
MD-09-1131/Ramani 1

Srikanth Devanathan
 School of Mechanical Engineering

Purdue University
dsrikanth@purdue.edu

Karthik Ramani

School of Mechanical Engineering
School of Electrical and Computer

Engineering (by Courtesy)
Purdue University

ramani@purdue.edu

Creating Polytope
Representations of Design
Spaces for Visual
Exploration Using
Consistency Techniques

Understanding the limits of a design is an important aspect of the design process. When
mathematical models are constructed to describe a design concept, the limits are
typically expressed as constraints involving the variables of that concept. The set of
values for the design variables that do not violate constraints constitute the design space
of that concept. In this work we transform a parametric design problem into a geometry
problem thereby enabling computational geometry algorithms to support design
exploration. A polytope-based representation is presented to geometrically approximate
the design space. The design space is represented as a finite set of (at most) 3-
dimensional (possibly non-convex) polytopes, i.e., points, intervals, polygons and
polyhedra. The algorithm for constructing the design space is developed by interpreting
constraint-consistency algorithms as computational geometric operations and
consequently extending (3,2)-consistency algorithm for polytope representations. A
simple example of a fingernail-clipper design is used to illustrate the approach.

1 Introduction

Many engineering design problems can be described

parametrically using equations and inequalities that model,
among other things, the physical behavior, feasibility and
acceptability of that design. In general, three distinct
subsets of the product parameters can be identified: design
variables X = {x1, x2 ,...xn} , performance parameters

 P = {p1, p2 ,...pm} , and noise variables [1]. We can then
define the design space, performance space, noise space,
and concept space as follows (from Otto and Wood [1]):
• The design space, D ⊂ n is the set of considered

possible alternative configurations (possibly empty),
described using design variables, over which we have
direct control. By definition, all points within the design
space satisfy all constraints imposed on the design.

• The corresponding set of values of the performance
parameters is called the performance space, P ⊂ m of
the concept. Formal models (Μ : D → P) map each
design point d ∈D to M (d) ∈P .

• The noise space, N ⊂ l , is the set of possible
configurations described using noise variables required to

evaluate any point in D , which we do not have direct
choice over.

The design space can be empty, finite, or infinite. An
empty design space signifies an infeasible or unacceptable
design. Loosely speaking, the equality constraints in the
model map a point in the design space onto a point in the
performance space. Inequality constraints, including the
bounds on the design variables, form the boundary of the
design space (see Figure 1). Any point outside this design
space is, by definition, infeasible. When a new system
concept is composed of two or more different sub-system
concepts (shortened to sub-concepts), more constraints are
introduced to describe the compatibility among the sub-
concepts. These constraints connect parameters of the sub-
concepts as well as parameters that describe overall
concept. To obtain a feasible design of the system, these
constraints as well as those within each sub-concept have to
be solved simultaneously.

Designers explore several ‘what-if’ scenarios to
understand the design space and evaluate tradeoffs within
the design. Design exploration involves changing the
original problem and evaluating the effect of this change on
the feasible design and performance spaces. Assigning
values to certain design variables, modifying existing
constraints (relaxing/tightening), adding new constraints, or

MD-09-1131/Ramani 2

removing existing constraints are some of the tasks
performed by the user during exploration.

The fundamental issues in such design exploration are
(1) the need for a compact representation of the design
space and (2) efficient methods for creating such
descriptions. Except for simple design problems, obtaining
an exact representation of the design space is not tractable.
However, if approximations are sufficient then
computational methods can be developed to address these
issues. When a design concept is described mathematically,
the design problem can be posed as a constraint satisfaction
problem and all the solutions to the constraint satisfaction
problem constitute the design space of the original design
problem.

In this paper, we use polytopes to represent design
spaces; we then develop a consistency method to construct
the approximation using computational geometric
approach.

2 Related Work

Exploration of the design space is typically performed
by sampling the mathematical model of the design at a
finite set of design points and testing the points for
feasibility. Design of experiments (DOE) and methods such
as genetic algorithms have been used extensively for such
sampling (Figure 2a). These are sometimes called “point-
based design” methods. An extensive review of sampling
strategies is available in [2]. These sample points are then
filtered during the exploration process by modifying the
constraints on the original design. Due to the computational
cost of obtaining each feasible point, such point-based
methods are either confined to a small region within the
design space or provide a sparse sampling of the entire
design space. Moreover, these samples do not lie on the
boundary of the design space. Nevertheless, these points
are then visualized using parallel coordinates, glyph plots
and histograms among others [3].

When continuous design spaces are to be represented,
constraint-programming techniques have been applied to
obtain those design sets. Earliest among such methods is
presented by Ward [4] using interval arithmetic to

{Otto, 2001 #375}
(a) Finite set of points (e.g.

[3])
(b) Simple interval

approximation (e.g. [4])
(c) Interval hull (e.g. [5]) (d) Finite set of interval

boxes (e.g. [6-8])

(e) -tree approximation

(e.g.
[9, 10])

(f) Parallelepiped
approximation (e.g. [11]).

(g) Convex approximations
using Simplices (e.g. [12])

/ Zonotopes (e.g. [13])

(h) Polytope approximation
(our approach)

Figure 2. Different representations for solution and design spaces.

Figure 1. Formal (mathematical) model maps a point in the space of design variables to a point in the

performance space. Constraints form the boundary of the design space.

MD-09-1131/Ramani 3

constraint interval representation of design solutions
(Figure 2b). Extending simple intervals to interval hulls [5]
(Figure 2c) and interval boxes allow approximation of
solution sets using orthogonal polyhedra such as hulls of
boxes and -trees. Yannou et al. [6] use RealPaver [7], an
interval-based constraint solver, to generate a set of boxes
that span the design space (Figure 2d). The algorithm
continuously restricts the domain of the variables until a
tight bounding box is reached. The algorithm then selects a
variable (using round-robin policy) and partitions the
current box in to n boxes along that variable axis. At each
box, interval arithmetic is used to determine whether the
entire box is feasible, infeasible or unknown. Unknown
boxes are processed recursively until the required precision
is obtained. Consistency methods such as hull-, and box-
consistency are used to reduce the domain and obtain the
solution space of the entire c-CSP. Fünfzig et al. [8] use
Linear Programming (LP) reductions on Bernstein
polytopes instead of interval techniques to reduce the range
of constraints and the domains of variables in order to
compute the solution space of a finite set of non-linear
constraints.

Sam-Haroud and Faltings [9] and subsequent work by
Lottaz [10] use -trees (Figure 2e) to represent solution
spaces of a continuous constraint satisfaction problem (c-
CSP). The motivation for using -trees is cited as lack of
algorithms using polyhedral data structures [14]. Since -
trees are prohibitively expensive for higher dimensions, the
n-ary1 algebraic constraints are first transformed into a set
of ternary constraints by introducing auxiliary variables.
The solution space for each of these ternary constraints are
constructed and stored as -trees. They use a pre-defined
maximum tree depth for each problem. To construct the
initial -tree (k = 3 as all constraints are now ternary)
for each constraint, it is necessary to evaluate the feasibility
of a constraint within the 3-block. Sam-Haroud and
Faltings [9] use the gridding method described in [15]
where each face of the block is partitioned into a grid and
the constraint is evaluated at each grid point. The
intersection of the constraint surface with the face of the
block is determined and used for further partitioning. Lottaz
[10] uses interval analysis to identify whether a block is
feasible, infeasible or unknown. Only the blocks with
“unknown” labeling are split recursively. Vu et al. [16]
improve the efficiency of the algorithm by considering the
complementary box and checking for infeasibility.
Compression in representation of -trees is also provided
by considering extreme vertices in orthogonal polyhedra.

Recently, Goldsztein and Granvilleirs [11] present a
global constraint contraction technique using
parallelepipeds (Figure 2f) rather than orthogonal
polyhedra for constraints that are manifolds (i.e., the

1 “n-ary” is the generalization of unary (1-ary), binary (2-ary),

ternary (3-ary) and so on. “Arity” is defined in Section 3.

constraints do not have ‘sharp’ corners or they do not self-
intersect).

When the design space is convex (i.e., constraints are
convex), Goyal [12] presents a “simplicial” approximation
(a geometry where each face is a simplex) to represent the
limits of feasible space (Figure 2g). Notions of inner and
outer approximations are used to identify the operating
envelope (design space) of a chemical process, i.e., the
largest convex hull that can be inscribed within the feasible
space. The inner approximation is any convex-hull that can
be inscribed within the feasible space, and the outer
approximation is the polytope formed by the tangent planes
at the vertices of the inner approximation. The inner
approximation is improved iteratively by comparing with
the outer approximation. Zonotopes, a special case of
convex polytopes constructed as the Minkowski sum of
finite line segments, have also been used to obtain a convex
bounding for the solution space of a constraint set [13].

Yan and Sawada [17] present a design exploration tool
based on symbolic methods, namely Grübner bases and
quantifier elimination (QE). Although the method
presented does not compute the entire solution space, it
does provide lower dimensional basis polynomials that can
be plotted and the solution space can be identified. Since
QE and Grübner bases are applicable only to polynomial
constraints, transformations have also been suggested to
generate polynomial approximations. Still, the
computational complexity of QE and Grübner bases are
doubly exponential in number of variables, i.e. O(een

) , and
therefore can only be used for small problems.

In this work, we describe a geometric procedure for
creating polytope approximations of the design spaces. It is
conceivable that interval techniques are used to restrict the
domain sufficiently prior to the construction of the polytope
approximation; however, we assume that the domain is
sufficiently narrowed before constructing an approximation
of the design space using our method.
3 Creating Polytope Representation using Constraint
Satisfaction Method

3.1. Constraint satisfaction problems
Constraint satisfaction problems (CSPs) are a class of

problems designed to address systems that are primarily
concerned with constraints. CSPs are modeled as constraint
networks. A constraint network consists of a finite set of
variables X = {x

1
, ..., x

n
}with respective domains

 D = {D
1
, ..., D

n
} and a set of constraints C = {C

1
, ...,C

t
}

[18]. Constraints restrict the values that can be taken by the
variables. These values belong to the domain of that
variable. A numeric CSP is a special CSP where the
domain for each variable is a subset of reals . Constraints
can be specified explicitly as enumeration of valid
combinations or in general as mathematical expressions.

MD-09-1131/Ramani 4

These constraint expressions can be equalities or
inequalities, and can involve any number of variables.

The arity of a constraint is the number of variables
involved in that constraint. For example, a unary constraint
involves only one variable, binary constraint involves two
variables and a ternary constraint involves three variables.

The objective of solving CSPs is to find a valid
instantiation of the variables that does not violate any
constraint. Solving a CSP, in general, is NP-Hard [18];
however, in certain special cases or when approximations
are tolerated these methods become tractable.

The solution techniques for CSPs fall into two broad
categories - Search and Filtering. The focus of search is on
obtaining a single feasible (and possibly optimal)
instantiation. Examples of search techniques include
backtracking, branch and bound, and non-linear
programming. Filtering or consistency involves identifying
(to a certain extent, depending upon the actual algorithm)
whether a CSP is feasible and to possibly obtain the set of
all possible solutions, i.e., the solution set. Arc-consistency,
path-consistency, box-consistency, and the (3,2)-relational
consistency used here are examples of local consistency
techniques for filtering. Arc- and path- consistency
techniques are used for discrete problems where the domain
is finite. Consistency methods guarantee that if they result
in a null assignment (i.e., no solution) then the given
problem does not have a solution. However, if no such
conclusion is obtained then these methods do not guarantee
that there is a solution to the given problem. For a detailed
study of constraint processing techniques and their
applications, the reader is referred to [18] and [19].

Under strong assumptions, global consistency
techniques overcome such limitations. When the solution is
globally consistent, then the variables of the problem can
be assigned values from the solution set in a backtrack-free
manner [18]. The (3,2)-relational consistency, for example,
can guarantee global consistency when the solution spaces
for the constraints are directionally convex. This condition
is explained in Section 3.3.2.

3.2. Using polytopes to represent design space

As mentioned earlier, we assume that the design
problem is represented using design variables, performance
parameters, their domain and constraints between them. To
construct the design space, we first construct the solution
space for each constraint separately and then prune (filter)
these solution spaces using a consistency technique to
obtain the reduced labels for the constraints. Since the
filtering algorithm guarantees that any point outside a label
is infeasible, the resultant set of labels approximates the
design space of the product concept.

A constraint of arity-k defines a set of points, called the
solution space L ⊂ k , where this constraint is satisfied. If
the constraint is an equality constraint, then these points lie
on a hyper-surface in k-dimensional space. Similarly, an

inequality constraint gives rise to regions (without regard to
its connectivity) in k-dimensional space. Additionally, if the
variables are bounded, i.e., their domain is prescribed using
lower and upper bounds, then these surfaces and regions
are bounded as well. L is also called the label
corresponding to the k variables.

Since a design space is a region in n-dimensions,
geometric data-structures can be used to represent such
spaces. Although, the memory requirements and time
complexity for representing and manipulating n-
dimensional geometric objects increases exponentially with
n [20], a n-dimensional region can be reduced to a
collection of n’(>n) three-dimensional geometric objects.
This is because any algebraic expression involving k
variables can be rewritten as a finite set of ternary
expressions with an equivalent solution space [9]. As a
simple example, consider the following expression of arity
4:

 x1
x

2
x

3
+ x

2
x

4
− x

3

2 ≤ 0 (1)

This constraint can be re-written as four ternary constraints
with the addition of two new variables {x

5
, x

6
} as

x
5
= x

1
x

2

x
6
= x

2
x

4

x
5
x

3
+ x

6
− x

3

2 ≤ 0
 (2)

It is clear that any solution of eq. (1) is also a solution
of the constraint set in eq. (2) and vice versa. In general,
several intermediate variables may be required depending
upon the coupling among the k variables in the original
constraints. Lottaz et al. [21] present a method for
introducing a minimal number of intermediate variables
during the ternarization process. The consequence of
restricting the maximum arity to three is that consistency
needs to be maintained among additional 3-dimensional
labelings. Consistency is maintained by iteratively pruning
infeasible regions from the feasible space of individual
constraints using a consistency algorithm until no further
reduction is possible. The solution space of the entire CSP
is the set of consistent labelings of each constraint.

In this work, we use the term “polytope” to include: 2D
polygonal region, 2D & 3D line segments, 3D polyhedral
surface and 3D polyhedron as shown in Table 1.

3.3. Constructing the polytope approximation

The overall procedure for constructing the polytope
approximation is:

1. Formulate the design problem as a numeric CSP
2. Transform all constraints into ternary constraints
3. Create the solution space for each constraint.
4. Use consistency to prune the solution space to

obtain the design space.

MD-09-1131/Ramani 5

3.3.1 Creating the initial solution space for each
constraint

Given a (ternary) constraint
Cijk involving variables

{ xi , , } and an initial feasible starting point , we
construct the solution space around this point using the
procedure shown in Figure 3. The basic idea here is to start
with a small facet polyhedron (sphere in line 1) around the
start point and iteratively “push” its vertices along the
direction of the outward normal till the constraint boundary
is reached (lines 4 and 5). Whenever a facet size exceeds a
pre-set limit (), the facet is subdivided introducing new
vertices (see Figure 4). A similar procedure is used for
other polytopes. Figure 5 illustrates the filling process.

The function check-feasibility is used in line 4 to test

the feasibility of a point
P = (α i ,α j ,α k) by evaluating the

constraint
Cijk . A control parameter λ , represents the

maximum length allowed for a facet.
Complexity of procedure generate- label

Without loss of generality, we can assume that the
design variables are suitably scaled such that the domain is
a box of unit length. We estimate the computational
complexity by assuming that the 3D space consists of
points that are exactly λ apart – there are

np = O(d 3) such

points, where

d = 1

λ
⎡

⎢
⎢

⎤

⎥
⎥ . In the worst case, all these points

lie on the boundary of the label (or solution space).
Therefore the maximum number of facets that can exist is

 O(d 3) . Now, if each of these points are obtained by
stepping the original seed point located at one of the
corners of the bounding box, then each point is stepped
O(d) times. The constraints are therefore checked O(d4)
times from which the complexity of the filling algorithm is
O(d4).

Figure 5. Illustration of the “filling” procedure to
construct solution space around a starting point.

Figure 4. Subdividing a facet into smaller facets

Figure 3. Procedure to construct a polyhedral label

involving variables

Table 1. Examples of polytopes
Type of

Constraint Type of solution space Type of
Constraint Type of solution space

 f (x) ≤ 0 1D Interval

 f (x, y) = 0 2D Polygon

 f (x, y) ≤ 0
2D
Polygonal
region

 f (x, y, z) = 0
3D Polyhedral
surface (possibly
with boundary)

 f (x, y) = 0
2D Polyline

 f (x, y, z) ≤ 0 3D Polyhedron

MD-09-1131/Ramani 6

3.3.2 Pruning the solution space to obtain design
space

Once the individual solution spaces are constructed,
the (3,2)-consistency algorithm [9] is used to remove
infeasible points from the solution space of infeasible
points. The function init initializes the queue Q with
permutations of 5 variables and L with the initial labels of
all triplets of variables.

The main idea in (3,2)-relational consistency is to use
two variables (u,v) involved in constraints

 Ciuv
,C

juv
and Ckuv

to reduce the labeling of constraint Cijk
.

The constraints involving combinations of {x
i
, x

j
, x

k
, x

u
, x

v
}

are generated in the function related-5tuples.
Figure 6 shows the (3,2)-relational consistency

algorithm for reducing the labels of the constraints. The
queue Q initially contains the list of all related 5-tuples.
The labelings associated with variables belonging to the 5-
tuples are pruned iteratively in the function (3,2)-revise
(Figure 7). Here, a polyhedron in dimensions {x

i
, x

j
, x

k
} is

constructed by convolution of Liuv
, L

juv
and Lkuv

 followed by

projection on to {x
i
, x

j
, x

k
}space and finally intersecting

this projection with the existing {x
i
, x

j
, x

k
} -label, i.e. Lijk

.
Convolution, also called external join, is the operation

a space of higher dimension from those of lower
dimensions using common dimensions. Figure 8 illustrates
the convolution operation in three dimensions. More
precisely, convolution is defined as:

L
iju
⊗

u
L

klu
= {(α

i
,α

j
,α

k
,α

u
) |

(α
i
,α

j
,α

u
) ∈ L

iju
& (α

k
,α

l
,α

u
) ∈ L

klu
}

 (3)

L
iuv
⊗

uv
L

juv
= {(α

i
,α

j
,α

u
,α

v
) |

(α
i
,α

u
,α

v
) ∈ L

iuv
& (α

i
,α

u
,α

v
) ∈ L

juv
}

 (4)

Step 1 of (3,2)-revise implicitly creates a temporary 5-

dimensional geometric object in {x
i
, x

j
, x

k
, x

u
, x

v
} -space in

order to compute

L

ijk
 L

iuv
⊗

uv
L

juv
⊗

uv
L

kuvijk∏() . This

extended convolution operation (convolution followed by
projection) reduces the original label Lijk

to ′L
ijk

. To
propagate this change, other constraints that share a
common variable are then added to the queue for revision
by related-5tuples.

However, ′L
ijk

can also be constructed geometrically
using the procedure generate-label by suitably modifying
the check-feasibility function as follows: From eq. (4), it
can be deduced that a point P = (α

i
,α

j
,α

k
) belongs to ′L

ijk

if there is at least one value of (x
u
, x

v
) = (α

u
,α

v
) such that

the points (α i
,α

u
,α

v
), (α

j
,α

u
,α

v
) and (α k

,α
u
,α

v
) lie

within Liuv
, L

juv
and Lkuv

 respectively. Therefore, in order to
check the feasibility of a point P , it is sufficient to check if
such a (α u

,α
v
) exists, i.e.,

check-feasibility(P) =

L
iuv

|
x

i
=α

i
uv

∏⎛⎝⎜
⎞
⎠⎟ L

juv
|
x

j
=α

j
uv

∏⎛⎝⎜
⎞
⎠⎟ L

kuv
|
x

k
=α

k
uv

∏⎛⎝⎜
⎞
⎠⎟ (5)

Figure 8. Convolution in three dimensions.

Figure 7. Function to revise the solution

L

ijk
using the

solution spaces Liuv
, L

juv
and Lkuv

.

Figure 6. (3,2)-consistency algorithm to prune the

solution spaces

MD-09-1131/Ramani 7

Figure 9 shows how

L
iuv

|
x

i
=α

i
uv

∏ is be obtained

geometrically; similar sections can be obtained for
variables x j

and xk
. The function generate-label returns

TRUE if the intersection of the uv projections is not empty
and FALSE otherwise.

Convexity considerations for (3,2) – relational
consistency

As mentioned in Section 3.1, the (3,2)-relational
consistency algorithm used here, computes a globally
consistent solution when the constraints are directionally
convex. A set in n is convex if its intersection with every
straight line is connected or empty [22]. This condition is
relaxed for directional-convexity, where only lines parallel
to a given set of lines are considered [23]. A special case of
directional convexity is called ortho-convexity [23] where
the lines are parallel to the axes. Figure 10 illustrates this
concept for planar shapes; (x,y)-, (y,z)- or (x,z)- convexity
can be similarly defined for ternary spaces.

It is noted that, in order to choose the values for
variable xk +1

 having chosen values for variables

 x1
, x

2
, ...x

k
 in a backtrack-free manner from the solution

space computed by (3,2) consistency, each of the ternary
solution spaces involving variables xk +!

and xi
 (with i ≤ k)

should be (x
k +1

, x
i
) -convex [9]. (3,2)-relational consistency

algorithm will fail to detect inconsistency in the solution
space when the solution space does not satisfy the partial
convexity condition.

Complexity of function (3,2) – revise
Since the same generate-label procedure is used to

compute the extended convolution of three constraints,
O(d4) is also upper bound for the number of times the
convolution condition (eq. 5) is checked. However, since
this condition is checked geometrically using plane-
polyhedron intersection (O(d3) [20]) followed by polygon
intersection (O(d2), [20]), the complexity of calculating the
extended convolution is O(d7).
3.3.3 Checking feasibility of a design point

The design space approximation constructed can be
used to check the feasibility of a design point. Assigning
values to a set of design variables may specify the design
point. Such assignments are considered as additional
constraints that are added to the original problem. For
example, if xi = α i

 is an assignment, then the constraint
Ciuv

 and its corresponding label Liuv
 involving variables

xi , xu and xv is replaced by a label Luv
 given by

Liuv xi =α i

uv

∏ (Figure 9). Therefore, a 3D polytope is

reduced to a 2D polygon or a set of points; a 2D polygon is
reduced to a line segment or a set of points.

This change is then propagated to all other labels using
the (3,2)-consistency algorithm described in Section 3.3.2.
The point is infeasible when a null label is obtained, and
therefore does not belong in the design space.
4 Example: Fingernail Clipper Design

Consider the design of fingernail clipper from Otto and
Wood [1]. The main customer requirements on the clipper
are: (1) easy to use, (b) should be compact, and (c) should
have a long life. Figure 11 shows one of the many concepts
developed to satisfy these customer requirements. The user
applies a force on the pads that cause the arm to pivot about
the end. The blades on the other end of the clipper shear the
nail. The requirements are translated into constraints on the
finger force, material stress, and overall dimensions.

4.1 Formulate the design problem as a numeric CSP
The mathematical model of this design concept is

developed by considering the shear stress (τ) needed to
cut a fingernail. The finger-force (f) needed to actuate the

clipper is expressed in terms of the pivot length (Lp
), width

of the blade (W), nail thickness (t), distance of the grip
from the pivot (x) and height of blade (hb

) as:

Figure 9. Geometrically,

L

iuv
|
x

i
=α

i
uv

∏ is computed by

obtaining a intersecting Liuv
with the plane xi

= α
i

Figure 10. Example of directional convexity in planar shapes.

MD-09-1131/Ramani 8

f =

L
p
τWt 2

xh
b

 (6)

The maximum normal stress in the arm is given by:

σ = K

cycles

6xf

Wt
m

2
1−

x

L
p

⎛

⎝⎜
⎞

⎠⎟
 (7)

Finally, the geometry of the concept gives rise to the
following relations:

L

p
= x +

c

2
+ r (8)

 r = 2t
m

 (9)

 Loverall
= L

a
+ L

p
 (10)

The complete mathematical model of this design concept is
developed considering the behavior and structure
(geometry of the design) is given by

f =
L

p
τWt

2

xh
b

r = 2t
m

σ = K
cycles

6xf

Wt
m

2
1 −

x

L
p

⎛
⎝⎜

⎞
⎠⎟

L
p
= x +

c

2
+ r

L
overall

= L
a
+ L

p

H
overall

= 2r + 2B + d

B = h
b
+ 3D

h

 (11)

The constraints on the design concept are

f ≤ f
max

5t
m
≤ L

a

5D
h
≤ W

σ ≤ σ
max

h
b
+ 1.1t ≤ d

 (12)

The five design variables in this problem are

 {t
m
, D

h
, h

b
, x, d} . The domains for the design variables are

t

m
∈[0.01,0.06]; D

h
∈[0.01,0.06]; h

b
∈[0.05,0.5];

x ∈[0.05,5]; d ∈[0.1,0.2]
 (13)

The value of the constants are

τ = 1000 psi; t = 0.025 in; c = 0.375 in;
L

overall
= 2.5 in;W

overall
= 0.5 in; H

overall
= 0.688 in;

σ
max

= 15000 psi; K
cycles

= 5.0
 (14)

We eliminate unnecessary intermediate variables using
eq. (11) to obtain the following set of constraints involving
design variables and constants.

x + c
2
+ 2tm

⎛
⎝⎜

⎞
⎠⎟
τWt2

xhb

− fmax ≤ 0

4tm + 2hb + 6Dh + d − H ≤ 0
5Dh −W ≤ 0

La + x + c
2
+ 2tm − L ≤ 0

5tm − La ≤ 0

Kcycles

6τ
hb

c
2
+ 2tm

⎛
⎝⎜

⎞
⎠⎟
− σmax ≤ 0

 (15)

Clearly, the design space is a region in 5 . For sake of
clarity, we denote the design variables by

 X = {x
i
} where {x

1
≡ t

m
, x

2
≡ D

h
, x

3
≡ h

b
, x

4
≡ x, x

5
≡ d} .

To explore this 5-dimensional design space, we create a set
of 3-dimensional projections and maintain consistency
among these projections based on the geometry of the
design space.

4.2 Transform all constraints into ternary constraints
We notice that the constraint 4x

1
+ 2x

3
+ 6x

2
+ x

5
− H ≤ 0

involves 4 design variables. By introducing a new variable

 x6
 and a new constraint,

 C256
: x

6
= 6x

2
+ x

5
 (16)

we can rewrite the original problem as:

C
134

:

τW
overall

t 2 x
4
+

c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟

x
4
x

3

− f
max

≤ 0

i.e., τW
overall

t 2 x
4
+

c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟
− x

3
x

4
f

max
≤ 0

 (17)

 C346
: 4x

4
+ 2x

3
+ x

6
− H

overall
≤ 0 (18)

 C2
: 5x

2
− W

overall
≤ 0 (19)

C

14
= 7x

1
+ x

4
+

c

2
− L ≤ 0 (20)

C
13
= K

cycles

6τ

x
3

c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟
− σ

max
≤ 0

i.e., K
cycles

6τ
c

2
+ 2x

1

⎛
⎝⎜

⎞
⎠⎟
− x

3
σ

max
≤ 0

 (21)

Now, all the constraints have arity of three or less, i.e.,
involve three or fewer variables each.

4.3. Create the solution space for each constraint
Next, we construct the solution space for each of these

constraints (initial labelings) using the procedure given in

Figure 11. Schematic of fingernail clipper design

(adapted from Otto and Wood [1]).

MD-09-1131/Ramani 9

Section 3.3.1. These initial labels for constraints

 C134
,C

256
and C346

are shown in Figures 12, 13 and 14
respectively. The lambda value was kept at 0.05 for all the
solution spaces.

4.4 Use consistency to prune the solution space to obtain
the design space

Figures 15 and 16 show the labeling created after
applying the consistency algorithm on the individual

solution spaces. These together represent the design space
of the fingernail clipper concept.

4.5 Exploration of the design space by modifying f

max

The labeling of the constraint C134 , is modified by

changing the upper bound of , i.e., . Whenever a
particular constraint labeling is modified, the change is
propagated to other labelings to maintain consistency. The

resulting labelings involving (x3, x4 , x6) , i.e., are

shown in Figures 17 and 18. We note that when is
reduced beyond (approximately) 1.8lbs, the labelings
reduce to an empty set, i.e., 1.8lbs is a lower bound for the
maximum force. This result agrees with that from [1] where
the minimum value of fmax is obtained at around 2 lbs.

Figure 16. The reduced label of constraint

 C346
≡ {h

b
, x, x

6
} (f

max
= 3lbs).

Figure 15. The initial (light) and final (dark) label of

constraint C134
≡ {t

m
, h

b
, x} .

Figure 14. Initial label of ternary constraint

 C256
≡ {D

h
, d , x

6
}.

Figure 13. Initial label of ternary constraint

 C346
≡ {h

b
, x, x

6
} .

Figure 12. Initial label of ternary constraint

 C134
≡ {t

m
, h

b
, x} .

MD-09-1131/Ramani 10

5 Validation of design space Approximation

The accuracy of any approximation technique used in
multi-disciplinary optimization (such as Response Surfaces
or Kriging) is assessed using the following error measures
[25]:

1. Trust-region calculations
2. Hypothesis-testing methods such as ANOVA
3. Loss-function methods, and
4. Cross-validation methods.

The above measures cannot be applied to the design space
approximation as it is a binary predictor: given a point in
the space of design variables, the approximation predicts
whether that point belongs to the design space or not.
Counting the number of correct and incorrect predictions
for a finite set of known samples and calculating metrics
using those counts have been used to estimate the accuracy
of binary predictors in the field of data-mining [26].
In order to assess the quality of the approximation, we
generated a random set of points in the space of design

variables whose inclusion in the original design space is
checked by evaluating the algebraic constraints. The
prediction computed by the design space approximation
was then be classified as one of:
1. True Positive (TP) – A point is correctly predicted as

belonging to the design space
2. True Negative (TN) – A point is correctly predicted as

not belonging to the design space
3. False Positive (FP) – An infeasible point is wrongly

predicted as belonging to the design space.
4. False Negative (FN) – A point in the design space is

incorrectly excluded.
Based on these counts, the percentage errors and the

correlation coefficient for the binary samples were
calculated (from [26]):
1. Percentage errors i.e., the number of true predictions

for every hundred queries can be defined in three ways:
a. Total prediction percentage (PCT) measures the

percentage of correct predictions to the total sample
size.

PCT = 100
TP + TN

TP + TN + FP + FN
 (22)

b. Positive prediction percentage (PCP) measures the
percentage of true positive predictions to the total
number of feasible points. This number can be
interpreted as the confidence value when a positive
prediction is obtained.

PCP = 100
TP

TP + FN
 (23)

c. Negative prediction percentage (PCN) measures the
percentage of true negative predictions to the total
number of infeasible points. This number can be
interpreted as the confidence value when a negative
prediction is obtained.

PCN = 100
TN

TN + FP
 (24)

2. The correlation coefficient (C) measures how much the
predictions agree with the actual values. A correlation
of -1 indicates total disagreement, +1 indicates total
agreement and a zero correlation indicates a random
prediction [26]. This number compares the prediction
algorithm to a random assignment of positive and
negative values to the sample points.

C =
TP × TN − FP × FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
 (25)

We also applied the same metrics to solution spaces
obtained using a simple implementation of 2 k -tree
representation (k≤3), convex approximations, and finite set
of interval boxes [6] using Realpaver v 1.0 [7]. Only the
“unknown” boxes whose edge length exceed λ were
partitioned into smaller boxes. The convex approximation

Figure 18. The reduced label of constraint

 C346 ≡{hb , x, x6} (fmax = 2.1lbs,λ=0.025).

Figure 17. The reduced label of constraint

 C346
≡ {h

b
, x, x

6
} (f

max
= 2.5lbs, λ=0.05).

MD-09-1131/Ramani 11

was constructed using the procedure described in [12] and
the maximum facet length was restricted to λ .

Table 2 summarizes the results of the study. It is
evident that decreasing the λ value produces better
approximations, irrespective of the representation used.
Since the design space of the fingernail clipper is convex,
both the convex and the polytope approximations are
indistinguishable. Both the 2 k -tree and box representations
have no false negatives but more false positives for the
same resolution (λ -value). This is consistent with the
intent of those representations, i.e., not to exclude any
feasible solution.

6 Discussion
A key feature of the proposed consistency method is

that it requires only the ability to check feasibility of a point
with respect to the constraint, i.e., no secondary
information like gradients are necessary. Additionally,
unlike methods proposed by Sam-Haroud and Faltings [9]
and Lottaz [10], the method presented here approximates
equality relationships using surfaces as opposed to regions.
Although the objective in [9, 10] is to obtain tighter bounds
for the solution space, our objective here is to obtain a
tighter approximation of the design space.

Although analytical constraints are used in the
illustrative example, this method can be extended to other
causal models such as Finite Element Analysis by using
appropriate surrogate models such as response surfaces.
The choice of meta-models is expected to determine the
quality of approximation obtained because of couplings
among variables similar to interval techniques [6].

During the course of the case study, limitations of the
proposed technique were identified. These limitations deals
with the quality of approximation generated. Trivially, an
approximation can be improved by decreasing the values of
the tuning parameter λ - at the cost of memory and speed.
Firstly, during the construction of solution spaces, several
attempts were needed before an acceptable value of λ
could be chosen. This problem is not unique to the
approach presented here; indeed, all approximation
methods use sampling, and the sampling size determines
the quality of the resulting approximation.

Second aspect, what we call ‘edge-effect’ wherein
saw-tooth like surface is encountered around a limit state,
results in a poor approximation by increasing both FP and
FN. This effect is clearly visible in Figure 17, when the size
of the labeling is comparable to λ . This was overcome in
Figure 18 by using a smaller value of λ .

Third, although this was not observed for the case
study, geometric cases can exist where large portions of the
design space are ignored by the approximation method.
Figure 19 illustrates one such case.

Fourth, since the solution space is generated with a

single seed point, only the connected region around this
point is explored. If the solution space consists of multiple
regions, then the technique presented in this article may
incorrectly predict infeasibility.

7 Concluding Remarks
The key idea in this work is leveraging computational-

geometric algorithms for constraint processing by using
equivalent geometric operations for constraint processing.
We have described, in this article, a geometric algorithm
for constructing a polytope approximation of the design
space. The approach involves transforming a parametric
design problem into a geometry problem and thereby using
computational geometry algorithms to support design
exploration. Here, the parametric design problem is first
transformed into a ternary-constraint satisfaction problem;
then, the solution space of each of the constraints is created
using a “filling” procedure. The initial solution spaces so
created are subsequently pruned using a consistency
technique. Future work for improving the technique will
include developing an adaptive mesh generation strategy to

Figure 19. Erroneous approximations can be

obtained for large values of λ .

Table 2. Comparison of approximation quality
Set of interval boxes

[6,7]
2 k - tree [8] Convex approximation

[12]
Polytope λ

PCP PCN PCT C PCP PCN PCT C PCP PCN PCT C PCP PCN PCT C
0.05 55.0 29.3 84.3 0.7117 52.0 34.4 86.4 0.7537 59.8 36.3 96.1 0.9207 59.3 35.9 95.2 0.8997

0.025 60.7 31.5 92.2 0.8428 57.6 37.1 94.7 0.8951 58.7 39.1 97.8 0.9552 59.5 38.5 98.0 0.9587

0.0125 58.6 38.5 94.5 0.8926 56.9 38.9 95.8 0.9168 58.6 39.2 97.9 0.9553 59.3 39.1 98.4 0.9632

MD-09-1131/Ramani 12

reduce the number of facets needed to approximate the
design space without compromising accuracy. An
interactive visualization and exploration tool is also needed
for enhancing the utility of the proposed technique in
design. Another future direction is also to use the
Geometric Processing Unit (GPU) to increase the speed of
constraint operations for design space exploration.

8 Acknowledgements
The authors acknowledge the support of Discovery

Park Center for Advanced Manufacturing (CAM) at Purdue
University, for partially supporting the work presented. We
also thank the anonymous reviewers for the insightful
comments in improving the paper.

9 References

[1] Otto, K., and Wood, K., 2001, Product Design:
Techniques in Reverse Engineering and New Product
Development, Prentice Hall, Upper Saddle River, NJ.
[2] Wang, G.G., and Shan, S., 2007, “Review of
Metamodeling Techniques in Support of Engineering
Design Optimization,” ASME J. Mech. Des., 129(4), pp.
370-380.
[3] Stump, G. M., Yukish, M., Simpson, T. W., and
O'Hara, J. J., 2004, "Trade Space Exploration of Satellite
Datasets Using a Design by Shopping Paradigm," Proc.
IEEE Aerospace Conference, 6, pp. 3885- 3895.
[4] Ward, A. C., 1989, "A Theory of Quantitative
Inference Applied to a Mechanical Design Compiler," Ph.
D. thesis, Department of Mechanical Engineering,
Massachusetts Institute of Technology, Boston, MA.
[5] Benhamou, F., 1995, "Interval Constraint Logic
Programming," Proc. Constraint Programming: Basics and
Trends, LNCS 910, pp. 1-21.
[6] Yannou, B., Simpson, T. W., and Barton, R. R., 2003,
"Towards a Conceptual Design Explorer Using Meta-
Modeling Approaches and Constraint Programming,"
ASME Design Engineering Technical Conferences,
DETC2003/DAC-48766, Chicago, IL.
[7] Granvilliers, L., and Benhamou, F., 2006, "Algorithm
852: Realpaver: An Interval Solver Using Constraint
Satisfaction Techniques," ACM Transactions on
Mathematical Software, 32(1), pp. 138-156.
[8] Fünfzig, F., Michelucci, D., Foufou, S., 2009,
“Nonlinear Systems Solver in Floating-Point Arithmetic
using LP Reduction,” Proc. 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modeling, San
Fransisco, California, pp. 123-134.
[9] Sam-Haroud, D., and Faltings, B., 1996, "Consistency
Techniques for Continuous Constraints," Constraints,
1(1/2), pp. 85-118.
[10] Lottaz, C., 2000, "Collaborative Design Using Solution
Spaces," Ph. D. Ecole Polytechnique Fédérale de Lausanne
(EFPL), Lausanne, Switzerland.

[11] Goldsztein, A., and Granvilliers, L., 2008, "A New
Framework for Sharp and Effective Resolution of Ncsps
with Manifolds of Solutions," Principles and Practice of
Constraint Programming, 14th International Conference,
CP 2008, Sydney, Australia, September 14-18, 2008.
[12] Goyal, V., 2005, "Design and Synthesis of Flexible
Module Based Systems," Ph. D. thesis, Department of
Chemical Engineering, Rutgers, The State University of
New-Jersey, New Brunswick, NJ.
[13] Combastel, C., 2003, “A State Bounding Observer
based on Zonotopes”, European Control Conference 2003,
Cambridge, England.
[14] Jermann, C., Neumaier, A., and Sam, D., 2005, Global
Optimization and Constraint Satisfaction, Springer-Verlag,
Berlin/Heidelberg.
[15] Mortenson, M. E., 2006, Geometric Modeling,
Industrial Press.
[16] Vu, X.-H., Sam-Haroud, D., and Silaghi, M.-C., 2003,
"Numerical Constraint Satisfaction Problems with Non-
Isolated Solutions " Springer Berlin / Heidelberg,
Valbonne-Sophia Antipolis, France, October 2-4, 2002.
[17] Yan, X.-T., and Sawada, H., 2006, "A Framework for
Supporting Multidisciplinary Engineering Design
Exploration and Life-Cycle Design Using
Underconstrained Problem Solving," Artificial Intelligence
for Engineering Design, Analysis and Manufacturing,
20(4), pp. 329-350.
[18] Dechter, R., 2003, Constraint Processing, Morgan
Kaufmann Publishers, San Francisco, CA.
[19] Rossi, F., Van Beek, P., Walsh, T., 2006, Handbook of
Constraint Programming, Elsevier.
[20] Samet, H., 2006, Foundations of Multidimensional and
Metric Data Structures, Morgan Kaufmann, San Mateo,
CA.
[21] Lottaz, C., Smith, I. F. C., Robert-Nicoud, Y., and
Faltings, B. V., 2000, "Constraint-Based Support for
Negotiation in Collaborative Design," Artificial
Intelligence in Engineering, 14, pp. 261-280.
[22] Agoston, M. A., 2005, Computer Graphics &
Geometric Modeling: Mathematics, Springer, London,
England.
[23] Fink, E., and Wood, D., 1996, "Fundamentals of
Restricted-Orientation Convexity," Information Sciences,
92, pp. 175-196.
[24] www.cgal.org, Computational Geometric Algorithms
Library, accessed February, 2009
[25] Tenne, Y., 2008, “Metamodel Accuracy Assesment in
Evolutionary Optimization,” Proc. of IEEE World
Congress on Computational Intelligence–WCCI 2008,
pp.1505-1512.
[26] Baldi, P., Brunak, S., Chauvin, Y., Anderson, C.A.F,
Nielson, H., 2000, “Assessing the Accuracy of Prediction
Algorithms for Classification: An Overview,”
Bioinformatics Review, 16(5), pp. 412-424.

