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Abstract

The tomographic reconstruction of a planar object from
its projections taken at random unknown view angles is a
problem that occurs often in medical imaging. Therefore,
there is a need to robustly estimate the view angles given
random observations of the projections. The widely used
locally linear embedding (LLE) technique provides nonlin-
ear embedding of points on a flat manifold. In our case, the
projections belong to a sphere. Therefore, we extend LLE
and develop a spherical locally linear embedding (sLLE)
algorithm, which is capable of embedding data points on a
non-flat spherically constrained manifold. Our algorithm,
sLLE, transforms the problem of the angle estimation to a
spherically constrained embedding problem. It considers
each projection as a high dimensional vector with dimen-
sionality equal to the number of sampling points on the pro-
jection. The projections are then embedded onto a sphere,
which parametrizes the projections with respect to view an-
gles in a globally consistent manner. The image is recon-
structed from parametrized projections through the inverse
Radon transform. A number of experiments demonstrate
that sLLE is particularly effective for the tomography appli-
cation we consider. We evaluate its performance in terms of
the computational efficiency and noise tolerance, and show
that sLLE can be used to shed light on the other constrained
applications of LLE.

1. Introduction
Tomography is defined as the process of recovering an

object from measurements that are line integrals of that ob-
ject at some set of known view angles [7]. It has been
successfully applied in various applications such as medical
imaging, synthetic aperture radar (SAR), and Cryo-electron

microscopy (cryoEM) for structuring viruses over the past
decades [7, 17, 1, 9, 10, 5]. However, in some special situa-
tions it is not easy to obtain the view angles accurately. For
example, a patient might move during a long scanning pe-
riod, and this can result in uncertainty of view angles. Sim-
ilarly, the data acquisition of single particle cryoEM are the
line integrals of many identical copies of virus molecules
at random orientations. One would still like to reconstruct
the object in these cases. One way to solve this problem is
to embed the observed measurements, Pθ, generated from
a unknown view angle θ into a sphere (see Figure.1 (A) for
illustration). In other words, given a number of the obser-
vations, the reconstruction problem boils down to the esti-
mation of view angles for each projection.

The widely used locally linear embedding (LLE) tech-
nique provides nonlinear embedding of points on a flat man-
ifold. In our case, the observations belong to a sphere.
Therefore, we extend LLE and develop a spherical locally
linear embedding (sLLE) algorithm, which is capable of
embedding data points on a non-flat spherically constrained
manifold. Both LLE and our extension sLLE can be viewed
as dimensionality reduction techniques. Dimensionality re-
duction has become an important and challenging research
topic in machine learning with applications in areas as di-
verse as image processing, computer vision, pattern recog-
nition and biological image processing. The aim of dimen-
sionality reduction is to mine the hidden (intrinsic) parame-
ters for high-dimensional data. This principle inspires us to
adapt dimensionality reduction technique to reduce the ob-
served projection data to its intrinsic low dimensional rep-
resentation: its corresponding view angle.

1.1. From LLE to sLLE

Recent years have seen an explosive growth of inter-
est and activity on developing algorithms for nonlinear di-
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mensionality reduction, for instance, isometric mapping
(ISOMAP), locally linear embedding (LLE) and their vari-
ations [18, 14, 22, 19]. These algorithms first learn the in-
trinsic geometry of a neighborhood and non-linearly map
the high dimensional data points into a lower dimensional
manifold by preserving the learned geometric information.

LLE, in particular, has been successfully applied to a
number of problems in areas as diverse as image process-
ing, computer vision, and pattern recognition just to name a
few. The non-iterative version of LLE starts by finding the
neighbors for each data point, then reconstructs the weights
for approximating the local geometry. It then attempts to
find the coordinates in an embedded space where the lo-
cal geometric structure is approximately preserved; this is
done by solving an eigenvalue problem. Our sLLE (spher-
ical LLE) algorithm is derived as an extension to LLE by
incorporating the natural spherical constraints that occur in
our application. Specifically, our modification will focus on
the last step of finding the embedded coordinates in the low-
dimensional space. With this modification, sLLE is able
to solve the problem of the estimation of the view angles
for tomographic reconstruction [2, 3, 13, 6]. As we show
in this paper, this simple constraint allows us to accurately
solve the tomographic reconstruction problem even when
the view angles are not known.

Based on sLLE, we propose a generalized tomographic
reconstruction procedure which does not require knowledge
of acquisition of the view angles. As shown in Figure 1, the
generalized framework consists of three steps. The mea-
surements are obtained from a random set of view angles,
they are then sorted by using the sLLE based reorganization
algorithm, and the reconstruction of the image from the or-
dered projections is completed by using the inverse Radon
transform.

The main contribution of the proposed method is
twofold: 1) A modification of LLE to take into account
spherically constrained embedded points, and 2) the devel-
opment of a sLLE based scheme for application of view an-
gle estimation. This paper is organized as follows. We de-
scribe the derivation of sLLE and the computational scheme
for the estimation of view angles in Section 2. Experiments
are reported in Section 3. The paper concludes with a Dis-
cussion.

2. Methods

2.1. Tomographic Reconstruction

In the setting we consider, various measurements Pθ are
obtained at view angles θ (Figure 1 (A)). One can view
these measurements as projections that are line integrals of
the image along the viewing direction θ. A set of such
projections are stacked together into a high dimensional
vector (PVector)

−→
Pθ = (P (t1), P (t2), . . . , P (tn)) where

Figure 1. sLLE reconstruction flowchart. Figure (A) illustrates a
measurement that is observed at a view angle θ. A number of such
measurements are obtained at various angles θ and are stacked to-
gether in Figure (B). Each row denotes a measurement and we
highlight one such measurement Pθ in the figure. As seen in Fig-
ure (C) our sLLE algorithm is used to embed the measurements on
a circle with each point on the circle associated with one projec-
tion (see Pθ marked on the circle). The embedding of projections
on the circle essentially sort the projections according to their rel-
ative view angles. Figure (D) shows the sorted projection data
according to their relative view angles provided by embedding in
Figure (C). Figure (E) displays the reconstructed image from the
sorted projection data by using the inverse Radon transform. The
reconstructed image is subject to a global rotation transform of the
original image.

t1, t2, . . . , tn are equally spaced sampling points and n is
the dimensionality of the vector (see Figure 1 (B)). The
Fourier transform of the PVector can also be viewed as a
high dimensional vector (FTVector), and is represented as
−→
F = (F (ρ1), F (ρ2), . . . , F (ρn)) where ρ1, ρ2, . . . , ρn are
equally spaced sampling points on the Fourier transform,
and as before, n is the dimensionality of the vector. Accord-
ing to the Fourier slice theorem [12], each projection has a
unique Fourier transform. Therefore sorting projections in a
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space domain is equivalent to orienting their corresponding
Fourier transforms in a frequency domain. As the view an-
gles are expected to be embedded on a circle, a FTVector (a
slice),

−→
F is intrinsically restricted to lie on a circle Mathe-

matically, the FTVector
−→
Fi = (Fi(ρ1), Fi(ρ2), . . . , Fi(ρn))

could be intrinsically reduced to a two dimensional point
−→
Xi = (Xi(1), Xi(2)) on a circle, where i denotes the i-th
projection and 1 and 2 denote the principal axes of Carte-
sian coordinate respectively. The FTVectors can be ori-
ented based on the corresponding two dimensional point set
{
−→
Xi, i ∈ (1, 2, . . . , n)} where n is the number of points.

This dimensionality reduction of the projection data is il-
lustrated in Figure 1 (A) to Figure 1 (C). The red point
on the circle corresponds a specific PVector (Pθ) in Fig-
ure 1 (A). All of the PVectors are then sorted according to
the estimated view angles in Figure 1 (C) and the Figure 1
(D) shows the sorted projections. This figure is sometimes
called a sinogram in tomography.

Note that, there are two reasons to transform the PVector
to the Fourier domain before applying dimensionality re-
duction. First, it is easier to reduce the influence of noise by
band limiting the frequency. If the image is very noisy, then
the signal in the low frequency range has signal-to-noise ra-
tios close to one while the signal in the high frequency range
has signal-to-noise ratios close to zero. Second, the magni-
tude of the Fourier vector is invariant to the center shift of
the image. Thus, even when the image shifts during projec-
tion, the distance would not be affected if the computation
is only based on the magnitude of the Fourier values.

2.2. Deriving sLLE from LLE

We now describe the sLLE algorithm which is used to
embed the FTVector from the above section into a sphere.
There are basically three steps involved. In the first step, we
find the K nearest neighbors (KNN) for each point [4]. We
reconstruct the optimal local weights for each point from
its nearest neighbors in the second step, and the third step
we perform the embedding by preserving the reconstruction
weights of all of the points on a sphere. The first two steps
are identical to the original LLE algorithm and we refer the
reader to [14] for more details.

2.2.1 KNN and Weight Reconstruction

Suppose X is a set of N × P points where N denotes the
number of the points and P is the dimensionality of the
one data point. Let xi denote the i-th point. The KNN
algorithm first computes the nearest neighbors for each data
point. Then, with the assumption that neighbors lie on a
small linear region of a non-linear manifold, each point xi

is approximated by a weighted linear combination of its K
nearest neighbors. To reconstruct weight matrix W , the fol-
lowing least square optimization is solved:

min
W


N∑
i=1

‖xi −
K∑
j=1

W(i,j)xj‖

 , (1)

where W(i,j) denotes the weight between points xi and its
neighbor xj .

2.2.2 Spherical Embedding

Let W be a N × N reconstructed weight matrix, and let
D � N . Furthermore, define

Y =


y1
y2
...
yn

 (2)

be a N × D matrix whose rows are the low dimensional
embedding vectors yi that we are interested in computing.
Given the matrix W , computing Y can be posed as the fol-
lowing optimization problem:

φ(Y ) =
∑
i

∣∣∣∣∣∣yi −
∑
j

W(i,j)yj

∣∣∣∣∣∣
2

(3)

= tr
(
(Y −WY )(Y −WY )>

)
.

Using the identity tr (ABC) = tr (CAB) we can rewrite
the above objective function as

φ(Y ) = tr
(
(Y −WY )>(Y −WY )

)
(4)

= tr
(
Y >Y − Y >W>Y − Y >WY − Y >W>WY

)
= tr

(
Y >(I −W> −W −W>W )Y

)
= tr

Y > (I −W )>(I −W )︸ ︷︷ ︸
:=M

Y


= tr

(
Y >MY

)
Minimizing the above objective function yields the LLE
embedding of X . However, in our case we want the em-
bedded points to lie on an unit sphere. To enforce this
constraint we introduce a diagonal matrix B and define
Z :=

√
BY . We will require that rows of Z are normal-

ized, that is, z>i zi = 1 for i = 1, . . . , N . This yields the
following difficulty to optimize objective function:

min
Y,B

tr
(
Y >MY

)
s.t. Y >BY = Z>Z = I. (5)

We propose an iterative scheme to solve the above problem.
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• Y Step: Compute Y by solving

min
Y

tr
(
Y >MY

)
s.t. Y >BY = Z>Z = I. (6)

Appealing to Theorem 1.2 in [15] shows that the solu-
tion is given by the first D eigenvalues of the general-
ized eigenvalue problem MY = γBY .

• B Step: We want B such that the diagonal elements
of

√
BY Y >

√
B are all ones. This can be satisfied by

setting B = diag
(

1
y>
i yi

)
.

Our iterative scheme starts with B = I and iterates until
both Y and B do not change. It outputs Z =

√
BY as the

solution for the spherical embedding with unit norm.

2.2.3 Computational Scheme

Reconstructing the weight matrix Given the Fourier
transform vectors for all of the projections, we first build the
K nearest neighbors for each FTvector based on the L2 dis-
tance defined in (7). Note that a number of standard ways of
measuring the distance between two high dimensional vec-
tors have been proposed. Examples include the L1 norm,
L2 norm, λ2 measure, and Bhattacharyya distance. In this
work, we adopt the widely used L2 norm.

dL2(A,B) = ‖
−→
FA −

−→
FB‖ (7)

where
−→
FA and

−→
FB denote differently oriented FTVectors re-

spectively.
To reconstruct the weight matrix W , we will solve the

following least square optimization to minimize the recon-
struction error:

ε(W ) =
n∑

i=1

‖xi −
∑
j

W(i,j)xj‖ (8a)

s. t.
∑
j

W(i,j) = 1 (8b)

where xi denotes the i-th FTvector and j denotes its j-th
neighbor and W is the reconstruction weight matrix

Determining view angles Given the weight matrix W ,
the view angles are determined as follows:

1. Apply sLLE for spherical embedding of FTVectors
with reduced dimensionality D = 2. This yields the
two dimensional representation for each projection.

2. Let
−→
Zi denote the i-th embedded point. Apply the in-

verse trigonometric function, arctangent, to the coordi-
nates of embedded points for calculating the initial set
of view angles,

ϕi = arctan

(
Zi(2)

Zi(1)

)
. (9)

3. Sort the view angles (ϕ1, ϕ2, . . . , ϕn), uniformly rear-
range them along the circle, and associate the refined
view angle set to the original projections set.

3. Experimental Results

sLLE was implemented on a Pentium D 3.2GHz com-
puter with 2G RAM running Windows XP. Our focus is on
2 dimensional tomographic reconstruction with unknown
view angles.

3.1. Orienting Points on a Circle

In this experiment, we test sLLE using a toy model. This
test starts by generating a uniform set of data points on a
circle with equal angular sampling. The number of the data
points, N , is set at 100. The data is then randomly shuffled
and we use the sLLE to re-organize the points and embed-
ded them on a circle. In this experiment, each data point
is two dimensional. Figure 2 (A) illustrates the original
data points on the circle (blue cross). We find the K (we
use 15 here) nearest neighbors for each data point accord-
ing to the L2 distance metric. The weight matrix is recon-
structed based on (8a). In Figure 2 (B), we plot the esti-
mated coordinates as red circles and super-impose the orig-
inal data which is plotted as blue crosses. Note that the es-
timated data points are only slightly different from the orig-
inal ones, which indicates the good performance of sLLE
on the spherical constrained problems. Figure 2 (C) plots
the results after further refinement of the initial estimated
coordinates (see step 2 and 3 in section 2.2.3). It is clearly
seen that refined coordinates (red circles) exactly match the
original coordinates (blue crosses). To evaluate the estima-
tion of the angle before the refinement, we calculate the
mean squared error (MSE) for the estimated angles using
original angles as ground truth. The MSE is 0.0036 be-
tween the original 100 points and the estimated ones, which
is less than 6% of the angular sampling rate. This toy ex-
periment mainly demonstrates the feasibility of our sLLE
computational scheme for the spherically constrained prob-
lems. The applications of the sLLE on the more challenging
tomographic reconstruction tasks will be discussed next.

3.2. Tomographic Reconstructions

In this experiment, we verify the performance of sLLE
for view angles estimation with tomographic reconstruc-
tions of different types of images including a phantom
image, one MR brain image, and two cryoEM density
images. The MR images are chosen from the Whole Brain
Atlas (http://www.med.harvard.edu/AANLIB/),
which provides a large set of MR images for both
normal and diseased brains. The cryoEM den-
sity images are available from the EM database
(http://www.pdbj.org/emnavi/). In particu-
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Figure 2. Toy experiment. Three figures show the reconstruction
result from a toy experiment of orienting the points sampled from
a circle. Figure (A) plots the sampled points on the circle (blue
crosses). There are 100 points uniformly sampled on the circle.
Figure (B) plots the estimated coordinates for the sampled points
in (A). The estimated points are marked as red circles and the orig-
inal sampled points are blue crosses. Figure (C) plots the results
after further refinement. We find that the refinement leads to a ex-
act overlap between the reconstructed points and original sampling
points, which demonstrates the good performance of sLLE on this
toy problem.

lar, we use the images with IDs 5030 and 1713 respectively
in our experiments.

The comparison between LLE and sLLE is in terms of
the quality of reconstruction. We used the procedure de-
scribed in Section 2 for our experiments. For each image,
we generate different number of the projections from a set
of view angles ranging from 0◦ to 360◦. The view angles
are estimated based on the projections data using our pro-
posed method, and the images are reconstructed by using an
inverse Radon transform. We demonstrate the performance
by comparison between the original and reconstructed im-
ages.

Figure 3 compares the original images (A1, B1, C1, D1)
and the corresponding reconstructed images underneath.
Figure 3 (A2, B2, C2, D2) illustrates the reconstruction re-
sults of original images by LLE, and Figure 3 (A3, B3, C3,
D3) illustrates the reconstruction result of original images

Figure 3. Comparison LLE and sLLE for tomographical recon-
struction. Different types of the images are used in the compari-
son. Figure (A1, B1, C1, D1) depict the original phantom image,
a MR brain image, a ribosome cryoEM image, and a Cyanophage
cryoEM image, respectively. See the text for details. Figure (A2,
B2, C2, D2) show the images as reconstructed by the LLE algo-
rithm. Figure (A3, B3, C3, D3) are the images as reconstructed
by sLLE. Visually one can observe that sLLE outperforms LLE in
the reconstruction of non-symmetric images; the first three recon-
structions reasonably recover the original images. However, sLLE
fails in the last case because of the internally icosahedral symme-
try of the virus structure.
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Image PSNR MSE
Phantom 18.5353 0.0109
MR Brain 35.4612 0.0003
CryoEM-1 37.1278 0.0002
CryoEM-2 — —

Table 1. Evaluation of Reconstruction Quality

by sLLE. It is clear that sLLE outperforms the LLE in these
reconstruction problems. From the reconstructed images,
we can also see that the first three images (Figure 3 (A3, B3,
C3) are well reconstructed subjected to an arbitrary rotation
of the original images. Therefore, we find that the image
can be reconstructed with a high quality if the images are
not symmetric. Figure 3 (D3) shows an unsuccessful re-
construction. This is due to the inherent symmetry of the
image, a limitation of our sLLE method which we discuss
further in Section 4. Note that the refinement of estimated
angles has been applied on this experiment (see step 2 and
3 in section 2.2.3).

We further quantitatively verify the reconstruction per-
formance of sLLE by comparing the original image with the
reconstructed image. In our test, we cannot directly subtract
the original from the reconstructed image as there is an ar-
bitrary rotation of the reconstructed image. However, the
registration of the two images can remove the effect of the
arbitrary global rotation. In this experiment, the registration
between original and reconstructed images is trivial as the
correspondence between the randomly shuffled projections
and the re-organized projections can be easily tracked. The
global rotation angle can be easily retrieved by finding the
difference between any corresponding pairs. For example,
we can track all of the projections of the original image,
find all of the relative positions in the re-organized projec-
tions sequence, and then compute the average of the rotation
angle. We provide two quantitative measures for the recon-
struction performance: one is the peak signal-to-noise ratio
(PSNR), and the other is mean squared error (MSE), which
are calculated using (10) and (11) below. The image on the
left is the original image, the middle image is reconstructed
from 512 projections and the image on the right is registered
by the method described above. Table 1 presents the results
of the evaluation of the reconstruction quality. The result
demonstrates that sLLE yields good quality reconstruction
of a variety of images, which indicates that it is very useful
in tomographic reconstruction with unknown view angles.
The quantitative measures of MSE and PSNR are not avail-
able for CryoEM-2 image (last row in the table) because
sLLE fails in the reconstruction in this test.

MSE :=
1

mn

m−1∑
i=0

n−1∑
j=0

[I1(i, j)− I2(i, j)]
2 (10)

where I1 and I2 denote two images respectively, and m and
n denotes the size of the image

PSNR = 20 log10(
MAXI√

MSE
) (11)

where MAXI denotes the maximum possible pixel value
in the input image.

3.3. Noise Robustness

In practice, the image is often corrupted by noise dur-
ing the acquisition process. Therefore, it is of great interest
to check if sLLE is robust to noise. We mainly focused
on additive noise in our experiments. We chose the brain
MR image as our experimental subject, generated a set of
the projections from 512 view angles randomly, and added
zero mean Gaussian noise to the recorded projections. The
standard deviation of the additive noise is determined as fol-
lows:

SNR = 10 log10(
Signal

Noise
) (12)

where Signal and Noise are the standard deviation of the
noiseless projections and the noise respectively.

Figure 4 shows the reconstruction results. Our proposed
method demonstrates good performance for the noisy pro-
jections. From the Figure 4 (D-F), we can conclude that the
reconstruction quality is only slightly affected by the noise
if the value of the SNR is above 5B. We can find that sLLE
works even when SNR drops down to 0.5dB (see Figure
4 (A)), which is worse than that encountered in most real
world scenarios.

4. Discussion and Conclusions
LLE has demonstrated its applicability in various areas

including pattern recognition, computer vision, image pro-
cessing, and medicine. While it is a versatile dimensionality
reduction technique, LLE is not able to embed the points on
a non-flat manifold such as a sphere. This limits the ap-
plicability of LLE in certain situations. In this paper, we
propose a novel approach to constrain the embedding points
on a sphere. The extension of LLE leads to a new dimen-
sional reduction algorithm, the spherical locally linear em-
bedding (sLLE). sLLE is shown to perform well on a set of
phantom, MR and cryoEM images. We conclude by briefly
summarizing the properties, application and limitations of
our algorithm below.

Properties The proposed sLLE algorithm describes a new
method for embedding high-dimensional data on a sphere
with lower dimensionality. sLLE addresses both prob-
lems of dimensionality reduction and spherical constraint
for the embedding. As a derivative of the LLE algorithm,
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Figure 4. Robustness Test at Different Noise Levels. The six fig-
ures demonstrate the reconstruction results from noisy projections
by sLLE. From Figure (A) to Figure (F), the projections are cor-
rupted by the noise to increasingly different extents. The signal to
noise ratio (SNR) underneath the figure indicates the level of the
noise. We can conclude, based on the observation and comparison
of the six reconstructed images, that our method is robust to noisy
data. sLLE has shown a good performance in reconstruction when
SNR is larger than 5 and performs reasonably even when the SNR
is around 0.5 dB, in Figure (A).

sLLE inherits the attractive features of LLE such as nonlin-
ear dimensionality reduction, unsupervised learning with-
out much prior knowledge about the data, and global op-
timization. Primarily due to these advantages, LLE has
gained an explosive popularity in a number of the research
areas. Our sLLE expands the applicability of the LLE al-
gorithm so that it can be used to map the high-dimensional
data onto a sphere with lower dimensionality. In addition,
sLLE leads to a general formulation of constrained dimen-
sionality reduction. Our future work is on extending LLE
to other natural constraints such as cylinder and tori.

Applications It is known that the estimation of view an-
gles for projections is critical to improve reconstruction
quality in the certain applications of tomography. We have
applied the proposed framework for the tomography recon-
struction in one of the cases. Extensions of the basic frame-
work would further expand the applications of sLLE in dif-
ferent areas according to specific requirements. The sLLE
framework would possibly be crucial to address the needs
of patients in designing next generation tomographic equip-
ments. For instance, nowadays, the patients are required
to remain motionless during a long scanning period, which
increases discomfort and anxiety of the patients and leads
to measurement error and complications in analysis. Our
method potentially can be used to minimize the effects of
these constraints. In addition to medical images, we expect
applications of sLLE where the global positioning of local
data observations is crucial to perform inference on the data.
Examples include sensor networks and NMR spectroscopy
[16, 21]. The current embedding of the points in those ap-
plication are currently not constrained by specific topology.
However, the embedding of the data with constraints de-
rived from prior knowledge would largely improve applica-
bility of current techniques.

Limitations We note that sLLE suffers from some limita-
tions. As we see in Figure 3, sLLE fails to provide a rea-
sonable reconstruction for perfectly symmetric images. The
symmetry results in identical projections from the different
view angles. Therefore, it is not easy to associate these pro-
jections with different view angles as the projection data
themselves are not distinguishable from each other. Instead,
a possible solution would be to integrate the symmetry of
the object before estimating the view angles. Symmetry
estimation is an active research area in computer graphics,
computer vision and image processing [8, 11, 20]. We will
address this inherent limitation in our future work by incor-
poration potential symmetry information in our framework.
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