
Computer-Aided Design 44 (2012) 537–553
Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Towards locally and globally shape-aware reverse 3D modeling
Manish Goyal a, Sundar Murugappan a, Cecil Piya a, William Benjamin a, Yi Fang a, Min Liu c,
Karthik Ramani a,b,∗
a School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
b School of Electrical Engineering (by courtesy), Purdue University, West Lafayette, IN, 47907, USA
c Institute of Manufacturing Engineering, Tsinghua University, Beijing, 100084, China

a r t i c l e i n f o

Article history:
Received 15 December 2010
Accepted 17 December 2011

Keywords:
Reverse 3D modeling
Digital shape reconstruction
CAD model parameterization
Volumetric segmentation

a b s t r a c t

The process of re-creating CAD models from actual physical parts, formally known as digital shape
reconstruction (DSR) is an integral part of product development, especially in re-design. While, the
majority of current methods used in DSR are surface-based, our overarching goal is to obtain direct
parameterization of 3D meshes, by avoiding the actual segmentation of the mesh into different surfaces.
As a first step towards reverse modeling physical parts, we extract (1) locally prominent cross-sections
(PCS) from triangular meshes, and (2) organize and cluster them into sweep components, which form the
basic building blocks of the re-created CADmodel. In this paper,we introduce twonewalgorithms derived
from Locally Linear Embedding (LLE) (Roweis and Sauk, 2000 [3]) and Affinity Propagation (AP) (Frey and
Dueck, 2007 [4]) for organizing and clustering PCS. The LLE algorithm analyzes the cross-sections (PCS)
using their geometric properties to build a global manifold in an embedded space. The AP algorithm, then
clusters the local cross sections by propagating affinities among them in the embedded space to form
different sweep components. We demonstrate the robustness and efficiency of the algorithms through
many examples including actual laser-scanned (point cloud) mechanical parts.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Digital shape reconstruction (DSR) in Computer Aided Design
(CAD) is a process which involves extraction of high level
parametric information from low level mesh or point cloud
data. With the help of various CAD modelers available today,
this high level parametric information is converted into surface
parameterizedmodels that can bemodified or analyzed for further
improvement anddevelopment. The initial complex and important
step in DSR is segmentation of the mesh model [1].

Two major approaches that have been developed in seg-
menting a mesh model include surface-based and volume-based
techniques (commonly known as feature based). Fig. 1 shows the
difference between the two approaches. Both these approaches in-
volve segmenting a mesh model into either surfaces or volumes.
Digital model reconstruction through current surface-based seg-
mentation methods does not lend itself to intuitive and flexi-
ble manipulation in contrast to what a parameterized CAD solid
model does (see Fig. 1). Parameterized CAD models are associated
with high level shape definition parameters such as radius, angle,
width, and geometric constraints, while surface-based representa-
tions have low-level shape parameters such as knots, weights, and

∗ Corresponding author at: School of Mechanical Engineering, Purdue University,
West Lafayette, IN, 47907, USA. Tel.: +1 765 494 5725; fax: +1 765 494 0539.

E-mail address: ramani@purdue.edu (K. Ramani).

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2011.12.004
control points which are counter-intuitive to manipulation, espe-
cially for designers [2]. For example, from a functional design point
of view, a digitally reconstructed model of an aerospace engine
blade cannot embody original hydrodynamic properties without
the parametric representation. Moreover, reconstructing a solid by
stitching surfaces usually results in an inaccurate and inconsistent
CAD model, and is also time consuming and laborious. The evolu-
tion of CAD modelers from surface to volume based design has led
the volume based approach to gain more importance since volu-
metric or feature segmentation represents the design intent more
closely and accurately.

Our overarching goal is to obtain direct parameterization of
3D meshes, by avoiding the actual segmentation of the mesh
into different surfaces. Fig. 3 shows the difference between the
traditional reverse engineering pipeline and our approach. As a
first step towards reverse modeling physical parts, we extract
(1) locally prominent cross-sections (PCS) from triangular meshes,
and (2) organize and cluster them into sweep components. These
sweep components form the basic building blocks in recreating a
CAD model of the original object with user interaction.

We refer to the extracted cross-sections that are closed as
‘Full Prominent Cross-Sections’ (FPCS) and those that are open as
‘Partial Prominent Cross-Sections’ (PPCS). Feature intersection is
addressed by the introduction of PPCS created in the regions of
sweep intersections (red colored PCS in center model of Fig. 2). An
individual set consists of a large number of uniformly distributed
PCS, each of which approximates a local sweep in the small region

http://dx.doi.org/10.1016/j.cad.2011.12.004
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:ramani@purdue.edu
http://dx.doi.org/10.1016/j.cad.2011.12.004

538 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Fig. 1. Difference between surface–volume segmentation and subsequent
parameterizations.

around that PCS. Fig. 5 shows a set of local cross-sections which
collectively represents a single volumetric sweep segment. It is not
feasible or necessary to cover each and every mesh facet with PCS
as the amount of time and data will increase drastically for dense
mesh models. Therefore, for the purpose of extraction we assume
that for a small region around each PCS, the sweep cross-section is
constant and represented by a single PCS.

In this paper, we introduce two new applications of the
algorithms—Locally Linear Embedding (LLE) [3] and Affinity
Propagation (AP) [4] for organizing and clustering PCS. The LLE
algorithm analyzes the cross section (PCS) using their geometric
properties to build a global manifold in an embedded space. The
AP algorithm then clusters the local cross sections by propagating
affinities among them in the embedded space to form different
sweep components. Themethodmayproducemultiple but feasible
sweep components corresponding to a particular portion of the
original part. In such cases, user interaction is required to resolve
the ambiguous interpretations. We also show the construction of a
CAD model from the extracted sweep components using CATIATM .

We clearly distinguish that our intent is not to reconstruct the
original object as designed in a complete sense. We characterize
our capabilities as being able to handle those shapes with swept
volumes where the ‘‘non-interacting’’ parts carry enough evidence
together with the partial cross-sections. For example, when shell
operations take out a large portion of the sweep, our method will
not work.

1.1. Background

Our semi-automatic approach transforms the physical part into
a set of generalized sweep components. A generalized sweep in-
volves two components namely, the 2-dimensional profile(s) or
cross-section(s) being swept and the 3-dimensional trajectory (tra-
jectories) along which they are swept orthogonally. The different
modeling operations typically used in creating CADmodels in tools
like Pro/ENGINEERTM are nothing but special cases of a generalized

Fig. 3. Traditional reverse engineering pipeline versus our approach.We obtain the
direct parameterization of CADmodel by completely skipping the reconstruction of
surfaces.

sweep. For example, an ‘extrusion’ is a sweep operation involving
a ‘constant’ sketch swept along a ‘linear’ trajectory. The other cases
are listed in Table 1. For any 2-dimensional cross-section swept
along a trajectory (Fig. 4), the swept volume canbedescribed as [5]:

X(u, s) = T (s)Γ (u) + Ψ (s) (1)

where u = [u1, u2]T ,Γ (u) represents a section being swept (a sur-
face parameterized in two variables (u1, u2)), Ψ (s) is the swept
path parameterized by the arc length s, T (s) the transformation
matrix andX(u1, u2, s) characterizes the set of all points inside and
on the boundary of the swept volume. The swept surface Γ (u) is a
2-dimensional section, hence its boundary can be represented by
a single parameter t . Thus Eq. (1) can be represented as:

X(t, s) = T (s)Γ (t) + Ψ (s) (2)

X(t, s) characterizes the set of all the points on the boundary of
sweep. Given a set of local cross-sections representing a single
sweep, we can compute the transformation T (s) between any two
consecutive sections. Each individual cross-section can be param-
eterized to computeΓ (t). And finally, the trajectory equationΨ (s)
can be determined by approximating a curve which is perpendic-
ular to each cross-section and passes through their centroid.

In the following section, we introduce two new algorithms LLE
and AP, used to build a global manifold and subsequently cluster
them to obtain sets of PCS. To the best of our knowledge these
ideas are new to the field of DSR or CADmodel segmentation. These
two algorithms can be adapted to segment any data set having a
representation of local distances.
Fig. 2. Volumetric understanding: (From Left to Right) mesh model, PCS generation (full cross-sections are shaded in blue and partial cross-sections in brown), and sets of
PCS representing different sweep segments obtained after clustering. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 539
Table 1
The commonly used modeling operations in a CAD tool (Pro/E) that can be represented as generalized sweep.

CAD operation Sketch/cross-section Trajectory Example

1 Extrusion Constant geometry and topology Linear

2 Revolve Constant geometry and topology Circular arc

3 Helical sweep Constant geometry and topology Spiral curve

4 Sweep Constant (or) variable geometry, but same topology Any curve

5 Blend/loft Variable geometry, but same topology Linear

6 Parallel blend Constant geometry and topology Linear

7 Rotational blend Constant (or) variable geometry, but same topology Arc

8 Swept blend Constant (or) variable geometry, but same topology Any curve
Fig. 4. Representation of basic sweep.

Fig. 5. Set of PCS representing a sweep section.

1.1.1. Locally Linear Embedding (LLE)
Roweis et al. (LLE) described an unsupervised machine learn-

ing algorithm in [3] that computes low-dimensional and neigh-
borhood preserving embedding of high-dimensional data called
Locally Linear Embedding (LLE). The data, which is assumed to
lie on a nonlinear manifold, is mapped to a single global coordi-
nate system of lower dimensionality. The mapping is derived from
the symmetries of locally linear reconstructions, causing the actual
computation of the embedding to reduce to a sparse eigenvalue
problem. The algorithm attempts to compute a low-dimensional
embedding with the property that nearby points in the high-
dimensional space remain nearby and co-located to one another in
the low-dimensional space. This algorithm only requires distances
between nearby points to create the low-dimensional embedding.
In contrast, various other dimensionality reduction algorithms
require distance measure between distant points as well. For ex-
ample, algorithmbasedonmultidimensional scaling (MDS) [6] em-
bed data by preserving straight line distances between all pairs of
points. Even in recent algorithm such as ISOMAP [7] these distance
are measured along the shortest path along the input manifold.

The LLE algorithm can be summarized as follows:

1. Discover the K -nearest neighbors of a point. Using the pairwise
distances between points compute the set of nearest neighbors
Ni ∈ V of the point Xi

2. Compute the reconstruction weights Wij; in this step a each of
the nearest neighbors is assigned aweightWij whichminimizes
the error

E(W) =


i

Xi −


j

WijX


2

. (3)

The weights Wij represent the amount of contribution of each
of the point while reconstructing the point Xi. The constraints
on this minimization are


j Wij = 1 andWij = 0∀j ∈ V/Ni

3. Embedding in reduced dimensional space: In this step the high
dimensional coordinates Xi are embedded in a low dimensional
space d ≪ D by taking the d + 1 smallest eigenvectors and
discarding the bottom most.

Mij = δij − Wij − Wji +

k

WkiWkj. (4)

540 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Here δij = 1 when i = j or 0 otherwise. This eigen value
optimization results in the d dimensional coordinates which
optimize the function C(W) =


i |Yi −


WijYj|

2 using the
weights computed in step 2.

1.1.2. Affinity Propagation (AP)
Affinity Propagation by Frey and Dueck [4] is an assumption-

free clustering algorithm that simultaneously considers all data
points as potential exemplars, exchanges real valued message
between data points until a high-quality set of exemplars and
corresponding clusters gradually emerges.

Affinity Propagation takes as input a set of pair-wise similarities
between data points and finds clusters on the basis of maximizing
the total similarity between data points and their exemplars.
Affinity propagation sends two types of messages between data
points: (i) Responsibilities are sent from data points to candidate
exemplars and reflect the evidence of how well-suited the
message-receiving point is to serve as an exemplar for the sending
point. (ii) Availabilities are sent from candidates exemplars to data
points and reflect the evidence of how appropriate it would be for
the message-sending points to be the exemplar for the message-
receiving points.

The algorithm can be summarized as follows:
1. Input: pair wise similarities s(i, j) and set initial availabilities

a(i, k) = 0.
2. Repeat: Responsibilities and availability updates until conver-

gence

r(i, k) = s(i, k) − max
k′ s.t k′≠k

{a(i, k′) + s(i, k′)} (5)

a(i, k) = min


0, r(k, k) +


i′ s.t. i′∉i,k

max{0, r(i′, k)}


. (6)

3. Output: Clusters.

1.2. Contributions

In this paper, we have
• Improved our previous algorithm to extract PCS [8], by decreas-

ing the number of spurious PCS and subsequently eliminating
them by performing a simple neighborhood analysis using a
similarity measure computed between PCS.

• Developed an algorithm to construct the global manifold from
local distances between computed cross-sections using Local
Linear Embedding (LLE).

• Developed an assumption-free clustering method based on
affinity propagation [4] to group the cross-sections into sweep
segments. These segments then form the basic building blocks
of the reconstructed CAD model.

2. Related work

2.1. Segmentation

A critical step in DSR is segmentation and there are a large
number of segmentation methods that exist today. They can be
broadly divided into two categories: (i) 2d or surface-based and
(ii) 3D or volume-based. Surface segmentation is achieved by
segmenting the part into different surfaces. Similarly volumetric
segmentation requires segmenting a part into different volumes
or features. The differences between the two are highlighted in
Fig. 1. Vrady et al. [1] provide a comprehensive survey in this area,
which outlines the main flow from data capture, pre-processing,
segmentation to a final CAD model creation. The main theme
that recurs in all the prior work is related to estimating the local
geometries (surface normals and curvature), surface segmentation
(division of the points based on some ‘surface’ characteristics),
classification (such as cylindrical) and reconstruction (finding the
best fit) [9].
2.1.1. Surface segmentation
The area of mesh analysis has been explored in detail and a

large number of methods have been proposed to segment the
mesh model into different surfaces. Recently, there have been
new methods that attempt to reconstruct surfaces. They use this
surface information to extract shape feature by stitching surfaces
together. Vrady et al. [10] combines the result from ‘Morse theory’
with special geometric modeling algorithms. They create a CAD
like structure reflecting the original design intent by separating
the primary region from highly curved transition region. Ye et al.
[2] introduce an automatic surface based modeling strategy for
organic shapes. Yang et al. [11] uses a moving least-square surface
as underlying surface representation and also uses its properties
to enable curvature adaptive intersection with CAD geometry.
A benchmark study of 3D mesh segmentation is done by Chen
et al. [12], which concluded that not one particular algorithm is
better than the other. Also, the algorithms based on nonlocal shape
feature resembles more closely to human perception of mesh
segmentation.

Lavou et al. [13] presents a curvature based technique that
decomposes a mesh object into homogeneous surface segments.
Attene et al. [14] fit surfaces to possible primitives such as planes,
spheres and cylinders by minimizing the approximation error.
There are different attributes (symmetry, convexity, geodesic
distance, etc.) based on which surface segmentation can be
performed. Among them, planarity, elements angles and curvature
are more appropriate and are widely used to analyze a surface of a
mesh model as surveyed by Shamir [15].

Stamati and Fudos [16] describe a method that decomposes
a point cloud into regions belonging to the constituent features
of the corresponding CAD model. The method determines the
concavity intensity, i.e., the shortest distance between a point
and the 3D convex hull of the point cloud for each point in the
point cloud and further uses this concavity intensity information
to segment the point cloud. This method fails to fully extract
volumetric information about the model. It only segments the
surface components into constituent parts. Weiss et al. [17]
describe a method that performs the surface reconstruction
process by fitting surface patches over specific segments of the
point cloud. Each patch represents a unique segment of themodel’s
surface.

2.1.2. Volumetric segmentation
Volumetric segmentation is based on human perception, which

is, how humans will decompose a part into different components.
For example, a cat model can be decomposed into claws, legs,
head and tail. Similarly a CAD part shown in Fig. 1 can be
decomposed into seven different segments as marked in different
colors. The aim of volumetric segmentation is to find meaningful
volumetric components that correspond to 3D semantic parts [15].
Approaches to obtain volumetric segmentation proposed by
Mortara et al. [18,19] obtain curves by taking intersection of balls
centered on a vertex and mesh. They are limited to tube like
structures and are applied for skeleton detection.

A studyon3DCADmodel parameterizations using both surface-
based and part-based techniques is done by Agathos et al. [20]. The
region growing methods by Zhang et al. [21] segment part based
on curvature information and a user defined threshold for high
negative curvature. Zuckerberger et al. [22] uses a dual graph of
polyhedral surface to collect convex area but faces the problems of
over segmentation.

Katz et al. [23] describe a method to hierarchically segment a
3D mesh into constituent core and secondary components. First, a
pose invariant representation of themeshusingmulti-dimensional
scaling is generated followed by detection of feature points
through user defined criteria to establish secondary components

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 541
within the model. The core component is extracted through
‘spherical mirroring’ and secondary segments using breadth first
search. This method is analogous to our work in terms of
segmenting a cad model into constituent sweep components.
However, it only generates surface based segmentations and fails
to extract volumetric information of the model. Benk et al. [24]
describe a method that entails constraint fitting in both 2D and
3D. It describes a set of constraints most frequently encountered
in reverse engineering applications, and proposes a methodology
to recognize these constraints within point sets. In our work, the
extracted cross-sections are represented as a collection of points.
The next logical step is to parameterize the cross-sections and the
sweep trajectory to construct features in a CAD modeler. We will
employ a similar method to constraint fit our PCS.

Li et al. [25] describe a set of algorithms tailored towards detect-
ing the presence of specific geometric patterns and characteristics
within point sets/meshes. It is very likely that such patterns exist as
a result of intentional decisions made during the design of the cor-
responding model, and such design intent need to be coherently
understood and reintegrated during the process of digital shape
reconstruction. The PCS provides a strong prospect to detect spe-
cific geometric patterns and consistencies, and can be facilitated by
evaluating shape and positional characteristics of the PCS.

Shapira et al. [26] describe a method that attempts to attain
fundamental volumetric understanding of the geometry before
segmenting the surface. The shape diameter function relates the
exterior surface of a model to its inner volumetric characteristics,
since it behaves as a parameter that represents distances between
the model surface and the medial axis of the model. It is analogous
to our work in terms how it utilizes volumetric information to
extract constituent components of a geometric model.

More recent work by Ke et al. [27] suggests a sectional strategy
for modeling point clouds without triangulation. Slicing, curve
feature recognition, and constrained fitting were introduced. The
focus of theworkwas post processing of the profiles for recognition
of the feature points in a curve for splines and constraints. Then
they constructed the surfaces from the cross-sections by skinning.
They did not deal with complexities posed by feature intersections
or sweeps along a trajectory. Rather, they resorted to looking at
the normals of the entire object on the Gauss sphere at one time to
see the translational patterns. This limits their approach to global
structure and ignores the local geometries of a mesh object. In
contrast, ourmethod analyze the normals of local section on Gauss
map to obtain prominent cross-sections (PCS), and then combine
PCS to form global structure.

Yilmaz et al. [28] have attempted to reconstruct regions of a
CAD model from a point cloud using the notion of cross sectional
contours to describe the local sweep segments. However, because
the process of cross section specification and orientation in this
method is performed manually, it lacks an automated nature.
On the contrary, our method is tailored to utilize the k-means
and gauss-map algorithms to automatically detect appropriate
locations and orientations for each cross sectional contour.
Furthermore, the reconstruction performed in [28] only takes into
account the cross sections residing immediately adjacent to the
reconstructed region and therefore fails to consider any geometric
pattern that may be prevalent within the neighborhood that
extends beyond the adjacent points of that region. In our method,
the PCS are distributed across the entire sweep segment and not
just at points adjacent to the reconstructed region. This enables
our method to retain a greater amount of geometric information
during the reconstruction of the sweep segments.

Our method is different in aim, scope, and approach from
the past work. We call our method, ‘shape-aware volumetric
understanding’ as we completely skip reconstructing surfaces
(typically done in reverse engineering) and directly extract higher
level, volumetric information from mesh models. Each set of PCS
represents a volumetric sweep component and is unique in terms
of cross-section and/or trajectory.
Fig. 6. System overview: takes a mesh model as input. Computes PCS and
subsequently cluster them to form different sets of PCS.

3. System overview

Initially, Our method extracts a large number of PCS spanning
across themeshmodel (Section 4.1).We then compute a similarity
vector Vij (Section 4.2) which represents the transformation
and shape similarity between PCS Pi and Pj. ∥Vij∥ gives us a
local distance measure between any two PCS and we use this
information to filter out the spurious PCS by doing a simple
neighborhood analysis (Section 4.3). Next, Vij is used to map
the remaining PCS to a point in d-dimensional space (Section 5)
by an embedding algorithm based on Locally Linear Embedding
(LLE) [3]. Thismapping is such that the Euclidean distance between
any two points in the embedded space represents their relative
global distance measure in the original space. Thus, the point
distribution obtained is a true global distribution and corresponds
to transformational and shape similarity between two PCS. Finally,
the Euclidean distance in the transformed space is used for
clustering these points into N different clusters (Section 6). Here
the value of N is unknown as there can be any number of sweep
segments in a given mesh models. The relaxation of not having
prior knowledge of N is a distinguishing characteristic of our
algorithm. To obtain such sets of PCS we adapted an assumption-
free global clustering algorithm called ‘Affinity Propagation’ (AP)
[4]. It is assumption-free because the number of clusters is not
needed as input. It is global because it considers the possibility of
clustering every two points, even when they are located far away
from each other. After clustering, each point is mapped back to its
corresponding PCS to obtain N sets of PCS, where each set (group
of PCS) represents a single continuous sweep segment. When the
points in each of the clusters is replaced by their corresponding PCS
we get sets of PCS each of which corresponds to a unique sweep
segment in the input mesh model. Fig. 6 shows the complete flow
of our method.

4. Robust computation of PCS

The prominent cross-section (PCS) at a point is a 2-dimensional
section that represents the cross-section of global sweep passing

542 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Fig. 7. Different steps in PCS computation at a given seed point P (red dot): (a) initial cross-section obtained from Kmax × N at seed point, (b) normals obtained from initial
intersection, mapped on the Gauss map, (c) intermediated cross-section obtained from least-square fit of normals on Gauss map, (d) normals obtained from intermediate
intersection, mapped on the Gauss map, (e) final PCS obtained after convergence, (f) plot shows normals of final PCS on Gauss map. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. PCS computed at two different seed points P1, P2 and their corresponding
sectional Gauss map. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

through that point. For example, Fig. 8 shows two seed points P1
and P2 and their corresponding swept cross-sections PCS1 and
PCS2 (yellow shaded area), both of which are a part of same sweep
segment. We obtain a large number of such uniformly spaced seed
points on ameshmodel and then compute their corresponding PCS
using the algorithm described in the next section.

In our previous work [8], we defined the concept of sectional
Gauss map and used it to find PCS at any given point on a mesh
object. A sectional Gauss map is a map that transforms a unit
normal on a surface to a point on a unit sphere. Fig. 8 also shows
the sectional Gauss map corresponding to the PCS1 and PCS2.
Fig. 7 shows few intermediate steps during the computation of a
PCS. Fig. 7(a) shows a point P and cross-section on initial plane,
which is computed using the curvature and normal information
at P (Kmax × N). N(t) is a mapping that maps the unit normal of
all themesh–plane intersection points to that on the Gauss sphere.
Fig. 7(b) shows plot of unit normals onGaussmap.MappingN−1(t)
orients the initial plane on the point P along the newly fit plane
obtained from the normals on Gauss map. This process is repeated
several times until the direction of initial plane (red line on Gauss
map) converges to the direction of the fit plane obtained on Gauss
map. For more details on the algorithm, computation of PPCS and
its robustness please refer to [8].

The algorithm that computes PCS presented by Sellamani
et al. [8] generates some outliers that are globally valid but locally
Fig. 9. Spurious PCS: (a) a spurious PCS obtained at the end of sweep section, (b)
three spurious PCS obtained due to failure in angle threshold of a densemeshmodel.

are not part of the expected swept volume. Fig. 9 shows the
outliers (black curves) generated alongwith a largenumber of good
PCS. Outliers may be generated: (i) When, stopping criteria fails
at certain points due to high noise and uneven mesh density in
underlying mesh model (Fig. 9(a)), (ii) At the ends of the parent
sweep section (Fig. 9(b)), (iii) Where there is no underlying sweep
evidence. On the large number of parts tested, the number of
outliers varies between 5% and 15% of the total PCS. These bad PCS
have to be removed before any further processing can be done and
specially for automation.

In next the section, we present an improved version of our
previous algorithm to compute the prominent cross-section. In
subsequent sections we present an approach towards identifying
and removing these locally invalid PCS.

4.1. Algorithm to compute PCS

In our previous approach [8], the computation of PCS is initiated
at a seed point from a single input plane direction: Kmin × N or
Kmax×N as chosen by the user. Now, unlike our previous approach,
two PCS’s are computed at each point from the two possible initial
planes. For example, the initial plane shown in Fig. 10 corresponds
to Kmax ×N . In most of the cases, where we have only one possible
sweep direction, both the initial planes converge to the same final
PCS. However, in few cases, such as in closed shapes (ellipsoid),
presence of intersecting features (a cylinder with a hole), when the
seed point lies at the boundary of the underlying sweep (as shown
in Fig. 11), there could bemore than one possible sweep directions
and we can obtain two different PCS.

Out of these two PCS we select the PCS having lower value of
least fit error on final Gaussmap. This is derived from the definition

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 543
Algorithm 1 PCS Computation (Mesh)
for a point pi ∈ sampled points do

PLi = Identify two starting plane (PL1 and PL2) at point (pi)
corresponding to max and min curvature.
for For each plane PLi do

repeat
Identify point normals Ni which intersect with (PLi).
Obtain normals Nj ∈ Ni around pi without any sudden
change in angle.
Plot point normals Nj on sectional Gauss map.
PLi = Find best fit plane on the Gauss map.

until The PLi converges to the threshold.
end for
PL = Min(error(PL1), error(PL2))
Generate PCS using above PL at the point (pi)

end for

Fig. 10. Computation of initial plane at a given seed point. Above plane corresponds
to Kmax × N .

of PCS in [8], that the angle between normals and its cutting plane
should be constant. Hence, all such normals on Gauss map should
lie completely on the fit plane as shown in Fig. 7(f). Thus given
the points on the Gauss map and their corresponding fit plane,
the error value represents the fit quality. Fig. 11 shows two PCS
obtained from two possible initial planes (Kmin × N and Kmax ×

N) at a same seed point. In the same figure, the corresponding
Gauss map shows the plot of surface normal at all the points of
intersection between PCS plane and mesh model. The PCS part of
the parent sweep (brown in color) has amore uniformand constant
distribution of normal on the Gauss map and therefore has a
much lower fit error than second PCS (blue in color). This lower
least fit error hypothesis has been confirmed by experimental
results observed in a wide variety of CAD models that were
tested (visual results can be found in Section 7). Consequently, the
inclusion of a second input plane direction resolves the issue of
extracting of a PCS thatmight seem locally compatible, but globally
incorrect (i.e. not accurately representing a sweep cross section).
Furthermore, in case an inaccurate PCS does happen to pass the
least fit error test, theywill be detected and removed by the outlier
removal algorithmdescribed in Section 4.3. The time complexity of
this algorithm is O(NM). Where N is the total number of sampled
points andM is the number of iterations.

This modified algorithm removes the dependency on the user
choice of initial plane (Kmin × N or Kmax × N). It also improves
the quality of result by choosing the PCS having lower fit error on
the gauss map. This improvement is only effective in cases where
more than one PCS can exist at a given seed point. Hence, the
improvement in result varies across mesh models.

4.2. Similarity vector between PCS

We need a distance measure to create a global manifold of PCS
and we define one based on the geometric properties of PCS.
Fig. 11. Two different PCS obtained at same seed point from two different initial
planes.

Between a pair of PCS: Pi and Pj, we compute a similarity vector
Vij, whose elements are composed of translation, rotation, scaling
and shape similarity. Amato et al. [29] explains the importance of
these elements andMitra et al. [30] andPauly et al. [31] uses similar
measures to detect structure symmetry and regularity. For any two
PCS Pi and Pj, we transform Pj into P ′

j such that the dissimilarity
between P ′

j and Pi is minimum. P ′

j can be represented in terms of Pj
as:

P ′

j = S × Pj × R + T (7)

where T is the translation, R is the rotation and S is the scale
between Pi and Pj. R, T and S are calculated to minimize the error
ϵ below based on the work done in least-sq fitting of 3D points by
Arun et al. [32]

ϵ2
= |Pi − Pj|2. (8)

The only dissimilarity remaining between Pi and P ′

j is the
dissimilarity between their shapes.We label dissimilaritymeasure
of shape between two PCS as D, which captures the shape
difference. For example, Root Mean Square Distance (RMSD),
captures thedifference in shapebetween two sets of points. Finally,
using all the above measures (T , R, S, D) we define a similarity
vector Vij between to PCS Pi and Pj as:

Vij = (Tij, Rij, Sij,Dij). (9)

As each component of this similarity vector measures different
geometric properties, they are quantified within numerical ranges
that differ from one another. Therefore it is likely that one
component can dominate the other three simply because it is
based on a range that exists between large numerical values.
Normalization of the components enables us to quantify each
component on a common scale, where the relative influence of
each component is accurately represented. Eq. (10) illustrates the
rangewithinwhich such normalization can be accomplished. It has
been empirically determined that the ranges that provide the best
normalization are as follows: (a) 0–1 for D, (b) 0 to Tmax/2 for T ,
where Tmax represents the maximum translation observed within
all the points of a given PCS while transforming to another PCS, (c)
0°–90° for R, and (d) 0–10 for S.

(D = 1) u

T =

Tmax

2


u (R = 90°) u (S = 10). (10)

We compute the shape and scale factor similar to the procrustes
analysis based on [33]. We represent the PCS as a curve formed by

544 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Fig. 12. Sampling PCS: (a) each point represents the intersection ofmesh edgewith
final PCS plane, (b) sampled n (n = 100) equally spaced points.

3d-points Xi on a 2d-plane (Fig. 12(a)). To obtain the above four
elements, we first re-sample Xi into n (n = 100) equally spaced
points (PCS = {Xi|i = 0, 1, 2, . . . , 100}) as shown in Fig. 12(b).
Re-Sampling is done by adapting the algorithm presented by
Wobbrock et al. [34]. This step ensures that while calculating the
vector elements the number of points contained in a PCS is uniform
across the model. Also, by maintaining a high value for point
density we minimize the error component while calculating the
shape similarity between any two PCS. The steps to compute the D
and S are explained below.

1. Compute the centroid of each PCS as Ci =


Xi

n and Cj =


Xj

n .
Position the centroid at origin as, Xi = Xi − Ci and Xj = Xj − Cj.

2. Calculate the size of two PCS as Ni = (


(X2
i))

1
2 and Nj =

(


(X2
j))

1
2 and normalize them by its size Xi =

Xi
Ni

and Xj =
Xj
Nj

where new Xi and Xj represents the scale free PCS.
3. Compute covariance matrix A = XT

i Xj.
4. Perform singular value decomposition (SVD) of the covariance

matrix A = U∆V .
5. Compute a measure of the shape similarity Dij = 1 − (trace

(∆))2.
6. The ratio ofNi andNj represent the scale factor Sij = trace(∆)×

Ni
Nj
.

During the above computation we can also obtain the rotation
matrix as VUT . However, VUT obtained, depends on the start point
of two PCS, which may be anywhere within our input. Therefore,
we calculate the rotation similarity as Rij = 1 − |ni · nj|, where ni
and nj represents the unit normal vectors of the plane containing
two initial PCS Pi and Pj. Translation similarity is the Euclidean
distance between centroid of two PCS, Tij = ∥Ci − Cj∥. The time
complexity to obtain the similarity vector is O(N2). Where N is the
total number of PCS obtained on a mesh model.

In the following sections, we use this similarity vector to
identify outlier PCS’s and it is also used to stitch these locally
similar PCS to compute a global distance.

4.3. Removal of PCS outliers

In the next section we propose an algorithm that maps PCS
to points in d-dimensional space while preserving their neighbor-
hood distances. This algorithm performs a neighborhood analysis
to create global embedding of PCS. Therefore, it is important that
each PCS should have rich neighborhood, which is ensured by ob-
taining a large number of PCS distributed uniformly throughout the
mesh. Also, outliers can significantly affect the embedding of PCS,
therefore the input data should also be free from outliers as much
as possible.

We define outliers as the PCS that are not part of the local sweep
component. Therefore, our goal is to remove PCS that are locally
dissimilar. The probability of an outlier appearing as a neighbor
of good PCS is very low because it is not locally similar to the
neighboring cross-sections. We used the distance measure D =

∥Vij∥
2

= (Tij)2 + (Rij)
2
+ (Sij)2 + (Pij)2, to calculate the k-nearest

neighbor for each PCS, (k u 10). The number of times a PCS appears
Fig. 13. Removing outlier PCS using neighborhood analysis.

as a neighbor of any other PCS is defined as its ‘neighborhood
frequency’. We plot a histogram of the cross-sections along the
x-axis with respect to their neighborhood frequencies along the
y-axis. While testing a large number of parts, a threshold value
(neighborhood frequency u 6) is used to filter the outliers.
Fig. 13(b) shows the results obtained after applying the above
approach on parts shown in Fig. 13(a).

The algorithm proposed in the next section is based on
neighborhood formation. On filtering out the outliers by using the
neighborhood frequency, we ensure that the PCS, which are not a
part of the neighborhood formation of other PCS, get filtered out.
This step is quite effective in removing the PCS which are not part
of any local sweep sections. However, there may be some PCS that
are not part of local sweep component but pass this step as they
appear in groups that are locally similar to each other. Such PCSwill
finally appear as separate sets once the PCS are grouped together
to represent different swept volumes. Fig. 13 shows the result
on a standard part. The part in Fig. 13(a) contains few spurious
PCS along with large number of good PCS. The spurious PCS (as
indicated by the arrow) are locally dissimilar and stand out from
their neighbors. Hence, they will not appear in the list of k-nearest
neighbors of any good PCS. Subsequently, such PCS fall well below
the threshold limit of neighborhood frequency and gets filtered out
(Fig. 13(b)).

5. PCS embedding

To achieve a global understanding of the shape, the locally sim-
ilar cross-sections have to be joined together to form continuous
sweep components. The set of cross-sections that make up these
components possess the property that they are locally similar. We
cannot cluster the PCS directly since the similarity vector devel-
oped in Section 4 is locally linear and hence represents local but
not the true global similarity between any two PCS. For example,
the centroidal distance between distant PCS as shown in red in
Fig. 14, is not a correct distancemeasure whenwe look at the com-
plete mesh model. The correct distance can be computed when
centroidal distances of all the PCS lying between them are added
together consecutively.

To obtain a global embedding, we map each cross-section
to a point in d-dimensional space, such that the neighborhood
similarity between a cross-section and its neighbor is preserved
and the resulting distribution is also a better representative of
global distances between non-neighboring PCS (See Fig. 15). This
is achieved by using an unsupervised algorithm that determines
a distribution of high dimensional manifold in a single coordinate
system of lower dimensionality by using local similarity measures.
Among the four elements of the similarity vector, T and R are
3 × 3 transformation matrices while S and D are scalar quantities.
This configuration of the similarity vector is equivalent to a row
vector that comprises of all the basis elements of the T and R
matrices along with elements representing S and D. This implies
that each PCS is represented as a single point embedded in a high

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 545
Fig. 14. Centroid distance in embedded space compared with same distance in
original Euclidean space. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 15. Neighborhoods preserving embedding of PCS obtained from LLE. Each PCS
gets mapped to a point in d-dimensional space. The local covariance between PCS
and its neighbor is preserved in mapped space.

dimensional space, since the distance metric between two PCS is
foundwithin this space. The analysis of such high dimensional data
can be made computationally feasible through the dimensionality
reduction facilitated by the above unsupervised algorithm.

To obtain a global representation of PCS, we first construct the
neighborhood of each PCS by finding their K -nearest (K u 10)
neighbors. We take ∥Vij∥ as a distance measure to find K -nearest
neighbors of PCS Pi by selectingK smallest values of∥Vij∥ j ∈ [1,N],
where N is total number of PCS on the mesh model. ∥Vij∥ will be
close to zero for a PCS and its neighbors as all the four factors of the
similarity converge to zero. For distant PCS, at least one out of these
four should stand out. Only these K -nearest neighbors will take
part in reconstruction of point corresponding to Pi. We first assign
weight wij to each of these neighbors such that the reconstruction
error Ei is min.

Ei =

 Pi − 
wij × Pj

2 . (11)

Ei is minimized by applying two constraints: (i) Only neighbors
contribute to the reconstruction of Pi sowij is zero for all other PCS.
(ii)


wij = 1 (for more details, please refer [3]). Based on these

two constraints, weights are obtained by solving the above least-
square problem as explained in [3]. We address this least-square
problem as follows:

The first step of the solution is to obtain a local covariance
matrix C . This is obtained by shifting the ith point to origin to get
the relative distance vector between the point and its neighbor.
In our case, we already have a relative vector Vij, each element of
which represents the relative distance between Pi and itsK -nearest
neighbors Pj j = 1, 2, 3, . . . , K . Therefore, local covariance matrix
C for Pi is obtained as:

CK×K = [Vi1, Vi2, Vi3, . . . , ViK]
T
[Vi1, Vi2, Vi3, . . . , ViK]. (12)

K weights corresponding to Pi are obtained as K × 1 vector Wi
by solving equation below:

CWi = I (13)

where, IK×1 is a unit vector. Next step is mapping each PCS Pi to a
low-dimension vector

−→
Xi such that the mapping is neighborhood

preserving. This is achieved by choosing
−→
Xi to minimize the cost

function below:

Φ(X) =


i

−→Xi −


j

Wij
−→
Xj


2

(14)

where, Wij is the weight corresponding to PCS Pi and its K -
nearest neighbor Pj as calculated above. The above cost function
is subjected to two constraints: (i) The resultant vector will be
centered at origin i.e.


i
−→
Xi =

−→
0 . (ii) To avoid degenerated

solutions the embedded vector should have unit covariance
1
N


i
−→
Xi ⊗

−→
Xi = I , where I is d×d identitymatrix. Finally, the low-

dimensional embedding is obtained by finding the eigenvectors
corresponding to d (d u 5) smallest eigenvalues of the sparse
matrix Mij as explained in [3].Mij is calculated as shown below:

Mij = ∆ij − Wij − Wji +

k

Wki × Wkj (15)

where ∆ij = 1 if i = j and 0 otherwise. Wxy represents the weight
corresponds to yth nearest neighbor of PCS Px. The d eigenvectors
when combined together represents d × N matrix where ith
column represents a d-dimensional vector

−→
Xi which corresponds

to PCS Pi.
Time complexities of different steps in this algorithm is

O(KDN2) + O(DNK 3) + O(dN2) [35]. Where N is the total num-
ber of PCS embedded, K is the number of neighbors (u10), D is the
input dimension (=4) and d is the output dimension (u5). In our
method K , D and d can be considered as constant. Hence the total
time complexity of above algorithm is O(N2).

These steps map each PCS to a d-dimensional vector, while
preserving the neighborhood distribution among them. The
Euclidean distance between any two point’s Xi and Xj in this new
space is representative of a global relative distance between their
corresponding PCS Pi and Pj. Now these points can be grouped
together to obtain global sweep segments.

6. Constructing sweep components

The previous step maps the PCS to a point in d-dimensional
space and provides us a measure of global distance in terms of
Euclidean distance between points. In the next step we cluster
the d-dimensional points in order to acquire the global sweep
components. A large number of different clustering algorithms
such as k-means and k-center [36] heavily depend on the randomly
chosen initial seed points. They also require the potential number
of clusters to be pre-specified, which is unknown in our case,
as we are initially unaware of the number of volumetric sweep
components in a mesh model. Furthermore, above mentioned
algorithms consider only the nearest neighbors to form a cluster.
This is not appropriate in our case as we are looking to cluster
even the distant PCS if they belong to the same continuous
sweep component. To address this problem, we need a clustering
algorithm that is assumption-free and produces optimal clusters
after considering the arrangement of all the sweep components in
a globally consistent manner.

546 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Fig. 16. Clustering of points in embedded space using AP algorithm and mapping back each point to corresponding PCS to obtain final sets shown in different colors on the
right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
We derived our method from a message passing clustering
algorithm called Affinity Propagation (AP). The AP described in
[4] is a recently proposed algorithm that takes the measures of
similarity (distance) between pairs of points as the input. It begins
with considering all data points as possible cluster centers and
iterates through, by passing real valued messages to trim down
the number of clusters until final clusters gradually emerge. At
any given stage of iteration, it passes messages between possible
cluster centers and their children stating their relative affinity
towards each other, based on which the cluster centers and their
children are modified for next iteration.

We used a modified version of Affinity Propagation know as
Adaptive Affinity Propagation (AAP) clustering [37], which also
takes as input a collection of real-valued similarities between data
points. AAP improves upon AP by eliminating oscillations and
can obtain better quality clusters. In our adaptation, similarity
S(i, k) (computed using Eq. (16)) indicates how well the PCS Pk
is suited to be the parent for PCS Pi and obtained by calculating
Euclidean distance (as shown below) between point Xi and Xk in
the d-dimensional manifold obtained in previous section. Time
complexity of AP is O(N2 logN). Where N is the total number of
input data points. AAP has higher time complexity than AP as
compared in [37].

S(i, k) =


d

j=1

(Xij − Xkj)
2

1/2

. (16)

This algorithm does not require a pre-specified number of
clusters as input and also generates the different potential sets of
output clusters in one run. Also, the message passing procedure
is a global approach, as messages are exchanged between all the
pairs of points simultaneously and based on these exemplars are
selected. Each cluster of points represents a volumetric sweep
segment when mapped back to corresponding PCS on the mesh
object as shown in Fig. 16.

7. Results and discussion

In Section 3, we outlined the complete pipeline of our work.
Initially, uniform samples of vertices vi i ∈ [1, k] are obtained
on mesh model by using a k-means clustering algorithm [38] and
then we compute the PCS Pi corresponding to each vertex vi. We
then propose a similarity vector Vij between every possible pair
of PCS Pi and Pj where i, j ∈ [1, k] and i ≠ j. Using similarity
vector Vij we first clean up the PCS which are not taking part in
neighborhood formation and obtain Pj ⊂ Pi. This step helps us
in two ways: Firstly, we get rid of spurious cross-sections and
secondly, we make sure the input to the embedding algorithm
does not contain any outlier since it can affect the outcome of
algorithm and subsequent clustering process. Again, we use the
same similarity vectors for the remaining PCS Pj to map each of
them to a point in d-dimensional space using LLE. Finally, we
cluster these points and obtain different sets of PCS, each set
independently representing a unique possible sweep component.
Table 2 demonstrates the results on CAD parts having different
shape and mesh density.
Fig. 17. Results obtained on Tree model distance in original. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

7.1. User created CAD models

The model in Fig. 17 contains 3 intersecting sweep segments
of different shapes and sizes. Our method identifies 5 sweep
segments, where one of the sweep is broken into three different
segments (red, black and pink) at two regions of intersections.
The sets in black and red contain partial PCS capturing sweep
intersections and maintaining the continuity of sweep sections.

Fig. 18 illustrates results on a part having intersecting sweeps of
different shapes. It has 3 sweep components and we obtain 7 sets
of PCS, out of which 3 sets represent different segments of same
sweep component as shown in Fig. 18(c). Both the front and back
cylindrical sections have two different possible representations as
shown in Fig. 18(d, c) and Fig. 18(a, e) respectively. Note that set (d)
in front section and set (a) in the back section contain a highdensity
of PCS, while the PCS in set (c) and (e) in the respective sections
are less densely populated. The reason for such a difference in
number is because we generate two PCS on every seed point,
but select only the PCS that has the least fit error on Gauss map.
Also, the distribution of normals is more continuous in the region
corresponding to the PCS in sets (d) and (a) than to those PCS
in sets (c) and (e), resulting in least fit error on the Gauss map.
Therefore, sets (a, b, d) combined together represent the complete
model having 3 different sweep segments. The PCS density can be
used as a criterion to resolve the ambiguity when one or more
sweep components represent the same region of a part. However,
denser PCS does not necessarily mean the best sweep component
representation. Hence, user interaction will be required to choose
the best set in such a scenario.

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 547
Table 2
Results obtained on parts with different shapes and mesh densities.

Parts No. of
vertices

No. of
PCS

No. of
neighbors in
embedding
(K)

Embedded
dimension (d)

No. of sets
obtained

Time
(s)

Comments

1508 64 10 5 5 7.98 Sweep with intersections. Black and red PCS
are partial PCS at intersections.

5668 289 12 4 4 36.65 Set of PCS in blue color represents sweep
where material is removed.

55,490 560 10 5 7 923.73 More than one set of PCS (front cylinder) for
same sweep segment capturing different
design intent.

33,990 760 12 5 14 713.86 Large number of sets obtained in rectangular
section representing same sweep segments
in different direction.

11,984 201 8 5 7 240.28 High threshold value used to remove
spurious PCS, resulting in uncovered mesh
regions.
Fig. 18. Different design intent represented in (d) and (c) for same sweep segment.
Fig. 19 shows a cup having two major sweep components,
a handle and a body. We obtain the handle as one set (a) and
three other sets as (b, c, d) representing different sweeps in the
body of the cup. We also get a sweep where material is removed
as shown in (b). The information of material direction (in this
case outside the circle) can be used to determine the attribute of
sweep, whether material is added or removed. Here (a, c) together
represent complete part (handle and body) and (b, d) represent
different sweeps in the body of part.

Fig. 20 shows sweep interactions resulting in breakage of 3
sweeps (2 cylinders and 1 cuboid) into 10 different smaller sweep
components. The cuboid is intersected from four sides, resulting in

548 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Fig. 19. Sets of PCS obtained on a mug. Blue set represents a sweep which is
removing material. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

segmentation of one sweep component into a number of smaller
components. Sets (a, f, e, j) capture the complete cuboid and sets
(i, d) capture it partially, representing a different design intent.
Sets (b, c, g, h) capture the cylindrical sections running across the
cuboid. Few sets are rejected and not shown separately as they
contain sparse and non-uniformly spaced PCS.

Fig. 21 shows sets obtained on a Fan Disk. This part is obtained
after large number of sweep operations and contains few regions
where there is enough evidence of sweep. This is one of the
limitations of our method; regions without any sweep evidence
cannot be represented as generalized sweep segment. For example,
the set in green color is a group of PCS not representing any
sweep. Also, due to large number of sweep operations, the number
of spurious PCS is increased and their subsequent removal leave
significant uncovered region. Hence, in this case, our algorithm
cannot produce a complete representation of the object, but
instead can identify potential sweeps present in the model which
may represent the design intent or at leastmay beuseful for further
editing the model.

7.2. Scanned CAD model

In this section we demonstrate the results obtained on three
scanned point cloud data—rocker arm, an engine component and
a twisted drill bit. The point clouds have been obtained from
CGRG Point Cloud Repository [39]. These data sets have been
processed for noise removal, flaw correction, hole-filling and basic
symmetry-based repairing. The point clouds were first converted
to 3D triangular mesh models using a commercial tool, Geomagic.
However, in order to reduce the computation time, these highly
dense models were re-meshed and reduced in size intelligently,
such that the density of triangles is higher in the curved regions
than in the planar regions. Table 3 shows the results of the
algorithms applied on mesh models obtained from the scanned
point cloud data.

Fig. 22 shows the result obtained on a laser scanned rocker arm
model. The part is obtained after converting scanned point cloud
data to a triangulated mesh model. The part contains high noise
levels which result in noise in the orientation of PCS in a sweep
segment. For example PCS obtained in red color set (g) needs to be
smooth before any further processing can be done. Also, few small
features have been grouped together (set (e)) due to insufficient
number of PCS in that region.
Fig. 20. Large number of sets obtained on a simple cube cylinder intersection.

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 549
Fig. 21. Sets obtained on standard fan model with large number of sweep operations.
Fig. 22. Sets obtained on laser scanned Rocker Arm.

550 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Table 3
Results obtained on mesh parts obtained from laser scanned point cloud data.

Parts No. of
vertices

No. of
PCS

No. of
neighbors in
embedding (K)

Embedded
dimension (d)

No. of sets
obtained

Time (s) Comments

21,804 889 10 6 8 1242.3 PCS obtained on complete part without selecting
any region.

81,899 436 10 6 6 1418.38 PCS obtained by selecting the region having
sweep evidence.

80,523 296 8 4 4 464.2 PCS obtained separately on small feature at the
top on the bolt.
Fig. 23. Sets obtained on mesh engine part obtained from scanned point cloud data.
Fig. 23 shows a scanned engine part. The part was scanned
with a Handyscan EXASCAN laser scanner (accuracy 40 µm) and
in one piece. The point cloud was post processed for holes and
error with a reverse engineering tool suite. Prior to scanning, the
part had to be sprayed with a thin white coat. We obtained PCS
on a selected region of the parts where there are enough evidence
of sweep. We are able to extract the majority of sweep sections
as shown in the figure. Similar to the previous cases, we obtain
two different design intents for the same region. Also, despite our
limitations that we do not have enough sweep evidence, we were
able to extract sufficient sweep segments with the help of some
user interaction for selecting a region of interest for targeted PCS
extraction.

Fig. 24 shows the result of the algorithms applied on a scanned
twisted drill bit. The partwas scannedusing a 3DBase laser scanner
with rotational platform (0.05 mm accuracy) and in two pieces.
The point cloud was post processed for holes and error with a
reverse engineering tool suite. This part contains small features
on the head and thread at the bottom. As we do not control the
PCS density, a sufficient number of PCS is not obtained in those
regions around small features. To address this issue, currently we
obtain PCS on small features separately, with the user specifying

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 551
Fig. 24. Sets obtained on mesh bolt part obtained from scanned point cloud data.

the target locations and then add them to the PCS obtained in the
other regions before clustering. Fig. 24 shows combined results
obtained by selecting small region on the top (Blue and brown
colored PCS) and region at the bottom (Red and green PCS). We
combined the PCS from both the results and then performed the
subsequent clustering.

Our method is sensitive to sweep and a part should have
sufficient evidence of a sweep for our method to extract sufficient
number of locally similar PCS in a region. Boolean operations
such as shells can destroy the evidence of original sweep and the
result might not contain sweep evidence that can be extracted by
our method. Also, even if there is sweep evidences the resultant
sweep can have a totally different cross-section and trajectory as
compared to the originally designed part. Therefore, our method
will yield a possible design for a model or in some cases multiple
designswhich could be totally different fromoriginal design intent.
We plan to overcome such problems through higher level user
interactions for bridging the computational and design intent gaps.

Currently we introduced some level of user interaction and
explored them for parts shown in Figs. 23 and 24. User interactions
were used for (1) varying the density of PCS in different regions and
(2) avoiding PCS creation in regions not having sweep evidence.
In the future, we will adaptively control the density of PCS
created in a specific region. This will help us by having sufficient
number of PCS in regions having small features and also by
avoiding PCS creation in the regions having no sweep evidence.
Reverse modeling of physical parts poses additional challenges.
The possible decompositions of a physical part are neither obvious
nor unique and the underlying shapemay be concealed by noise in
the scanning process and(or) by added-on details. For example in
Fig. 23, two sets of sweeps are obtained for the same region in the
part suggesting two possible decompositions of the geometry. This
issue can be resolved by including the user in the reversemodeling
process, allowing the user to choose the best set for recreating the
CAD model. The time complexity of different steps are presented
in previous sections. The combined complexity of all the steps is
the complexity of the slowest step, which is the last step to obtain
clusters of points O(N2 logN).

7.3. CAD model reconstruction

In this section, we describe the use of PCS to reconstruct a CAD
model of a gas turbine airfoil (Fig. 25) in order to exemplify its
reverse CAD modeling capabilities. When represented as a CAD
model, the primary geometry of an airfoil can be generalized as
a single sweep segment. It is imperative that the cross sectional
curves, incrementally distributed along the sweep direction of the
airfoil body, be provided to a CAD modeler while developing such
a representation. These cross sections ideally lie on planes normal
to the sweep direction of the airfoil body. The PCS extracted from
the airfoil mesh meet such criteria and serve as quintessential
cross sections for the ensuing CAD model. Fig. 25(b) shows the
extracted sweep component of the airfoil body from its mesh. The
PCS data is then exported into CATIATM as a set of coordinate values
of points lying on the PCS. In CATIATM , these points are fitted with
interpolation splines (each representing a PCS), and a loft operation
is performed across the resulting cross-sectional splines, as shown
in Fig. 25(c). During reverse modeling, CATIATM prefers each PCS
to have equal number of points, and the points in each PCS to be
evenly spaced. To facilitate this, the points in the PCS are subjected
to a uniform re-sampling algorithm [40] that takes into account a
user defined PCS point density value. Furthermore, the quality and
reconstruction rate are significantly improved if points in adjacent
PCS are approximately aligned along common iso-parms. This is
also accomplished through re-sampling.

Throughout the entire reverse modeling process, the reference
coordinate system is kept consistent. As a result, the orientation
of the final reconstructed model (Fig. 25(c)) can be overlapped
with that of the original model in CATIATM without having to
manually register the two. Fig. 25(d) illustrates the results of an
error analysis conducted using ‘Distance Analysis’ tool, a part of
the ‘Freestyle Shape Workbench’ in CATIATM . Here, the orientation
of the original reference model (Fig. 25(a)) is registered with
that of the final reconstructed model (Fig. 25(c)) to determine
geometric deviations occurring in the reconstructed model. The
color codes indicate the extent of deviationwithin a specific region.
The recorded deviations are less than 0.5 mm. The deviations
result from the smoothening effect on PCS curves that occur
during uniform re-sampling. However, the build time for the
reconstructed model in this case is significantly curtailed, since
the organized PCS points accommodate lofting criteria of 3D CAD
modelers and require less user intervention during reconstruction.
The process of exporting the PCS data, generated from a point
Fig. 25. AirFoil body reverse modeling. (a) Acquired point cloud and generated mesh, (b) extracted sweep component, (c) reverse modeled airfoil in CATIATM , (d) results of
error analysis between reconstructed and original model.

552 M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553
Fig. 26. Construction of CAD model. (a) During reconstruction, the features, f 1 (yellow) and f 2 (red) are not automatically merged (blue region). The user can interact
directly to fix it (b). As the features are defined parametrically, making these changes is straightforward. (c) Completely reconstructed model. (d) For redesign, the user had
reduced the diameter of the hole (green), increased width and length of the arm (yellow) parametrically. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
cloud, to an existing CAD modeler and transforming it into a
coherent and fully parameterized CAD model can be automated
with the use of API based macros that are specific to the CAD
modeler being used. Doing so can preclude the need for any
significant user input during the process, and can thus curtail the
time taken to carry out the overall pipeline that transforms a point
cloud to a CAD model.

For parts with multiple sweep components, each component
can be reverse modeled using the above approach. The CAD
model thus generated will closely approximate if not entirely
the original scanned part. The problems can arise at those places
where two or more swept features interact, for example in
Fig. 26(a). User interaction would be required in such a scenario
to merge the interacting features Fig. 26(b). As the features are
defined parametrically, making these changes will be easy and
straightforward for any native CATIATM user. The final CAD model
is shown in Fig. 26(c). The generated model can now be edited for
redesign. For example, if the diameter of the hole in rocker arm
(Fig. 26(c)) needs to be modified to accommodate the new shaft,
the user can do so by updating the associated parameter and the
result is shown in Fig. 26(d).

8. Conclusion

In this paper, we have developed a method to extract
volumetric information from a mesh model that has sufficient
evidence of constituent swept volumes. We describe two new
algorithms derived from Locally Linear Embedding (LLE) and
Affinity Propagation (AP) for organizing and clustering PCS data
into sweep components, which form the basic building blocks of
the re-created CAD model. The LLE algorithm analyzes the cross-
sections (PCS) using their geometric properties to build a global
manifold in an embedded space. The AP algorithm then clusters
the local cross sections by propagating affinities among them in
the embedded space to formdifferent sweep components.Wehave
demonstrated the results on different CAD mesh models having
intersecting sweep components. We have also demonstrated the
reconstruction of a parameterized CAD model of an Airfoil body
using CATIATM . The Airfoil represented a model with a single
sweep component. We will also compare our method with a
standard approach in terms of computation time and accuracy.
We posit that our work will help in related problems such as
symmetry detection, constrained deformation of scanned mesh
parts, mesh model repair, remanufacturing of damaged parts, and
product quality inspection. Our current method takes a triangular
mesh, obtained from building connectivity amongst points on
laser scanned point cloud data, as the input. Although a mesh
representation allows for easier geometry processing, a significant
amount of time is still spent on converting the point cloud
to a mesh. The reconstruction of a part with multiple sweep
components and intersections between them, poses numerous
challenges which is a research topic in itself and is part of a future
work. We will also extend our method to use the point cloud
information directly like in [41]. Furthermore, we intend to build
a benchmark of laser scanned parts represented as point clouds
and to also expose further challenges in the field of reverse 3D
modeling.
Acknowledgements

Thismaterial is based uponwork supported by the National Sci-
ence Foundation Division of Information and Intelligent Systems
(NSF IIP) under Grant No. 0917959 for 3DHub. Earlier work was
supported by General Electric(R). Any opinions, findings,and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

References

[1] Vrady T, Martin RR, Cox J. Reverse engineering of geometric
models—an introduction. Computer-Aided Design 1997;29(4):255–68.
doi:10.1016/S0010-4485(96)00054-1. Reverse Engineering of Geometric
Models; URL http://www.sciencedirect.com/science/article/B6TYR-407P9G8-
2/2/aa4777d3669980f8d07b01e8937baf15.

[2] Ye X, Liu H, Chen L, Chen Z, Pan X, Zhang S. Reverse innovative design—an
integrated product design methodology. Computer-Aided Design 2008;40(7):
812–27.
doi:10.1016/j.cad.2007.07.006.
URL http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/
88d301d68836d4ba6158dee1f5454ec2.

[3] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear
embedding. Science 2000;290(5500):2323–6.
doi:10.1126/science.290.5500.2323.
http://www.sciencemag.org/cgi/reprint/290/5500/2323.pdf ;
URL http://www.sciencemag.org/cgi/content/abstract/290/5500/2323.

[4] Frey BJ, Dueck D. Clustering by passing messages between data points.
Science 2007;315(5814):1136800–97. doi:10.1126/science.1136800. URL
http://www.sciencemag.org/cgi/content/abstract/1136800v1.

[5] Abdel-Malek K, Jingzhou Y, Blackmore D, Ken J. Swept volumes: fundation,
perspectives, and applications. International Journal of Shape Modeling 2006;
12(1):87–127. URL http://search.ebscohost.com/login.aspx?direct=true\&db=
aph\&AN=21498051\&site=ehost-live.

[6] Cox T. M. Multidimensional scaling. London: Chapman and Hall; 1994.
[7] Tenenbaum JB, Silva VD, Langford JC. A global geometric framework for

nonlinear dimensionality reduction. Science 2000;290(5500):2319–23.
doi:10.1126/science.290.5500.2319.
http://www.sciencemag.org/cgi/reprint/290/5500/2319.pdf ;
URL http://www.sciencemag.org/cgi/content/abstract/290/5500/2319.

[8] Sellamani S,Muthuganapathy R, Kalyanaraman Y,Murugappan S, GoyalM, Ra-
mani K, et al. Pcs: prominent cross-sections for mesh model. Computer Aided
Design and Applications 2010;7(4):601–20. URL https://engineering.purdue.
edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/
CADA-ProminentCrossSections-Final.pdf.

[9] Petitjean S. A survey of methods for recovering quadrics in triangle meshes.
ACM Computing Surveys 2002;34(2):211–62. http://doi.acm.org/10.1145/
508352.508354.

[10] Vrady T, Facello MA, Terk Z. Automatic extraction of surface structures in
digital shape reconstruction. Computer-Aided Design 2007;39(5):379–88.
doi:10.1016/j.cad.2007.02.011.
URL http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/
7e09e0f5289432e41098f00d3e4de3eb.

[11] Yang P, Schmidt T, Qian X. Direct digital design and manufacturing frommas-
sive point-cloud data. Computer-Aided Design and Applications 2009;6(5):
685–99. URL http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-
1/2/88d301d68836d4ba6158dee1f5454ec2.

[12] Chen X, Golovinskiy A, Funkhouser T. A benchmark for 3Dmesh segmentation.
ACM Transactions on Graphics (Proceedings of SIGGRAPH) 2009;28(3).

[13] Lavou G, Dupont F, Baskurt A. A new cad mesh segmentation method, based
on curvature tensor analysis. Computer-Aided Design 2005;37(10):975–87.
doi:10.1016/j.cad.2004.09.001.
URL http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/
508a457e680b94fe8bae496f7dc8ae27.

[14] Attene M, Falcidieno B, Spagnuolo M. M.: hierarchical mesh segmentation
based on fitting primitives. The Visual Computer 2006;22(3):181–93.

http://dx.doi.org/doi:10.1016/S0010-4485(96)00054-1
http://www.sciencedirect.com/science/article/B6TYR-407P9G8-2/2/aa4777d3669980f8d07b01e8937baf15
http://www.sciencedirect.com/science/article/B6TYR-407P9G8-2/2/aa4777d3669980f8d07b01e8937baf15
http://www.sciencedirect.com/science/article/B6TYR-407P9G8-2/2/aa4777d3669980f8d07b01e8937baf15
http://dx.doi.org/doi:10.1016/j.cad.2007.07.006
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://dx.doi.org/doi:10.1126/science.290.5500.2323
http://www.sciencemag.org/cgi/reprint/290/5500/2323.pdf
http://www.sciencemag.org/cgi/content/abstract/290/5500/2323
http://dx.doi.org/doi:10.1126/science.1136800
http://www.sciencemag.org/cgi/content/abstract/1136800v1
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true\&db=aph\&AN=21498051\&site=ehost-live
http://dx.doi.org/doi:10.1126/science.290.5500.2319
http://www.sciencemag.org/cgi/reprint/290/5500/2319.pdf
http://www.sciencemag.org/cgi/content/abstract/290/5500/2319
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
https://engineering.purdue.edu/PRECISE/Publications/PCSProminentCrossSectionsforMeshModels/CADA-ProminentCrossSections-Final.pdf
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://doi.acm.org/10.1145/508352.508354
http://dx.doi.org/doi:10.1016/j.cad.2007.02.011
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4N7RWBD-1/2/7e09e0f5289432e41098f00d3e4de3eb
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://www.sciencedirect.com/science/article/B6TYR-4PB0PS9-1/2/88d301d68836d4ba6158dee1f5454ec2
http://dx.doi.org/doi:10.1016/j.cad.2004.09.001
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27
http://www.sciencedirect.com/science/article/B6TYR-4DNW4GK-1/2/508a457e680b94fe8bae496f7dc8ae27

M. Goyal et al. / Computer-Aided Design 44 (2012) 537–553 553
[15] Shamir A. A survey of mesh segmentation techniques. Computer Graph-
ics Forum 2008;27(6):1539–56. URL http://dx.doi.org/10.1111/j.1467-
8659.2007.01103.x.

[16] Stamati V, Fudos I. A feature based approach to re-engineering objects of
freeform design by exploiting point cloud morphology. In: Proceedings of the
2007 ACM symposium on solid and physical modeling. SPM’07, New York, NY,
USA: ACM; 2007. p. 347–53.

[17] Weiss V, Andor L, Renner G, Várady T. Advanced surface fitting techniques.
Computer Aided Geometric Design 2002;19:19–42.

[18] Mortara M, Patan G, Spagnuolo M, Falcidieno B, Rossignac J. Blowing bubbles
for multi-scale analysis and decomposition of triangle meshes. Algorithmica
2003;38(1):227–48. http://dx.doi.org/10.1007/s00453-003-1051-4.

[19] Mortara M, Patanè G, Spagnuolo M, Falcidieno B, Rossignac J. Plumber: a
method for a multi-scale decomposition of 3d shapes into tubular primitives
and bodies. In: SM’04: proceedings of the ninth ACM symposium on
solid modeling and applications. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association; 2004. p. 339–44.

[20] Agathos E, Pratikakis I, Perantonis S, Sapidis N, Azariadis P. 3d mesh
segmentationmethodologies for cad applications. Computer AidedDesign and
Applications 2007;4(6):827–41.

[21] Zhang Y, Paik J, Koschan A, Abidi MA. A simple and efficient algorithm for
part decomposition of 3d triangulated models based on curvature analysis.
In: Proceedings of the international conference on image processing, III. 2002.
p. 273–6.

[22] Zuckerberger E, Tal A, Shlafman S. Polyhedral surface decomposition with
applications. Computers and Graphics 2002;26(5):733–43.
doi:10.1016/S0097-8493(02)00128-0.
URL http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/
241800c25f3f2ff79383a07f58385b83.

[23] Katz S, Leifman G, Tal A. Mesh segmentation using feature point and core
extraction. The Visual Computer 2005;21(8–10):649–58.

[24] Benk P, Ks G, Vrady T, Andor L, Martin RR. Constrained fitting in reverse
engineering. Computer Aided Geometric Design 2002;173–205.

[25] Li M, Langbein FC, Martin RR. Detecting design intent in approximate cad
models using symmetry. Computer-Aided Design 2010;42(3):183–201.

[26] Shapira L, Shamir A, Cohen-Or D. Consistent mesh partitioning and skele-
tonisation using the shape diameter function. The Visual Computer 2008;24:
249–59.

[27] Ke Y, Fan S, ZhuW, Li A, Liu F, Shi X. Feature-based reversemodeling strategies.
Computer-Aided Design 2006;38(5):485–506. doi:10.1016/j.cad.2005.12.002.
URL http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/
184143068fd4ac741c00c72469dc75da.
[28] Yilmaz O, Gindy N, Gao J. A repair and overhaul methodology for aeroengine
components. Robotics and Computer-integrated Manufacturing 2010;26:
190–201.

[29] Amato N, Burchan O, Lucia B, Dale K, Jones C, Vallejo D. Choosing good
distance metrics and local planners for probabilistic roadmap methods. IEEE
Transactions On robotics and Automation 2000;16(4):442–7.

[30] Mitra NJ, Guibas LJ, Pauly M. Partial and approximate symmetry detec-
tion for 3d geometry. ACM Transactions on Graphics 2006;25(3):560–8.
http://doi.acm.org/10.1145/1141911.1141924.

[31] Pauly M, Mitra NJ, Wallner J, Pottmann H, Guibas LJ. Discovering
structural regularity in 3d geometry. In: SIGGRAPH’08: ACM SIG-
GRAPH 2008 papers. New York, NY, USA: ACM; 2008. p. 1–11.
http://doi.acm.org/10.1145/1399504.1360642.

[32] Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-d point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence 1987;9(5):
698–700. http://dx.doi.org/10.1109/TPAMI.1987.4767965.

[33] Seber G. Multivariate observations. New York: J. Wiley and Sons; 1984.
[34] Wobbrock JO, Wilson AD, Li Y. Gestures without libraries, toolkits or training:

a $1 recognizer for user interface prototypes. In: UIST’07: proceedings of the
20th annual ACM symposium on user interface software and technology.
New York, NY, USA: ACM; 2007. p. 159–68. ISBN: 978-1-59593-679-2
http://doi.acm.org/10.1145/1294211.1294238.

[35] Hui K, Wang C. Clustering-based locally linear embedding. In: Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on; 2008, p. 1–4.
doi:10.1109/ICPR.2008.4761293.

[36] Agathos E, Pratikakis I, Perantonis S, Sapidis N, Azariadis P. Some methods
for classification and analysis of multivariate observations. In: Proceedings
of 5th Berkeley symposium on mathematical statistics and probability; 1967,
p. 281–97.

[37] Wang K, Zhang J, Li D, Zhang X, Guo T. Adaptive affinity propagation clustering.
CoRR, 2008 abs/0805.1096.

[38] Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY.
An efficient k-means clustering algorithm: analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 2002;24(7):
881–92. http://dx.doi.org/10.1109/TPAMI.2002.1017616.

[39] Fudos I, Stamati V, Vasilakis A. CGRG point cloud repository, Computer Science
Department, University of Ioannina, Greece, 2010.

[40] Murugappan S, Sellamani S, Ramani K. Towards beautification of freehand
sketches using suggestions. In: SBIM’09: proceedings of the 6th eurographics
symposium on sketch-based interfaces and modeling. New York, NY, USA:
ACM; 2009. p. 69–76. http://doi.acm.org/10.1145/1572741.1572754.

[41] Kobbelt L, BotschM. A survey of point-based techniques in computer graphics.
Computers and Graphics 2004;28(6):801–14.

http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://dx.doi.org/10.1007/s00453-003-1051-4
http://dx.doi.org/doi:10.1016/S0097-8493(02)00128-0
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://www.sciencedirect.com/science/article/B6TYG-46X803H-D/2/241800c25f3f2ff79383a07f58385b83
http://dx.doi.org/doi:10.1016/j.cad.2005.12.002
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://www.sciencedirect.com/science/article/B6TYR-4JHMS4G-1/2/184143068fd4ac741c00c72469dc75da
http://doi.acm.org/10.1145/1141911.1141924
http://doi.acm.org/10.1145/1399504.1360642
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://doi.acm.org/10.1145/1294211.1294238
http://dx.doi.org/doi:10.1109/ICPR.2008.4761293
http://arxiv.org/0805.1096
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://doi.acm.org/10.1145/1572741.1572754

	Towards locally and globally shape-aware reverse 3D modeling
	Introduction
	Background
	Locally Linear Embedding (LLE)
	Affinity Propagation (AP)

	Contributions

	Related work
	Segmentation
	Surface segmentation
	Volumetric segmentation

	System overview
	Robust computation of PCS
	Algorithm to compute PCS
	Similarity vector between PCS
	Removal of PCS outliers

	PCS embedding
	Constructing sweep components
	Results and discussion
	User created CAD models
	Scanned CAD model
	CAD model reconstruction

	Conclusion
	Acknowledgements
	References

