteria

i ¼ type of criteria i 2 1; 2; :::; I
j ¼ type of sub-criteria j 2 1; 2; :::; J
k ¼ type of DfE strategy k 2 1; 2; :::;K

LWi ¼ local weight of ith criteria
LWj ¼ local weight of jth criteria

N ¼ number of activities/size of the pair-wise comparison
matrix

R.IN ¼ random consistency index for the pair-wise comparison
matrix of size N

RSj,k ¼ rating of kth DfE strategy with respect to jth sub-criteria

S ¼ sootstrap standard error
t* ¼ critical value of the t(n� 1) distribution at a p value of

0.05
l ¼ expected value of the bootstrap distribution

Wmax ¼ max eigenvalue of the pair-wise comparison matrix of
size N
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