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ABSTRACT
The recent proliferation of electronic products has led to a

strong unmet need for understanding environmental implications
of new technologies. According to Nielsen, 66% of Americans
ages 24-35 own a smartphone, providing strong evidence that
this technology can be considered ubiquitous. However, a ma-
jority of users and service providers are not sensitive to energy
implications of data usage. As parameters affecting data deliv-
ery and usage are primarily driven by user behavior, this study
is focused on using empirical data to investigate its correspon-
dence to energy footprint. A large cohort of smartphone users
(n = 21,853) and the means for which data is accessed, i.e. via
3G/LTE or WiFi, is examined to develop a model for estimat-
ing the energy cost of the various modes of data usage. Finally,
alternate business scenarios are developed through simulating
behavior change in cohorts based on existing data and then as-
sessed with regards to economic and environmental efficiencies.

INTRODUCTION
Over the last decade, the world has seen an unprecedented

proliferation of electronic products. From tablet computing de-
vices to televisions, electronics have become easily and readily
available to a great number of people around the world. Mobile
phones, in particular, have strongly exhibited this trend. Accord-
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ing to the International Telecommunication Union (ITU), there
were six billion mobile subscriptions at the end of 2011. Inter-
estingly, both China and India, two rapidly growing economies,
each accounted for about one billion subscriptions [1]. When
also considering 3G penetrance, or third generation mobile
telecommunications technology, the numbers remain significant.
Currently, it is estimated that 3G technologies account for an es-
timated 15% of all cellular subscriptions worldwide, including
70% in some countries, e.g. Japan (99%), Spain (85%), Italy
(83%) and the United States (81%) [2]. All in all, the ITU esti-
mates that there were 1.1 billion mobile Web users in the world
in 2011. On-demand data via the Web is no longer a commodity
or a privilege in many societies but instead it is seen as a right for
all people to be able to access. As a result, smartphones, which
can be defined as “cellular telephones with built-in applications
and Internet access” [3], have seen a steep increase in sales due
to strong user demand. According to Nielsen, 66% of Americans
ages 24-35 own a smartphone [4], and smartphone penetrance is
expected to rise.

In turn, the energy consumption of the information commu-
nications and technology (ICT) industry has seen a significant
rise due to the ubiquity of mobile devices as described above.
For example, in the United States alone, the energy consumption
of the network equipment was estimated to have used between 14
and 18 TWh in 2008 and is expected have grown to 23 TWh in
2012, assuming business-as-usual [5]. Furthermore, the green-
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house gas emissions due to the ICT industry is expected to grow
from 300 Mt CO2 in 2007 in 350 Mt CO2 emitted in 2020 [6].
However, it seems that a majority of users and service providers
are not sensitive to the energy-related implications of data usage.

In general terms, the trends of smartphone user behavior
have recently been investigated. Contrary to mobile phone users
in the past, i.e. 2G subscribers, the extended capabilities of
advanced platforms, e.g. on-board GPS and on-demand e-mail
browsing, have shifted user behavior. There seems to be a trend
that more time is being spent running apps on smartphones than
checking mail, placing calls, or any other activity [7]. In general,
it has been suggested that user behavior is a hurdle for sustain-
able development. However, there has been little work related
to emerging business models that link user behavior and energy
consumption through various types of ICT infrastructure. For ex-
ample, if one suggests that electronic publishing of an article is
beneficial for the environment, the publishers still cannot control
users from both downloading and printing that article for per-
sonal use [8].

This paper focuses on examining empirical data in order to
better understand user behavior and suggest alternative business
scenarios from the service provider perspective aiming to curb
energy consumption during the product’s use. The paper presents
a case study of smartphones in which empirical data for monthly
use of over 20,000 smartphone subscribers (n=21,853) is ana-
lyzed. As parameters affecting data delivery and usage are pri-
marily driven by user behavior, this study is focused on using em-
pirical data to investigate its correspondence to energy footprint.
Alternate business scenarios are developed through simulating
behavior change in cohorts based on existing data and then as-
sessed with regards to economic and environmental efficiencies.
The paper is closed with remarks that consider environmental
implications of cyber-physical products as a whole.

The data used throughout this manuscript was provided by
Mobidia Technologies, Inc, a venture-funded corporation, that
has worked with notable ICT-related companies, e.g. Microsoft,
Symbian, Motorola, Samsung, LG and PMC-Sierra [9]. Mobidia
offers a free app, titled “My data manager”, which allows smart-
phone users to essentially track their data usage, i.e. WiFi or
3G/4G access, in order to avoid additional costs related to over-
ages. A summary of data collected can be found in [10], pub-
lished as a white paper for the public.

RELATED WORK
The explosion of smartphone use has spurred work related

to user behavior. A recent periodical in the Harvard Business
Review listed the seven primary motivations for smartphone use
as self-expression, discovery, preparation, accomplishing, shop-
ping, socializing, and “me time” [11]. One significant finding of
the HBR study is that 68% of consumers’ smartphone use occurs
at their home, suggesting that a significant amount of the data ac-

cessed could be via a home WiFi network. One group focused on
developing an on-board app that keeps track of data usage with
regards to many categories [12], similar to the software devel-
oped by Mobidia. Kivi, 2007 also studied the measurement of
mobile user behavior and service usage through surveys [13].

Similar to this manuscript, some of the related research
are targeted towards understanding large-scale smartphone use.
Oliver, 2010 conducted a study with a large cohort of Black-
Berry users (n=17300) and measured the duration of time spent
by users [14]. Falaki et al. investigated user behavior and its ef-
fect on phone energy consumption in order to develop predictive
models that can better help increase battery life [15]. Another
study took a close look at the energy consumption of specific
hardware components, e.g. GSM, CPU, RAM, WiFi, etc, dur-
ing different power states of the phone in order to make redesign
suggestions of individual hardware components [16].

Modifying user behavior, in general, has been an area of re-
search and study for quite some time. Recently, work has been
focused on changing user behavior through design exploiting hu-
man natural behaviors [17]. In the context of web search, re-
searchers have shown interest into understanding keywords or
entry behavior to quickly retrieve requested information [18]. A
similar objective has been used for developing rules for stronger
passwords for sensitive information [19]. Shiraishi et al. devel-
oped a application that visualize energy costs and emissions of
their home via virtual avatars to curb user behavior [20]. One
study reviewed methods used to change user behavior with re-
spect to responsible library treatment [21]. Other studies have
investigated changing user behavior to enhance traffic safety
[22, 23]

It should be noted that not one of the before-mentioned stud-
ies investigated the effect of modifying user behavior in order
to curb the IT industry’s energy consumption. However, there
have been other studies to have mentioned smartphone user be-
havior in this context. Radia et al. binned users based on their
monthly limit of allowable cellular data in order to understand
traffic of particular types, e.g. file sharing, on-line media, and
web browsing, and to formulate suggestions related to devel-
oping apps to make users more contextually aware of their us-
age [24]. Heinemann et al. grouped users into two behavioral
categories, i.e. users who share everything and ones that share
nothing, in order to suggest data loading schema for dissemina-
tion schemes [25]. Others have investigated smartphone charging
behaviors to understand typical user activity with respect to the
energy consumed by hardware components and subsequent net-
work connectivity characteristics [26]. Another study took more
of a marketing approach and measured a typical user’s daily time
allocation on various mobile services, application installations,
and communication actions. Interestingly, the study found that
44% of those surveyed actively follow cellular data rates and
modify behavior accordingly [27].

To the best of the authors’ knowledge, there have not been
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TABLE 1. NUMBER OF REPORTED USERS PER DATA PLAN
BUCKET

Data Plan (GB) Population (n)

0.0 0.3 2131

0.3 0.5 43

0.5 1.0 175

1.0 3.0 5757

3.0 5.0 2846

Over 5.0 226

Unlimited 1766

Did not respond 8909

studies yet that present schema for assessing feasible modifica-
tions to user behavior through new business models in order to
make users more sensitive to the energy consumption of data ac-
quisition. This study, aims to create such scenarios by investigat-
ing a large set of empirical data.

SMARTPHONE USER DATA OBSERVATIONS
The provided data from Mobidia was organized primarily

based on the purchased data plan, since it is expected that the
ceiling of cellular data usage per user would have the most sig-
nificant contribution to user behavior in the context of accessing
data. To understand the general trends of smartphone usage, each
user was binned in groups based on their self-reported data plans.
The seven bins for the data plans can be seen below in Table 1.
The group with the most amount of users reported a data plan
limit of somewhere in the range of 1.0 and 3.0. Most of these
users have a 2.0 GB limit, as this is a common data plan offered
throughout the service provider industry. It should be noted that
many users refrained from providing their data plan information
(n = 8909). This sub-population was not included in any anal-
ysis throughout the paper. In general, the dataset was consid-
ered acceptably representative of an aggregate user population.

The Mobidia app used in this study provides various char-
acteristics of each user, such as the user’s operating system (OS)
type, phone manufacturer, phone model, service provider, aggre-
gate monthly data usage via WiFi, and aggregate monthly data
usage via 3G or LTE (i.e. 4G) depending on the phone model.
It was assumed that all users are representative of a population
of 3G operating users, i.e. users with LTE access were grouped
together with smartphone operators using 3G to access cellular
data. It should also be noted that the only data used from the
monthly data set is the aggregate cellular and WiFi usage. Re-

FIGURE 1. CUMULATIVE PROBABILITY DISTRIBUTIONS
FOR DATA ACCESSED VIA THE CELLULAR NETWORK

gardless of the type of smartphone model, OS type, carrier, etc.,
each user was considered to be representative of a large cohort
of 3G users in order to make observations of the studied popula-
tions.

Figures 1 and 2 organize raw data with respect to data ac-
quisition via 3G across the studied data plan buckets. Figure 1
represents a plot of the cumulative distribution functions (CDF)
of each data plan cohort, excluding the users that abstained from
providing their data plans. Figure 2 shows triangular kernel
smoothing density estimates for each bucket as in Figure 1. The

FIGURE 2. TRIANGULAR KERNEL SMOOTHING DENSITY
ESTIMATES FOR DATA ACCESSED VIA THE CELLULAR NET-
WORK
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FIGURE 3. CUMULATIVE PROBABILITY DISTRIBUTIONS
FOR DATA ACCESSED VIA WIFI

main purpose of observing the CDF is to understand the rela-
tive fraction of data usage per user group. However, the density
estimates provide a visualization scheme for understanding fre-
quency of data usage. For instance, a tight peak will represent
a large subset of users behaving in a particular manner. More
specifically, the triangular kernel smoothing method (i.e. the ks-
density function [28]) available in Matlab’s Statistics Toolbox is
used to represent corresponding histograms of each dataset [29].
For ease of comparison, the color scheme for each respective
bucket shown in Figures 1 and 2 will be the same throughout
this manuscript. Similarly, Figures 3 and 4 show the cumulative

FIGURE 4. TRIANGULAR KERNEL SMOOTHING DENSITY
ESTIMATES FOR DATA ACCESSED VIA WIFI

probability distributions and triangular kernel smoothing density
estimates, respectively, of the monthly Wifi usage for each stud-
ied data bucket.

As seen in Figures 1 and 2, data accessed via smartphones
from 3G varies across data plans. This can be particularly evident
when comparing significantly different data plans, e.g. less than
300 MB and over 5 GB. From the CDF of the 3G usage in Figure
1, it can be seen that almost 50% of users with plans over 5 GB
access at least 2GB of data via 3G monthly as opposed to some
1% of those with plans less than 300 MB. This should not be
a surprise considering that users with low limit plans are much
more sensitive to costs related to exceeding data limit ceilings.
Observing Figure 2, it is apparent that those with smaller plans,
e.g. between than 300 -500 MB, exhibit similar behavior shown
as a tighter peak. As the data plan increases, the smoothing es-
timates seem to level out, suggesting that users with high-range
plans exhibit behavior more difficult to predict.

On the contrary, with respect to data obtained via WiFi,
shown in Figures 3 and 4, it seems that WiFi usage is quite simi-
lar irregardless of data plan size. From Figure 3, one might think
that the group of users that have plans that fall within the range
of 300 and 500 MB show unique behavior in terms of WiFi us-
age, but this seems to be due to the low sample size, as there
are only 43 such users, compared to 5757 users that have a 1-3
GB plan, for example. If this is not an artifact of low sample
size, one explanation could be that those with lower cellular data
plans do not necessarily access lower amount of data than oth-
ers, but procure a higher percentage of their traffic through WiFi
rather than 3G. These users, hence, may exhibit higher sensitivity
to cost overages, enforced once they exceed their allowable data
ceiling. One can also see that the percentage of users that exceed

FIGURE 5. TRIANGULAR KERNEL SMOOTHING DENSITY
ESTIMATES OF PERCENTAGE OF DATA ACCESSED VIA WIFI
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their data plan for higher data plans, e.g. in the 3-5 GB bucket,
compared with lower ones, e.g. 0.3-0.5 GB bucket, seems to be
slightly higher. Figure 5 illustrates this idea in more detail by
showing trends of WiFi to 3G usage among groups. Those with
lower plans are much more sensitive in keeping their ratio of
WiFi data usage to 3G data usage high, while there is little dis-
tinction among users with larger data plans. Other distinctions
between user groups and general observations of the data can be
seen in the white paper sponsored by Mobidia [10].

DATA LIMITATIONS
It should be noted that the empirical data used throughout

this manuscript is not without limitations. First off, those who
download the app from Mobidia can be categorized as high-level
users, simply by the fact that they must possess enough expertise
to download and use an energy-monitoring app. This is not re-
flective of all smartphone users, as many novice users may have
trouble downloading such apps or lack motivation. Furthermore,
these smartphone users could develop more sensitivity to their
own data use once they have deployed Mobidia’s app on their de-
vice. In other words, being provided on-demand access to their
data usage could modify their behavior. Another limitation is the
large set of users who abstain from reporting their data plan, cell
phone and other characteristics that have been used to analyze
the data. Of the 21,853 users that were analyzed, 8909 of them
refrained from reporting any information to Mobidia. Additional
analysis, however, illustrates that the abstaining users closely fit
behavior of the others analyzed in total, suggesting that these
users could be considered good representatives of a population
of smartphone users with mixed data plans. In other words, the
cumulative density functions and histograms match closely be-
tween the abstaining users and the rest of the studied population.
Also, all data collected is reflective of usage within the month of
May 2012. It is not clear, however, whether the data fluctuation
from month to month is significant.

MODELING USE PHASE ENERGY CONSUMPTION
To the authors’ knowledge, the most rigorous life cycle as-

sessment, to date, of the 3G network infrastructure was con-
ducted by [30]. Within the study, the authors argued that as 3G
mobile phones become ubiquitous, similar to the current situa-
tion, the impact per bit related to network components decreases
significantly. At the time of the study, the analysis was conducted
assuming 3G subscribers were in the range of 1-4 million. As
of Q4 in 2011, there are 208 million 3G subscribers in the US
alone [31]. This suggests that the manufacturing and operation
of mobile phones themselves is becoming more critical with re-
spect to the environmental efficiency of the telecommunications
industry as a whole. Hence, here the focus will remain on the op-
eration of the devices and the energy they consume while access-

TABLE 2. ENERGY MODEL FOR DOWNLOADING X KB OF
DATA OVER 3G AND WiFi ON A SMARTPHONE, ADOPTED
FROM [2]

3G WiFi

Transfer Energy(J) 0.025(x) + 3.5 0.007(x) + 5.9

Tail Energy (J/s) 0.62 N/A

Maintenance (J/s) 0.02 0.05

Tail Time (s) 12.5 N/A

ing data. Furthermore, estimating energy consumption through
the network infrastructure is infeasible without accessibility to
the infrastructure components themselves. For this reason, much
of the work in regards to estimating energy per bit transfered is
focused on the end user device, i.e. the smartphone itself.

A widely accepted publication in particular, [2], provides
a linear energy model based on empirical measurements of a
smartphone. The model presented in [2] is illustrated in Table 2.
The transfer energy shown in the table estimates the amount of
energy required to “ramp up” to the required power level as well
as the actual energy expended during transmitting and receiving
the data. For WiFi, the transfer energy includes both transmitting
data as well as the energy required for scanning and association.
The tail energy estimation describes the expenditure of energy as
the device lingers at high power states. This value should not be
ignored since it contributes to some 60% of the total energy with
respect to a single 50K download. The linear energy model here
was used to model the energy consumption of each 3G-operated
smartphone. As seen in the Table 2, the model requires length in
time for each download with specific packet sizes. From the data
used in this study, these numbers cannot be found and estimating
packet size could introduce additional uncertainty. Therefore, a
factor of 2.2 (i.e. 100%/40%) applied to the transfer energy is
used to recover a reasonable estimate. If this factor were not
included, the energy consumption of 3G access would be signif-
icantly underestimated.

The cumulative distribution functions and the triangular
kernel smoothing density estimates representing the energy con-
sumption per user are shown in Figures 6 and 7. These plots were
created to observe apparent trends. It is interesting to note that,
in terms of energy consumption, that the four lowest data plans,
(1) less than 300 MB, (2) between 300 and 500 MB, (3) between
0.5 and 1.0 GB and (4) between 1.0 and 3.0 GB, exhibit similar
behavior as seen in Fig. 7. The other plans have significant tails
to the right, which represents users with heavy usage needs.

The model can be validated by observing holistic consump-
tion. According to the energy model, the estimated total monthly
end-user energy consumption of the studied users (n=12944) is
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FIGURE 6. CUMULATIVE PROBABILITY DISTRIBUTIONS OF
ESTIMATED ENERGY CONSUMPTION

about 1.05 TJ, which averages to about 81.1 KJ monthly per user,
or 270 Wh yearly. Using the electricity rate of about $0.093 per
kWh [32], the energy consumption related to accessing data is
on the order of cents under given assumptions, i.e. $0.025. This
compares with other estimates reported elsewhere, as in [33].

It should be noted that although it is not done here, it is pos-
sible to extend the energy model across the network components
of both a 3G and WiFi setup. Although without direct measure-
ment of components which dominate life cycle consumption, i.e.
the antenna stations, and the antenna station controllers [30, 34],
gross assumptions must be made. One could use an efficiency
index, called power usage effectiveness (PUE) defined as the
total energy consumption divided by the IT equipment energy
consumption and obtain a gross estimate of per-user energy con-
sumption across the 3G network, as in [35].

BUSINESS SCENARIOS FOR MITIGATING USE-PHASE
ENERGY CONSUMPTION

In order to institute business strategies in this context, it is
necessary to understand the future of the industry. Smartphone
penetration in the US is expected to continue to rise. As a result,
there is strong evidence that service providers will not be able
to match infrastructure constraints to meet this need [36]. This
trend is evident as service providers are expanding their WiFi
Hotspots availability [37]. As a result, it is assumed that it could
be economically viable to force users on to WiFi through ad-
ditional cost penalties in order to avoid new infrastructure cost.
This presents a counterintuitive situation, since overage costs are
profitable for service providers. However, less base station tow-
ers to cover more subscriptions is economically beneficial, creat-

FIGURE 7. TRIANGULAR KERNEL SMOOTHING DENSITY
ESTIMATES OF ESTIMATED ENERGY CONSUMPTION

ing an increase in value per user to the provider.
From the energy model in the previous section, it is clear

that data accessed via WiFi exhibits lower end-user energy con-
sumption profiles than via 3G. One can generalize four main
user groups defined by their user behavior, users that (1) use
low amounts of 3G data as they approach their limit due to fear
of overage costs, (2) use heavy amounts of data while exhibit-
ing limited overage cost sensitivity, (3) use low amounts of data
even though their plan allows higher data usage rates, and (4) use
heavy amounts of data closely fitting to their plan. The grouping
of these user groups can be seen in Fig. 8. These groups are

Low DU, High CS 
Users require little data, 

choose low data plans and 
exhibit high WiFi:3G usage 

High DU, High CS 
Users require and large 

amounts of data, yet still 
exhibit high WiFi:3G usage 

Low DU, Low CS 
Users require little data, 

choose out-of-range plans, 
and pay little attention 

High DU, Low CS 
Users require large amounts 

of data, and often exceed 
data plan ceiling  

Data Usage (DU) 

C
o

st
 S

en
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ti
vi

ty
 (

C
S)

 

FIGURE 8. QUADRANT CHART OF USER BEHAVIOR
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< 0.3 GB 0.3-0.5 GB 0.5-1.0 GB 

> 5.0 GB 3.0-5.0 GB 1.0-3.0 GB 

FIGURE 9. PLOTS OF THE PLAN USAGE FRACTION (PUF) AGAINST THE WIFI FRACTION (WF), WHICH CAN CHARACTERIZE BE-
HAVIOR PROFILES FOR SELECT DATA PLAN BUCKETS

formed by assessing their general trends over two criteria, their
data usage requirements (shown on the x-axis) and their cost sen-
sitivity (shown on the y-axis). Cost sensitivity can be defined as
the degree for which users respond to overage costs. In other
words, those very high cost sensitivity will theoretically never
exceed the allotted 3G data plan. On the other hand, one can see
trends of users exhibiting low cost sensitivity, often exceeding
their alloted 3G data. Data usage here is defined by the sum of
data accessed via WiFi and 3G. In this specific application, ab-
straction is useful since usage patterns can now be categorized
and simplified in meta-groups.

Here, behavior profiles for each data plan bucket are pre-
sented in order to match these meta-groups. Users with unlimited
plans are excluded since they will exhibit obvious behavior that
is insensitive to data usage. Each profile is created by calculating
two key attributes of each user, (1) the plan usage fraction (PUF)
and (2) the WiFi fraction (WF).

PUF =
D3G

D3G,ceil
(1)

WF =
DWiFi

D3G +DWiFi
(2)

where D3G is the amount of monthly 3G data, D3G,ceil is ceil-
ing of the specific user’s data plan, and DWiFi is the amount of
monthly WiFi data usage.

Fig. 9 illustrates the behavior profiles, defined as
PUFvs.WF for all users. The users are plotted separately ac-
cording to data plan in order to show relative trends of behavior.
Each plot also includes a vertical line at the value of PUF equal
to 1, which represents the point at which a user exceeds their
data plan and experiences overage charges. One can see that
there is a significant percentage of users who exceed their data
plans, i.e. 12.3%, 20.9%, 16.6%, 5.5%, 4.8% and 4.8% for data
plans of lesser than 0.3 GB, 0.3-0.5 GB, 0.5-1.0 GB, 1.0-3.0 GB,
3.0-5.0 GB and those greater than 5.0 GB, respectively. Interest-
ingly, those that exceed their data plans seem to exhibit unique
behavior with respect to which data plan they belong. For the
data plans lesser than 300 MB, we see a cluster of users that ex-
ceed their data plan, i.e. beyond PUF equal to 1, yet still have a
heavy WiFi:3G ratio. These users can be seen in the upper-right
quadrant of their respective plot in Fig. 9. This is quite different
compared with users that hold data plans greater than 1.0 GB.
In these plots, there is a cluster of users, who again exceed their
data plan ceiling, yet have very low WiFi:3G ratios. This can be
contributed to two possible reasons, (1) these users have limited
access to WiFi throughout their daily activities or (2) they simply
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TABLE 3. SUMMARY OF POTENTIAL ENERGY SAVINGS FOR ALTERNATE BUSINESS SCENARIOS

Business Scenario Potential Savings of Studied Users Percent of Total Consumption Potential Savings Over Entire US

1 16.5 MJ 1.6% 0.86 GWh

2 22.5 MJ 2.1% 1.13 GWh

3 46.4 MJ 4.4% 2.39 GWh

are not sensitive to overage costs. From a business perspective,
the potential of energy savings lies within users in large plans
that exceed data plans, yet exhibit a moderate WiFi:3G ratio. It
should be noted that an appropriate WiFi:3G ratio indicator for
users who have limited WiFi access is not very clear. Neverthe-
less, the following three business scenario projections aim to take
advantage of these user types.

Business Scenario 1 investigates the potential of changing
behavior of those with a moderate WiFi:3G ratio, defined as
0.1 < WF < 0.9. Assuming that service providers institute cost
penalties for exceeding their data plan, users would became more
sensitive to overages. In this case, it is assumed that existing 3G
overages be converted to WiFi data access. The energy model
was simulated by swapping overage 3G usage with WiFi and po-
tential energy savings were calculated to be about 16.5 MJ, or
1.6% of the total energy consumption.

Business Scenario 2 presents a similar situation as the pre-
vious scenario. Here, additional users on the WiFi:3G spectrum,
i.e. 0.05 < WF < 0.95, are included. The potential savings in
this scenario were estimated to be 22.5 MJ, or 2.1% of the total
energy consumption. Again, this could be achieved with more
significant cost penalties.

Business Scenario 3 investigates opportunity of modifying
behavior of the users with unlimited data plans and instituting the
rules of Business Scenario 2. It is assumed that those with un-
limited plans change to data plans of 3 GB, and exhibit high sen-
sitivity to overages. Here, a more significant savings is recorded,
i.e. 46.4 MJ or 4.4% savings.

In total, if smartphone users across the US fit within these
characteristics of the data presented in this paper, a significant
amount of potential energy savings exist. Assuming 200 million
3G smartphone users, a rate of 270 Wh per year, a low percent
savings estimate of 1.6% and a high percent savings estimate of
4.4%, a potential energy savings exists of between 0.86 GWh and
2.39 GWh yearly, just from end-user energy consumption on the
device itself. In order to understand the scale, 1 GWh can meet
the yearly energy demand of about 100 US homes. These results
are summarized in Table 3.

The numbers presented in this section dictate that even with-
out shifting actual user behavior in terms of the amount of data
accessed, there is significant potential savings in providing addi-

tional WiFi access to users. Of course, in order to understand the
business implications of these changes, a full cost analysis nec-
essary. All relevant factors such as total monthly cost to the user,
including basic and overage costs, would have to be included to
validate that instituting cost penalties as viable strategies.

TOWARDS UNDERSTANDING ENVIRONMENTAL
FOOTPRINTS OF CYBER-PHYSICAL SYSTEMS

This paper presents a scenario for which user behavior plays
a key role in determining a product system’s energy footprint.
The smartphone example can be related to a more general group
of products, namely smart products. A smart product can be de-
fined as a networked physical (or cyber-physical) device that has
means of acquiring, processing and delivering contextualized in-
formation in order to enable behavior modification of itself or
its user. In this sense, smart products can be viewed as a sub-
category of cyber-physical systems (CPS), as CPS use computa-
tional, often distributed resources in order to enhance some phys-
ical entity. In general, environmental or energy analyses of CPS
have been scarce. One major reason is the fact that the mediums
for deploying CPS lack control and are used differently among
stakeholders and user groups, making it difficult to define sys-
tem boundaries. In other words, a system boundary of a CPS
can be considered dynamic and unpredictable since, among other
reasons, (1) users may access distributed systems differently de-
pending on their demand, (2) elements of smart products evolve
and advance (e.g. Apple’s AppStore) and (3) the supply chains of
smart products are affected by uncertainties similar to any other
consumer product. Evidence of these trends can clearly be seen
throughout the results of this paper as user groups behave differ-
ently depending on consumer attributes, e.g. data plans.

Furthermore, this study uses a bottom-up approach with em-
pirical data from users and assessing the energy footprint of a
particular technology. In order to extend this approach to a net-
work level assessment, more transparency from the technologies
themselves, e.g. power consumption of network infrastructure,
must be provided. Till now, we only have estimates across the
entire network over a given period of time, as in [34, 35]. Break-
ing these grandiose numbers into per byte transmitted estimates
would provide a means of understanding impact per user. This
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will allow the use of a dynamic life cycle assessment (LCA), in
which user populations can be simulated to be representative of
an actual smart technology deployed in a real-world scenario. In
other smart products, e.g. tablets, video game consoles, an ap-
propriate framework for procuring such data is clearly needed.

Additionally, in order to reach meaningful conclusions with
regards to environmental foot-printing of ubiquitous technolo-
gies, rare earth metals, end-of-life implications human health
risks, and other ecological risk categories must be closely in-
vestigated. This paper does not attempt to extend the analysis
to encapsulate these issues, as this study only focuses on energy
consumption. Other studies have tackled these issues from an
industry-wide point of view [38–41], but have lacked the gran-
ularity and precision necessary to understand one specific de-
ployed smart device. Also, in the past LCA practitioners may
have used economic input-output life cycle analysis (EIO-LCA)
in order to use industry-wide assessment to draw conclusions
about a particular product [42]. The basis of EIO-LCA lies
within the economic correlations between industries, and sub-
industries. This makes it particularly useful when exact lifecycle
inventories are near impossible to collect in a timely fashion. Un-
fortunately, the results gathered from EIO-LCA have significant
uncertainty in scaling down to a smartphone, for example.

CONCLUSIONS
This paper used empirical data of a large cohort of smart-

phone users to make user-group specific observations regarding
behavior. Using an existing energy model of smartphone data ac-
cess, the role of behavior in energy consumption was particularly
investigated. New business scenarios were presented that do not
curb user data usage but, at the same time, alleviate a significant
fraction of the total energy consumption (i.e. 0.86-2.39 GWh
yearly), and provide economic leverage for service providers. In-
sight into how this work could be applied to the emerging field
of cyber-physical systems was also discussed.
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