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Creating Polytope 
Representations of Design 
Spaces for Visual 
Exploration Using 
Consistency Techniques 
 
 
Understanding the limits of a design is an important aspect of the design process. When 
mathematical models are constructed to describe a design concept, the limits are 
typically expressed as constraints involving the variables of that concept. The set of 
values for the design variables that do not violate constraints constitute the design space 
of that concept. In this work we transform a parametric design problem into a geometry 
problem thereby enabling computational geometry algorithms to support design 
exploration. A polytope-based representation is presented to geometrically approximate 
the design space. The design space is represented as a finite set of (at most) 3-
dimensional (possibly non-convex) polytopes, i.e., points, intervals, polygons and 
polyhedra. The algorithm for constructing the design space is developed by interpreting 
constraint-consistency algorithms as computational geometric operations and 
consequently extending (3,2)-consistency algorithm for polytope representations. A 
simple example of a fingernail-clipper design is used to illustrate the approach. 
 

 
 
1 Introduction 

 
Many engineering design problems can be described 

parametrically using equations and inequalities that model, 
among other things, the physical behavior, feasibility and 
acceptability of that design. In general, three distinct 
subsets of the product parameters can be identified: design 
variables   X = {x1, x2 ,...xn} , performance parameters 

  P = {p1, p2 ,...pm} , and noise variables [1]. We can then 
define the design space, performance space, noise space, 
and concept space as follows (from Otto and Wood [1]):  
• The design space,   D ⊂  n is the set of considered 

possible alternative configurations (possibly empty), 
described using design variables, over which we have 
direct control. By definition, all points within the design 
space satisfy all constraints imposed on the design.  

• The corresponding set of values of the performance 
parameters is called the performance space,   P ⊂ m of 
the concept. Formal models (  Μ : D → P ) map each 
design point  d ∈D  to   M (d ) ∈P . 

• The noise space,   N ⊂  l , is the set of possible 
configurations described using noise variables required to 

evaluate any point in D , which we do not have direct 
choice over.  

The design space can be empty, finite, or infinite. An 
empty design space signifies an infeasible or unacceptable 
design. Loosely speaking, the equality constraints in the 
model map a point in the design space onto a point in the 
performance space. Inequality constraints, including the 
bounds on the design variables, form the boundary of the 
design space (see Figure 1). Any point outside this design 
space is, by definition, infeasible. When a new system 
concept is composed of two or more different sub-system 
concepts (shortened to sub-concepts), more constraints are 
introduced to describe the compatibility among the sub-
concepts. These constraints connect parameters of the sub-
concepts as well as parameters that describe overall 
concept. To obtain a feasible design of the system, these 
constraints as well as those within each sub-concept have to 
be solved simultaneously.  

Designers explore several ‘what-if’ scenarios to 
understand the design space and evaluate tradeoffs within 
the design. Design exploration involves changing the 
original problem and evaluating the effect of this change on 
the feasible design and performance spaces. Assigning 
values to certain design variables, modifying existing 
constraints (relaxing/tightening), adding new constraints, or 
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removing existing constraints are some of the tasks 
performed by the user during exploration. 

The fundamental issues in such design exploration are 
(1) the need for a compact representation of the design 
space and (2) efficient methods for creating such 
descriptions. Except for simple design problems, obtaining 
an exact representation of the design space is not tractable. 
However, if approximations are sufficient then 
computational methods can be developed to address these 
issues. When a design concept is described mathematically, 
the design problem can be posed as a constraint satisfaction 
problem and all the solutions to the constraint satisfaction 
problem constitute the design space of the original design 
problem.  

In this paper, we use polytopes to represent design 
spaces; we then develop a consistency method to construct 
the approximation using computational geometric 
approach. 
 
2 Related Work 

 

Exploration of the design space is typically performed 
by sampling the mathematical model of the design at a 
finite set of design points and testing the points for 
feasibility. Design of experiments (DOE) and methods such 
as genetic algorithms have been used extensively for such 
sampling (Figure 2a). These are sometimes called “point-
based design” methods. An extensive review of sampling 
strategies is available in [2]. These sample points are then 
filtered during the exploration process by modifying the 
constraints on the original design. Due to the computational 
cost of obtaining each feasible point, such point-based 
methods are either confined to a small region within the 
design space or provide a sparse sampling of the entire 
design space. Moreover, these samples do not lie on the 
boundary of the design space. Nevertheless, these points 
are then visualized using parallel coordinates, glyph plots 
and histograms among others [3]. 

When continuous design spaces are to be represented, 
constraint-programming techniques have been applied to 
obtain those design sets. Earliest among such methods is 
presented by Ward [4] using interval arithmetic to 

{Otto, 2001 #375}     
(a) Finite set of points (e.g. 

[3]) 
(b) Simple interval 

approximation (e.g. [4]) 
(c) Interval hull (e.g. [5])  (d) Finite set of interval 

boxes (e.g.  [6-8]) 

    
(e) -tree approximation 

(e.g.  
[9, 10]) 

(f) Parallelepiped 
approximation (e.g. [11]). 

(g) Convex approximations 
using Simplices (e.g. [12]) 

/ Zonotopes (e.g. [13]) 

(h) Polytope approximation  
(our approach) 

Figure 2. Different representations for solution and design spaces. 

 
Figure 1. Formal (mathematical) model maps a point in the space of design variables to a point in the 

performance space. Constraints form the boundary of the design space. 
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constraint interval representation of design solutions 
(Figure 2b). Extending simple intervals to interval hulls [5] 
(Figure 2c) and interval boxes allow approximation of 
solution sets using orthogonal polyhedra such as hulls of 
boxes and -trees. Yannou et al. [6] use RealPaver [7], an 
interval-based constraint solver, to generate a set of boxes 
that span the design space (Figure 2d). The algorithm 
continuously restricts the domain of the variables until a 
tight bounding box is reached. The algorithm then selects a 
variable (using round-robin policy) and partitions the 
current box in to n boxes along that variable axis. At each 
box, interval arithmetic is used to determine whether the 
entire box is feasible, infeasible or unknown. Unknown 
boxes are processed recursively until the required precision 
is obtained. Consistency methods such as hull-, and box-
consistency are used to reduce the domain and obtain the 
solution space of the entire c-CSP. Fünfzig et al. [8] use 
Linear Programming (LP) reductions on Bernstein 
polytopes instead of interval techniques to reduce the range 
of constraints and the domains of variables in order to 
compute the solution space of a finite set of non-linear 
constraints.  

Sam-Haroud and Faltings [9] and subsequent work by 
Lottaz [10] use -trees (Figure 2e) to represent solution 
spaces of a continuous constraint satisfaction problem (c-
CSP). The motivation for using -trees is cited as lack of 
algorithms using polyhedral data structures [14]. Since -
trees are prohibitively expensive for higher dimensions, the 
n-ary1 algebraic constraints are first transformed into a set 
of ternary constraints by introducing auxiliary variables. 
The solution space for each of these ternary constraints are 
constructed and stored as -trees. They use a pre-defined 
maximum tree depth for each problem. To construct the 
initial -tree (  k = 3  as all constraints are now ternary) 
for each constraint, it is necessary to evaluate the feasibility 
of a constraint within the 3-block. Sam-Haroud and 
Faltings [9] use the gridding method described in [15] 
where each face of the block is partitioned into a grid and 
the constraint is evaluated at each grid point. The 
intersection of the constraint surface with the face of the 
block is determined and used for further partitioning. Lottaz 
[10] uses interval analysis to identify whether a block is 
feasible, infeasible or unknown. Only the blocks with 
“unknown” labeling are split recursively. Vu et al. [16] 
improve the efficiency of the algorithm by considering the 
complementary box and checking for infeasibility. 
Compression in representation of -trees is also provided 
by considering extreme vertices in orthogonal polyhedra. 

Recently, Goldsztein and Granvilleirs [11] present a 
global constraint contraction technique using 
parallelepipeds (Figure 2f) rather than orthogonal 
polyhedra for constraints that are manifolds (i.e., the 

                                                             
1 “n-ary” is the generalization of unary (1-ary), binary (2-ary), 

ternary (3-ary) and so on. “Arity” is defined in Section 3. 

constraints do not have ‘sharp’ corners or they do not self-
intersect). 

When the design space is convex (i.e., constraints are 
convex), Goyal [12] presents a “simplicial” approximation 
(a geometry where each face is a simplex) to represent the 
limits of feasible space (Figure 2g). Notions of inner and 
outer approximations are used to identify the operating 
envelope (design space) of a chemical process, i.e., the 
largest convex hull that can be inscribed within the feasible 
space. The inner approximation is any convex-hull that can 
be inscribed within the feasible space, and the outer 
approximation is the polytope formed by the tangent planes 
at the vertices of the inner approximation. The inner 
approximation is improved iteratively by comparing with 
the outer approximation.  Zonotopes, a special case of 
convex polytopes constructed as the Minkowski sum of 
finite line segments, have also been used to obtain a convex 
bounding for the solution space of a constraint set [13].  

Yan and Sawada [17] present a design exploration tool 
based on symbolic methods, namely Grübner bases and 
quantifier elimination (QE).  Although the method 
presented does not compute the entire solution space, it 
does provide lower dimensional basis polynomials that can 
be plotted and the solution space can be identified. Since 
QE and Grübner bases are applicable only to polynomial 
constraints, transformations have also been suggested to 
generate polynomial approximations. Still, the 
computational complexity of QE and Grübner bases are 
doubly exponential in number of variables, i.e.  O(een

) , and 
therefore can only be used for small problems.  

In this work, we describe a geometric procedure for 
creating polytope approximations of the design spaces. It is 
conceivable that interval techniques are used to restrict the 
domain sufficiently prior to the construction of the polytope 
approximation; however, we assume that the domain is 
sufficiently narrowed before constructing an approximation 
of the design space using our method. 
3 Creating Polytope Representation using Constraint 
Satisfaction Method 

3.1.  Constraint satisfaction problems 
Constraint satisfaction problems (CSPs) are a class of 

problems designed to address systems that are primarily 
concerned with constraints. CSPs are modeled as constraint 
networks. A constraint network consists of a finite set of 
variables   X = {x

1
, ..., x

n
}with respective domains 

  D = {D
1
, ..., D

n
}  and a set of constraints   C = {C

1
, ...,C

t
}  

[18]. Constraints restrict the values that can be taken by the 
variables. These values belong to the domain of that 
variable. A numeric CSP is a special CSP where the 
domain for each variable is a subset of reals . Constraints 
can be specified explicitly as enumeration of valid 
combinations or in general as mathematical expressions. 
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These constraint expressions can be equalities or 
inequalities, and can involve any number of variables.  

The arity of a constraint is the number of variables 
involved in that constraint. For example, a unary constraint 
involves only one variable, binary constraint involves two 
variables and a ternary constraint involves three variables. 

The objective of solving CSPs is to find a valid 
instantiation of the variables that does not violate any 
constraint. Solving a CSP, in general, is NP-Hard [18]; 
however, in certain special cases or when approximations 
are tolerated these methods become tractable.  

The solution techniques for CSPs fall into two broad 
categories - Search and Filtering. The focus of search is on 
obtaining a single feasible (and possibly optimal) 
instantiation. Examples of search techniques include 
backtracking, branch and bound, and non-linear 
programming. Filtering or consistency involves identifying 
(to a certain extent, depending upon the actual algorithm) 
whether a CSP is feasible and to possibly obtain the set of 
all possible solutions, i.e., the solution set. Arc-consistency, 
path-consistency, box-consistency, and the (3,2)-relational 
consistency used here are examples of local consistency 
techniques for filtering. Arc- and path- consistency 
techniques are used for discrete problems where the domain 
is finite. Consistency methods guarantee that if they result 
in a null assignment (i.e., no solution) then the given 
problem does not have a solution. However, if no such 
conclusion is obtained then these methods do not guarantee 
that there is a solution to the given problem. For a detailed 
study of constraint processing techniques and their 
applications, the reader is referred to [18] and [19]. 

Under strong assumptions, global consistency 
techniques overcome such limitations. When the solution is 
globally consistent, then the variables of the problem can 
be assigned values from the solution set in a backtrack-free 
manner [18]. The (3,2)-relational consistency, for example, 
can guarantee global consistency when the solution spaces 
for the constraints are directionally convex. This condition 
is explained in Section 3.3.2. 
 
3.2.  Using polytopes to represent design space  

As mentioned earlier, we assume that the design 
problem is represented using design variables, performance 
parameters, their domain and constraints between them. To 
construct the design space, we first construct the solution 
space for each constraint separately and then prune (filter) 
these solution spaces using a consistency technique to 
obtain the reduced labels for the constraints. Since the 
filtering algorithm guarantees that any point outside a label 
is infeasible, the resultant set of labels approximates the 
design space of the product concept. 

A constraint of arity-k defines a set of points, called the 
solution space   L ⊂ k , where this constraint is satisfied. If 
the constraint is an equality constraint, then these points lie 
on a hyper-surface in k-dimensional space. Similarly, an 

inequality constraint gives rise to regions (without regard to 
its connectivity) in k-dimensional space. Additionally, if the 
variables are bounded, i.e., their domain is prescribed using 
lower and upper bounds, then these surfaces and regions 
are bounded as well. L is also called the label 
corresponding to the k variables. 

Since a design space is a region in n-dimensions, 
geometric data-structures can be used to represent such 
spaces. Although, the memory requirements and time 
complexity for representing and manipulating n-
dimensional geometric objects increases exponentially with 
n [20], a n-dimensional region can be reduced to a 
collection of n’(>n) three-dimensional geometric objects. 
This is because any algebraic expression involving k 
variables can be rewritten as a finite set of ternary 
expressions with an equivalent solution space [9]. As a 
simple example, consider the following expression of arity 
4: 
  

   x1
x

2
x

3
+ x

2
x

4
− x

3

2 ≤ 0   (1) 
 
This constraint can be re-written as four ternary constraints 
with the addition of two new variables   {x

5
, x

6
}  as  

 

  

x
5
= x

1
x

2

x
6
= x

2
x

4

x
5
x

3
+ x

6
− x

3

2 ≤ 0
  (2) 

It is clear that any solution of eq. (1) is also a solution 
of the constraint set in eq. (2) and vice versa. In general, 
several intermediate variables may be required depending 
upon the coupling among the k variables in the original 
constraints. Lottaz et al. [21] present a method for 
introducing a minimal number of intermediate variables 
during the ternarization process. The consequence of 
restricting the maximum arity to three is that consistency 
needs to be maintained among additional 3-dimensional 
labelings. Consistency is maintained by iteratively pruning 
infeasible regions from the feasible space of individual 
constraints using a consistency algorithm until no further 
reduction is possible. The solution space of the entire CSP 
is the set of consistent labelings of each constraint. 

In this work, we use the term “polytope” to include: 2D 
polygonal region, 2D & 3D line segments, 3D polyhedral 
surface and 3D polyhedron as shown in Table 1. 
 
3.3.  Constructing the polytope approximation  

The overall procedure for constructing the polytope 
approximation is: 

1. Formulate the design problem as a numeric CSP 
2. Transform all constraints into ternary constraints 
3. Create the solution space for each constraint. 
4. Use consistency to prune the solution space to 

obtain the design space. 
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3.3.1 Creating the initial solution space for each 
constraint 

Given a (ternary) constraint  
Cijk involving variables 

{ xi , , } and an initial feasible starting point , we 
construct the solution space around this point using the 
procedure shown in Figure 3. The basic idea here is to start 
with a small facet polyhedron (sphere in line 1) around the 
start point and iteratively “push” its vertices along the 
direction of the outward normal till the constraint boundary 
is reached (lines 4 and 5). Whenever a facet size exceeds a 
pre-set limit ( ), the facet is subdivided introducing new 
vertices (see Figure 4). A similar procedure is used for 
other polytopes. Figure 5 illustrates the filling process. 
 

 

 

 
The function check-feasibility is used in line 4 to test 

the feasibility of a point   
P = (α i ,α j ,α k ) by evaluating the 

constraint  
Cijk . A control parameter λ , represents the 

maximum length allowed for a facet.  
Complexity of procedure generate- label 

Without loss of generality, we can assume that the 
design variables are suitably scaled such that the domain is 
a box of unit length. We estimate the computational 
complexity by assuming that the 3D space consists of 
points that are exactly λ apart – there are 

  
np = O(d 3 )  such 

points, where 
  
d = 1

λ
⎡

⎢
⎢

⎤

⎥
⎥ . In the worst case, all these points 

lie on the boundary of the label (or solution space). 
Therefore the maximum number of facets that can exist is 

  O(d 3 ) . Now, if each of these points are obtained by 
stepping the original seed point located at one of the 
corners of the bounding box, then each point is stepped 
O(d) times. The constraints are therefore checked O(d4) 
times from which the complexity of the filling algorithm is 
O(d4). 

 

 
Figure 5. Illustration of the “filling” procedure to 
construct solution space around a starting point. 

  
Figure 4. Subdividing a facet into smaller facets 

 

 
Figure 3. Procedure to construct a polyhedral label 

involving variables  

Table 1. Examples of polytopes 
Type of 

Constraint Type of solution space  Type of 
Constraint Type of solution space 

  f (x) ≤ 0  1D Interval  

 

  f (x, y) = 0  2D Polygon 

 

  f (x, y) ≤ 0  
2D 
Polygonal 
region  

   f (x, y, z) = 0  
3D Polyhedral 
surface (possibly 
with boundary)  

  f (x, y) = 0  
2D Polyline 

 

 

  f (x, y, z) ≤ 0  3D Polyhedron 
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3.3.2 Pruning the solution space to obtain design 
space 

Once the individual solution spaces are constructed, 
the (3,2)-consistency algorithm [9] is used to remove 
infeasible points from the solution space of infeasible 
points. The function init initializes the queue Q with 
permutations of 5 variables and L with the initial labels of 
all triplets of variables.  

The main idea in (3,2)-relational consistency is to use 
two variables (u,v) involved in constraints 

  Ciuv
,C

juv
and Ckuv

to reduce the labeling of constraint  Cijk
. 

The constraints involving combinations of   {x
i
, x

j
, x

k
, x

u
, x

v
}  

are generated in the function related-5tuples. 
Figure 6 shows the (3,2)-relational consistency 

algorithm for reducing the labels of the constraints. The 
queue Q initially contains the list of all related 5-tuples. 
The labelings associated with variables belonging to the 5-
tuples are pruned iteratively in the function (3,2)-revise 
(Figure 7). Here, a polyhedron in dimensions   {x

i
, x

j
, x

k
} is 

constructed by convolution of   Liuv
, L

juv
and Lkuv

 followed by 

projection on to   {x
i
, x

j
, x

k
}space and finally intersecting 

this projection with the existing   {x
i
, x

j
, x

k
} -label, i.e. Lijk

. 
Convolution, also called external join, is the operation 

a space of higher dimension from those of lower 
dimensions using common dimensions. Figure 8 illustrates 
the convolution operation in three dimensions. More 
precisely, convolution is defined as: 

 
  

L
iju
⊗

u
L

klu
= {(α

i
,α

j
,α

k
,α

u
) |

(α
i
,α

j
,α

u
) ∈ L

iju
& (α

k
,α

l
,α

u
) ∈ L

klu
}

 (3) 

 
  

L
iuv
⊗

uv
L

juv
= {(α

i
,α

j
,α

u
,α

v
) |

(α
i
,α

u
,α

v
) ∈ L

iuv
& (α

i
,α

u
,α

v
) ∈ L

juv
}

 (4) 

 
 

 
 

 
 

 
Step 1 of (3,2)-revise implicitly creates a temporary 5-

dimensional geometric object in   {x
i
, x

j
, x

k
, x

u
, x

v
} -space in 

order to compute 
  
L

ijk
 L

iuv
⊗

uv
L

juv
⊗

uv
L

kuvijk∏( ) . This 

extended convolution operation (convolution followed by 
projection) reduces the original label  Lijk

to  ′L
ijk

. To 
propagate this change, other constraints that share a 
common variable are then added to the queue for revision 
by related-5tuples. 

However,  ′L
ijk

can also be constructed geometrically 
using the procedure generate-label by suitably modifying 
the check-feasibility function as follows: From eq. (4), it 
can be deduced that a point   P = (α

i
,α

j
,α

k
)  belongs to  ′L

ijk
 

if there is at least one value of   (x
u
, x

v
) = (α

u
,α

v
)  such that 

the points   (α i
,α

u
,α

v
), (α

j
,α

u
,α

v
) and  (α k

,α
u
,α

v
) lie 

within   Liuv
, L

juv
and Lkuv

 respectively. Therefore, in order to 
check the feasibility of a point  P , it is sufficient to check if 
such a   (α u

,α
v
)  exists, i.e.,  

 

   

check-feasibility(P) =

L
iuv

|
x

i
=α

i
uv

∏⎛⎝⎜
⎞
⎠⎟ L

juv
|
x

j
=α

j
uv

∏⎛⎝⎜
⎞
⎠⎟ L

kuv
|
x

k
=α

k
uv

∏⎛⎝⎜
⎞
⎠⎟  (5) 

 
Figure 8. Convolution in three dimensions. 

 
Figure 7. Function to revise the solution 

 
L

ijk
using the 

solution spaces   Liuv
, L

juv
and  Lkuv

. 

 
Figure 6. (3,2)-consistency algorithm to prune the 

solution spaces 
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Figure 9 shows how 
  

L
iuv

|
x

i
=α

i
uv

∏  is be obtained 

geometrically; similar sections can be obtained for 
variables  x j

and  xk
. The function generate-label returns 

TRUE if the intersection of the uv projections is not empty 
and FALSE otherwise. 

 
 
Convexity considerations for (3,2) – relational 
consistency 

As mentioned in Section 3.1, the (3,2)-relational 
consistency algorithm used here, computes a globally 
consistent solution when the constraints are directionally 
convex. A set in    n is convex if its intersection with every 
straight line is connected or empty [22]. This condition is 
relaxed for directional-convexity, where only lines parallel 
to a given set of lines are considered [23]. A special case of 
directional convexity is called ortho-convexity [23] where 
the lines are parallel to the axes. Figure 10 illustrates this 
concept for planar shapes; (x,y)-, (y,z)- or (x,z)- convexity 
can be similarly defined for ternary spaces. 

It is noted that, in order to choose the values for 
variable   xk +1

 having chosen values for variables 

  x1
, x

2
, ...x

k
 in a backtrack-free manner from the solution 

space computed by (3,2) consistency, each of the ternary 
solution spaces involving variables   xk +!

and  xi
 (with  i ≤ k ) 

should be   (x
k +1

, x
i
) -convex [9]. (3,2)-relational consistency 

algorithm will fail to detect inconsistency in the solution 
space when the solution space does not satisfy the partial 
convexity condition. 

 

Complexity of function (3,2) – revise 
Since the same generate-label procedure is used to 

compute the extended convolution of three constraints, 
O(d4) is also upper bound for the number of times the 
convolution condition (eq. 5) is checked. However, since 
this condition is checked geometrically using plane-
polyhedron intersection (O(d3) [20]) followed by polygon 
intersection (O(d2), [20]), the complexity of calculating the 
extended convolution is O(d7). 
3.3.3 Checking feasibility of a design point 

The design space approximation constructed can be 
used to check the feasibility of a design point. Assigning 
values to a set of design variables may specify the design 
point. Such assignments are considered as additional 
constraints that are added to the original problem. For 
example, if xi = α i

 is an assignment, then the constraint 
Ciuv

 and its corresponding label Liuv
 involving variables 

xi , xu and xv  is replaced by a label Luv
 given by 

Liuv xi =α i

uv

∏  (Figure 9).  Therefore, a 3D polytope is 

reduced to a 2D polygon or a set of points; a 2D polygon is 
reduced to a line segment or a set of points.  

This change is then propagated to all other labels using 
the (3,2)-consistency algorithm described in Section 3.3.2. 
The point is infeasible when a null label is obtained, and 
therefore does not belong in the design space.  
4 Example: Fingernail Clipper Design 

Consider the design of fingernail clipper from Otto and 
Wood [1]. The main customer requirements on the clipper 
are: (1) easy to use, (b) should be compact, and (c) should 
have a long life. Figure 11 shows one of the many concepts 
developed to satisfy these customer requirements. The user 
applies a force on the pads that cause the arm to pivot about 
the end. The blades on the other end of the clipper shear the 
nail. The requirements are translated into constraints on the 
finger force, material stress, and overall dimensions.  

4.1 Formulate the design problem as a numeric CSP 
The mathematical model of this design concept is 

developed by considering the shear stress (τ ) needed to 
cut a fingernail. The finger-force ( f ) needed to actuate the 

clipper is expressed in terms of the pivot length ( Lp
), width 

of the blade ( W ), nail thickness ( t ), distance of the grip 
from the pivot ( x ) and height of blade ( hb

) as: 

 
Figure 9. Geometrically,

  
L

iuv
|
x

i
=α

i
uv

∏ is computed by 

obtaining a intersecting  Liuv
with the plane  xi

= α
i
 

 
Figure 10. Example of directional convexity in planar shapes. 
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f =

L
p
τWt 2

xh
b

   (6) 

 
The maximum normal stress in the arm is given by: 

 

  
σ = K

cycles

6xf

Wt
m

2
1−

x

L
p

⎛

⎝⎜
⎞

⎠⎟
  (7) 

Finally, the geometry of the concept gives rise to the 
following relations: 

 
  
L

p
= x +

c

2
+ r    (8) 

  r = 2t
m

    (9) 

  Loverall
= L

a
+ L

p
   (10) 

The complete mathematical model of this design concept is 
developed considering the behavior and structure 
(geometry of the design) is given by 

  

f =
L

p
τWt

2

xh
b

r = 2t
m

σ = K
cycles

6xf

Wt
m

2
1 −

x

L
p

⎛
⎝⎜

⎞
⎠⎟

L
p
= x +

c

2
+ r

L
overall

= L
a
+ L

p

H
overall

= 2r + 2B + d

B = h
b
+ 3D

h

      (11) 

The constraints on the design concept are  

 

  

f ≤ f
max

5t
m
≤ L

a

5D
h
≤ W

σ ≤ σ
max

h
b
+ 1.1t ≤ d

  (12) 

The five design variables in this problem are 

  {t
m
, D

h
, h

b
, x, d} . The domains for the design variables are 

  
t

m
∈[0.01,0.06]; D

h
∈[0.01,0.06]; h

b
∈[0.05,0.5];

x ∈[0.05,5]; d ∈[0.1,0.2]
 (13) 

The value of the constants are 

  

τ = 1000 psi; t = 0.025 in; c = 0.375 in; 
L

overall
= 2.5 in;W

overall
= 0.5 in; H

overall
= 0.688 in; 

σ
max

= 15000 psi; K
cycles

= 5.0
 (14) 

We eliminate unnecessary intermediate variables using 
eq. (11) to obtain the following set of constraints involving 
design variables and constants. 

 

  

x + c
2
+ 2tm

⎛
⎝⎜

⎞
⎠⎟
τWt2

xhb

− fmax ≤ 0

4tm + 2hb + 6Dh + d − H ≤ 0
5Dh −W ≤ 0

La + x + c
2
+ 2tm − L ≤ 0

5tm − La ≤ 0

Kcycles

6τ
hb

c
2
+ 2tm

⎛
⎝⎜

⎞
⎠⎟
− σmax ≤ 0

 (15) 

Clearly, the design space is a region in   5 . For sake of 
clarity, we denote the design variables by 

  X = {x
i
} where  {x

1
≡ t

m
, x

2
≡ D

h
, x

3
≡ h

b
, x

4
≡ x, x

5
≡ d} . 

To explore this 5-dimensional design space, we create a set 
of 3-dimensional projections and maintain consistency 
among these projections based on the geometry of the 
design space. 

4.2 Transform all constraints into ternary constraints 
We notice that the constraint   4x

1
+ 2x

3
+ 6x

2
+ x

5
− H ≤ 0  

involves 4 design variables. By introducing a new variable 

  x6
 and a new constraint, 

   C256
: x

6
= 6x

2
+ x

5
  (16) 

we can rewrite the original problem as: 

 

  

C
134

:

τW
overall

t 2 x
4
+

c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟

x
4
x

3

− f
max

≤ 0

i.e., τW
overall

t 2 x
4
+

c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟
− x

3
x

4
f

max
≤ 0

 (17) 

        C346
: 4x

4
+ 2x

3
+ x

6
− H

overall
≤ 0  (18) 

   C2
: 5x

2
− W

overall
≤ 0   (19) 

 
  
C

14
= 7x

1
+ x

4
+

c

2
− L ≤ 0  (20) 

 

  

C
13
= K

cycles

6τ

x
3

c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟
− σ

max
≤ 0

i.e.,  K
cycles

6τ
c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟
− x

3
σ

max
≤ 0

 (21) 

Now, all the constraints have arity of three or less, i.e., 
involve three or fewer variables each.  

4.3. Create the solution space for each constraint 
Next, we construct the solution space for each of these 

constraints (initial labelings) using the procedure given in 

 
Figure 11. Schematic of fingernail clipper design 

(adapted from Otto and Wood [1]). 
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Section 3.3.1. These initial labels for constraints 

  C134
,C

256
and   C346

are shown in Figures 12, 13 and 14 
respectively. The lambda value was kept at 0.05 for all the 
solution spaces. 

 
 

 

 
4.4 Use consistency to prune the solution space to obtain 
the design space 

Figures 15 and 16 show the labeling created after 
applying the consistency algorithm on the individual 

solution spaces. These together represent the design space 
of the fingernail clipper concept. 

 

 
4.5 Exploration of the design space by modifying   f

max
 

The labeling of the constraint   C134 , is modified by 

changing the upper bound of , i.e., . Whenever a 
particular constraint labeling is modified, the change is 
propagated to other labelings to maintain consistency. The 

resulting labelings involving   (x3, x4 , x6 ) , i.e., are 

shown in Figures 17 and 18. We note that when  is 
reduced beyond (approximately) 1.8lbs, the labelings 
reduce to an empty set, i.e., 1.8lbs is a lower bound for the 
maximum force. This result agrees with that from [1] where 
the minimum value of   fmax  is obtained at around 2 lbs. 

 
Figure 16. The reduced label of constraint 

  C346
≡ {h

b
, x, x

6
}  (  f

max
= 3lbs ). 

 
Figure 15. The initial (light) and final (dark) label of 

constraint   C134
≡ {t

m
, h

b
, x} . 

 
Figure 14. Initial label of ternary constraint 

  C256
≡ {D

h
, d , x

6
}. 

 
Figure 13. Initial label of ternary constraint 

  C346
≡ {h

b
, x, x

6
} . 

 
Figure 12. Initial label of ternary constraint 

  C134
≡ {t

m
, h

b
, x} . 
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5 Validation of design space Approximation 

The accuracy of any approximation technique used in 
multi-disciplinary optimization (such as Response Surfaces 
or Kriging) is assessed using the following error measures 
[25]: 

1. Trust-region calculations 
2. Hypothesis-testing methods such as ANOVA 
3. Loss-function methods, and 
4. Cross-validation methods. 

The above measures cannot be applied to the design space 
approximation as it is a binary predictor: given a point in 
the space of design variables, the approximation predicts 
whether that point belongs to the design space or not. 
Counting the number of correct and incorrect predictions 
for a finite set of known samples and calculating metrics 
using those counts have been used to estimate the accuracy 
of binary predictors in the field of data-mining [26]. 
In order to assess the quality of the approximation, we 
generated a random set of points in the space of design 

variables whose inclusion in the original design space is 
checked by evaluating the algebraic constraints. The 
prediction computed by the design space approximation 
was then be classified as one of: 
1. True Positive (TP) – A point is correctly predicted as 

belonging to the design space 
2. True Negative (TN) – A point is correctly predicted as 

not belonging to the design space 
3. False Positive (FP) – An infeasible point is wrongly 

predicted as belonging to the design space. 
4. False Negative (FN) – A point in the design space is 

incorrectly excluded. 
Based on these counts, the percentage errors and the 

correlation coefficient for the binary samples were 
calculated (from [26]): 
1. Percentage errors i.e., the number of true predictions 

for every hundred queries can be defined in three ways: 
a. Total prediction percentage (PCT) measures the 

percentage of correct predictions to the total sample 
size. 

PCT = 100
TP + TN

TP + TN + FP + FN
   (22) 

b. Positive prediction percentage (PCP) measures the 
percentage of true positive predictions to the total 
number of feasible points. This number can be 
interpreted as the confidence value when a positive 
prediction is obtained. 

PCP = 100
TP

TP + FN
   (23) 

c. Negative prediction percentage (PCN) measures the 
percentage of true negative predictions to the total 
number of infeasible points. This number can be 
interpreted as the confidence value when a negative 
prediction is obtained. 

PCN = 100
TN

TN + FP
   (24) 

2. The correlation coefficient (C) measures how much the 
predictions agree with the actual values. A correlation 
of -1 indicates total disagreement, +1 indicates total 
agreement and a zero correlation indicates a random 
prediction [26].  This number compares the prediction 
algorithm to a random assignment of positive and 
negative values to the sample points. 

C =
TP × TN − FP × FN

(TP + FN )(TP + FP)(TN + FP)(TN + FN )
  (25) 

We also applied the same metrics to solution spaces 
obtained using a simple implementation of 2 k -tree 
representation (k≤3), convex approximations, and finite set 
of interval boxes [6] using Realpaver v 1.0 [7]. Only the 
“unknown” boxes whose edge length exceed λ  were 
partitioned into smaller boxes. The convex approximation 

 
Figure 18. The reduced label of constraint 

  C346 ≡{hb , x, x6}  (  fmax = 2.1lbs,λ=0.025 ). 

 
Figure 17. The reduced label of constraint 

  C346
≡ {h

b
, x, x

6
}  (  f

max
= 2.5lbs, λ=0.05 ). 
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was constructed using the procedure described in [12] and 
the maximum facet length was restricted to λ .  

Table 2 summarizes the results of the study. It is 
evident that decreasing the λ  value produces better 
approximations, irrespective of the representation used. 
Since the design space of the fingernail clipper is convex, 
both the convex and the polytope approximations are 
indistinguishable. Both the 2 k -tree and box representations 
have no false negatives but more false positives for the 
same resolution ( λ -value). This is consistent with the 
intent of those representations, i.e., not to exclude any 
feasible solution.  

6 Discussion 
A key feature of the proposed consistency method is 

that it requires only the ability to check feasibility of a point 
with respect to the constraint, i.e., no secondary 
information like gradients are necessary. Additionally, 
unlike methods proposed by Sam-Haroud and Faltings [9] 
and Lottaz [10], the method presented here approximates 
equality relationships using surfaces as opposed to regions. 
Although the objective in [9, 10] is to obtain tighter bounds 
for the solution space, our objective here is to obtain a 
tighter approximation of the design space. 

Although analytical constraints are used in the 
illustrative example, this method can be extended to other 
causal models such as Finite Element Analysis by using 
appropriate surrogate models such as response surfaces. 
The choice of meta-models is expected to determine the 
quality of approximation obtained because of couplings 
among variables similar to interval techniques [6]. 

During the course of the case study, limitations of the 
proposed technique were identified. These limitations deals 
with the quality of approximation generated. Trivially, an 
approximation can be improved by decreasing the values of 
the tuning parameter λ  - at the cost of memory and speed. 
Firstly, during the construction of solution spaces, several 
attempts were needed before an acceptable value of λ  
could be chosen. This problem is not unique to the 
approach presented here; indeed, all approximation 
methods use sampling, and the sampling size determines 
the quality of the resulting approximation.  

Second aspect, what we call ‘edge-effect’ wherein 
saw-tooth like surface is encountered around a limit state, 
results in a poor approximation by increasing both FP and 
FN. This effect is clearly visible in Figure 17, when the size 
of the labeling is comparable to λ . This was overcome in 
Figure 18 by using a smaller value of λ . 

Third, although this was not observed for the case 
study, geometric cases can exist where large portions of the 
design space are ignored by the approximation method. 
Figure 19 illustrates one such case.  

 
Fourth, since the solution space is generated with a 

single seed point, only the connected region around this 
point is explored. If the solution space consists of multiple 
regions, then the technique presented in this article may 
incorrectly predict infeasibility.  

7 Concluding Remarks 
The key idea in this work is leveraging computational-

geometric algorithms for constraint processing by using 
equivalent geometric operations for constraint processing. 
We have described, in this article, a geometric algorithm 
for constructing a polytope approximation of the design 
space. The approach involves transforming a parametric 
design problem into a geometry problem and thereby using 
computational geometry algorithms to support design 
exploration. Here, the parametric design problem is first 
transformed into a ternary-constraint satisfaction problem; 
then, the solution space of each of the constraints is created 
using a “filling” procedure. The initial solution spaces so 
created are subsequently pruned using a consistency 
technique. Future work for improving the technique will 
include developing an adaptive mesh generation strategy to 

 
Figure 19. Erroneous  approximations can be 

obtained for large values of λ . 

Table 2. Comparison of approximation quality 
Set of interval boxes 

[6,7]  
2 k - tree [8] Convex approximation 

[12] 
Polytope λ  

PCP PCN PCT C PCP PCN PCT C PCP PCN PCT C PCP PCN PCT C 
0.05 55.0 29.3 84.3 0.7117 52.0 34.4 86.4 0.7537 59.8 36.3 96.1 0.9207 59.3 35.9 95.2 0.8997 

0.025 60.7 31.5 92.2 0.8428 57.6 37.1 94.7 0.8951 58.7 39.1 97.8 0.9552 59.5 38.5 98.0 0.9587 

0.0125 58.6 38.5 94.5 0.8926 56.9 38.9 95.8 0.9168 58.6 39.2 97.9 0.9553 59.3 39.1 98.4 0.9632 
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reduce the number of facets needed to approximate the 
design space without compromising accuracy. An 
interactive visualization and exploration tool is also needed 
for enhancing the utility of the proposed technique in 
design. Another future direction is also to use the 
Geometric Processing Unit (GPU) to increase the speed of 
constraint operations for design space exploration. 

8 Acknowledgements 
The authors acknowledge the support of Discovery 

Park Center for Advanced Manufacturing (CAM) at Purdue 
University, for partially supporting the work presented. We 
also thank the anonymous reviewers for the insightful 
comments in improving the paper. 
 
9  References 

 
[1] Otto, K., and Wood, K., 2001, Product Design: 
Techniques in Reverse Engineering and New Product 
Development, Prentice Hall, Upper Saddle River, NJ. 
[2] Wang, G.G., and Shan, S., 2007, “Review of 
Metamodeling Techniques in Support of Engineering 
Design Optimization,” ASME J. Mech. Des., 129(4), pp. 
370-380. 
[3] Stump, G. M., Yukish, M., Simpson, T. W., and 
O'Hara, J. J., 2004, "Trade Space Exploration of Satellite 
Datasets Using a Design by Shopping Paradigm," Proc. 
IEEE Aerospace Conference, 6, pp. 3885- 3895. 
[4] Ward, A. C., 1989, "A Theory of Quantitative 
Inference Applied to a Mechanical Design Compiler," Ph. 
D. thesis, Department of Mechanical Engineering, 
Massachusetts Institute of Technology, Boston, MA. 
[5] Benhamou, F., 1995, "Interval Constraint Logic 
Programming," Proc. Constraint Programming: Basics and 
Trends, LNCS 910, pp. 1-21. 
[6] Yannou, B., Simpson, T. W., and Barton, R. R., 2003, 
"Towards a Conceptual Design Explorer Using Meta-
Modeling Approaches and Constraint Programming," 
ASME Design Engineering Technical Conferences, 
DETC2003/DAC-48766, Chicago, IL. 
[7] Granvilliers, L., and Benhamou, F., 2006, "Algorithm 
852: Realpaver: An Interval Solver Using Constraint 
Satisfaction Techniques," ACM Transactions on 
Mathematical Software, 32(1), pp. 138-156. 
[8]  Fünfzig, F., Michelucci, D., Foufou, S., 2009, 
“Nonlinear Systems Solver in Floating-Point Arithmetic 
using LP Reduction,” Proc. 2009 SIAM/ACM Joint 
Conference on Geometric and Physical Modeling, San 
Fransisco, California, pp. 123-134. 
[9] Sam-Haroud, D., and Faltings, B., 1996, "Consistency 
Techniques for Continuous Constraints," Constraints, 
1(1/2), pp. 85-118. 
[10] Lottaz, C., 2000, "Collaborative Design Using Solution 
Spaces," Ph. D. Ecole Polytechnique Fédérale de Lausanne 
(EFPL), Lausanne, Switzerland. 

[11] Goldsztein, A., and Granvilliers, L., 2008, "A New 
Framework for Sharp and Effective Resolution of Ncsps 
with Manifolds of Solutions," Principles and Practice of 
Constraint Programming, 14th International Conference, 
CP 2008, Sydney, Australia, September 14-18, 2008. 
[12] Goyal, V., 2005, "Design and Synthesis of Flexible 
Module Based Systems," Ph. D.  thesis, Department of 
Chemical Engineering, Rutgers, The State University of 
New-Jersey, New Brunswick, NJ. 
[13] Combastel, C.,  2003, “A State Bounding Observer 
based on Zonotopes”, European Control Conference 2003, 
Cambridge, England. 
[14] Jermann, C., Neumaier, A., and Sam, D., 2005, Global 
Optimization and Constraint Satisfaction, Springer-Verlag, 
Berlin/Heidelberg. 
[15] Mortenson, M. E., 2006, Geometric Modeling, 
Industrial Press. 
[16] Vu, X.-H., Sam-Haroud, D., and Silaghi, M.-C., 2003, 
"Numerical Constraint Satisfaction Problems with Non-
Isolated Solutions " Springer Berlin / Heidelberg, 
Valbonne-Sophia Antipolis, France, October 2-4, 2002. 
[17] Yan, X.-T., and Sawada, H., 2006, "A Framework for 
Supporting Multidisciplinary Engineering Design 
Exploration and Life-Cycle Design Using 
Underconstrained Problem Solving," Artificial Intelligence 
for Engineering Design, Analysis and Manufacturing, 
20(4), pp. 329-350. 
[18] Dechter, R., 2003, Constraint Processing, Morgan 
Kaufmann Publishers, San Francisco, CA. 
[19] Rossi, F., Van Beek, P., Walsh, T., 2006, Handbook of 
Constraint Programming, Elsevier. 
[20] Samet, H., 2006, Foundations of Multidimensional and 
Metric Data Structures, Morgan Kaufmann, San Mateo, 
CA. 
[21] Lottaz, C., Smith, I. F. C., Robert-Nicoud, Y., and 
Faltings, B. V., 2000, "Constraint-Based Support for 
Negotiation in Collaborative Design," Artificial 
Intelligence in Engineering, 14, pp. 261-280. 
[22] Agoston, M. A., 2005, Computer Graphics & 
Geometric Modeling: Mathematics, Springer, London, 
England. 
[23] Fink, E., and Wood, D., 1996, "Fundamentals of 
Restricted-Orientation Convexity," Information Sciences, 
92, pp. 175-196. 
[24] www.cgal.org, Computational Geometric Algorithms 
Library, accessed February, 2009 
[25] Tenne, Y., 2008, “Metamodel Accuracy Assesment in 
Evolutionary Optimization,” Proc. of IEEE World 
Congress on Computational Intelligence–WCCI 2008, 
pp.1505-1512. 
[26] Baldi, P., Brunak, S., Chauvin, Y., Anderson, C.A.F, 
Nielson, H., 2000, “Assessing the Accuracy of Prediction 
Algorithms for Classification: An Overview,” 
Bioinformatics Review, 16(5), pp. 412-424. 
 

  


